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S1. The Structure Concept of BEC-style ITQ-14 Zeolite

Fig. S1. (a) Low-magnification TEM image, (b) electron diffraction pattern (showing very strong 

diffuse line corresponding to the coexistence of polytypes A and B), (c) HREM image of the 

overgrown crystal along [100]N, (d) an enlarged image of a part of (c), and (e) ED pattern of the 

overgrown crystal.

Pure silica ITQ-14 zeolite was prepared using tetramethylene bisquinuclidinium 

diquaternary cation (M4BQ2+). This organic cation was prepared at room temperature 

by reaction of 1,4- dibromobutane (4 mol, Aldrich) with quinuclidine (9 mol, Aldrich) 

using ethanol as a solvent. The mixture was stirred for 3 days before the solvent was 

evaporated under vacuum, and the resultant solid was washed with ethyl acetate and 

diethyl ether. The obtained dibromide dihydrated salt was then exchanged to the 

dihydroxide form by anion-exchange with Dowex-1 strongly alkaline resin (around 95% 

exchange).



For the zeolite synthesis thetraethyl orthosilicate (TEOS, Merck) was added to an 

aqueous solution of M4BQ(OH)2, and then the mixture was stirred at room 

temperature for a extended period of time to allow complete evaporation of the 

ethanol produced plus the water needed to reach the desired final composition. Then, 

the required amount of HF (aqueous solution recently titrated, typically 45-48 wt %) 

was added, and the mixture was homogeneized by hand stirring. The mixture was 

poured into a Teflon-lined stainless steel autoclave and was then heated at 175 °C for 

12 days while being tumbled (60 rpm). The gel composition was SiO2:0.25 

MnBQ(OH)2:0.50 HF:7.5 H2O. 

After cooling the autoclaves, the contents were filtered, and the recovered solid 

was washed with water and dried. According to chemical analysis, the material 

contains 3.5 F- per 64 SiO2. Recently, the existence of D4R in pure ITQ-14 was 

claimed from the chemical shifts in F MAS NMR of -39.3 ppm which were assigned 

to F located in D4R.

Reference

Liu Z, Ohsuna T, Terasaki O, et al. The first zeolite with three-dimensional 

intersecting straight-channel system of 12-membered rings[J]. Journal of the 

American Chemical Society, 2001, 123(22): 5370-5371. 



S2. Structural Screening

S2.1 Data preparation

All structural data of the 2D zeolite-like carbon materials were obtained by 

applying the CALYPSO structure prediction method developed by Ma’s group, which 

is grounded on the ML particle swarm optimization algorithm to explore and predict 

functional materials on demand. In the structural prediction, the number for the C 

atom in one formula unit was 12, and the maximum number of formula units per cell 

was 2. Also, the primary estimated volume per formula unit was 20 Å3 and the 

prediction generation was 50. In addition, the population size of the predicted 

structures was 40 in every generation, and the proportion of randomly generated 

structures in each generation was 40%. It should be noted that our CALYPSO crystal 

structure prediction method was interfaced with the Vienna ab initio simulation 

package (VASP), and each generated structure was optimized thrice to ensure 

accurate calculation.

S2.2. Machine learning models

Enriching the π-bonds and building multiple carbon ring structures rationally 

should be an active solution to regulate the mechanical properties and electronic 

structure. All data of the original dataset were split into 70% training and 30% test 

sets. The training set was used to optimize and train the model through cross-

validation, while the test set was employed to evaluate the accuracy of the trained 

model. We trained each ML model utilizing a 5-fold cross-validated grid search to 

optimize the hyperparameters, i.e., dividing the data into five random groups and 



training the model with four of the five subsets, then evaluating the remaining subsets. 

The process was repeated for each of the five divisions as the test set, after which the 

predictive ability of the model was evaluated as the average performance of the model 

over all replications. This is done so that each segmented dataset is treated as a test set 

for the iteration. Neural networks (NN) have been extensively applied for predicting 

material properties and accelerating simulation to assist material characterization due 

to their advantages of self-learning, associative storage, and the ability to find 

optimization solutions at high speed. Numerical features such as energy density, 

adsorption energy, and mechanical properties were renormalized and served as the 

input feature vectors for the NN model. The correlation between the energy density 

and the pore size features of 2D membranes was first established using the NN model, 

which consists of an input layer, an output layer, and two totally connected hidden 

layers, and the size of the hidden layers was determined by applying the grid search 

method. Among them, the input characteristics of the NN input layer are E ≤ －8.5 

eV/atom. In addition, we have selected the layer magnitude parameter set to 100 for 

the hidden layers. The mean squared errors and the rectified linear unit were adopted 

as the lost function and activation function, respectively. The root mean absolute error 

(MAE) of the test set measured on the model was 0.25%, and the coefficient of 

determination (R2) value was 0.96. Based on the similar operation described above, 

the adsorption energy and mechanical properties of the suitable pore size were further 

screened (the input characteristics of the NN input layer were U < －0.5 eV and C(θ) > 

32 GPa and v(θ) > 0.25, respectively).



S2.3 Structural screening

Some crucial eigenvectors are considered during training: (i) The total energy 

released by forming the structure is applied as a physical parameter to determine the 

structural stability. The criterion for obtaining a stable structure is defined as the total 

energy E ≤ −8.5 eV/atom after referring to the stability of numerous graphene-based 

materials; (ii) The pore size is an essential indicator for desalination properties. 

According to previous studies, a pore size of 0.45–0.55 nm can display excellent 

desalination efficiency, and the corresponding carbon rings in the carbon density 

model should contain 10–12 carbon atoms; (iii) To ensure the strength and integrity of 

the structure during desalination, the Young’s modulus C and Poisson’s ratio v act as 

descriptors of the mechanical properties, and the screening terms are set to C(θ) > 32 

GPa and v(θ) > 0.25; (iv) The best-fitting algorithm for the training set is employed to 

predict the adsorption energy of a Na+ at a hollow site. For stable adsorption, the 

screening judgment of U < −0.5 eV is performed empirically; (v) Finally, we have to 

evaluate the preparation possibilities of the structures. The determination criteria for 

the structural screening are shown in Fig. S2.

Fig. S2. Determination criteria for structural screening.



Specifically, the stability screening data are plotted in Fig. S3. The magenta line 

indicates E = −8.5 eV/atom, whereas the blue and red dots represent the structure 

subsets that do not fulfill and satisfy the screening criteria in the unit cell, respectively. 

We treated 292 2D carbon nanomaterials and obtained 52 target spots (E ≤ −8.5 

eV/atom) according to the stability criteria, which can be assumed as stable unit cells 

to be further investigated.

Fig. S3. Stability screening of machine learning.

Fig. S4 illustrates the correspondence between carbon density and total energy of 

feasible stable structures. They are based on the constructed carbon density model 

used to further search for the structures that match the screening eligibility. The 

structures of the largest pores, containing 7–9, 10–12, and 14–18 carbon atoms in the 

unit cell, are represented with yellow, red, and blue dots, respectively. The energy 

values corresponding to the pore structures constructed with different amounts of 

carbon atoms are further summarized in the embedded diagram. We searched for 

some stable structures incorporating 10- to 12-membered carbon rings, where the 10-

membered carbon ring structures have energies in the range of −8.372 to −8.830 



eV/atom. Similarly, the 12-membered carbon ring structures have energy values 

between −8.501 and −8.600 eV/atom.

Fig. S4. Correspondence between carbon density and total energy.

    These structures have been further screened for mechanical properties and 

adsorption energy. Finally, based on the results of the screening, a main target was 

chosen for subsequent simulation validation in this paper to explore the universal 

characteristics of desalination membrane structures. Therefore, ML provides a 

possible solution for developing 2D carbon membranes for seawater desalination.



S3. The Calculations Details of Classical Molecular Dynamics

S.3.1 Establishment of seawater desalination system model

All the molecular dynamics simulations were carried out using the LAMMPS 

package. The SPE/C water model was adopted for the explicit solvent. The long-range 

electrostatic interactions were treated by the Particle Mesh Ewald method, and a 

typical distance cutoff of 12 Å was used for the van der Waals interactions. The non-

bonded interaction pair list was updated every 10 fs. In order to place strain on the 

Zeo-C filter, the cross section along the x-y plane in the simulation box was fixed at a 

certain value. Canonical sampling was performed through the velocity rescaling 

method at constant temperature of 1000 K. An integration time step of 1 fs was used 

for all simulations. The simulation box contains 5150 water molecules, 93 Na+, 93 Cl-, 

a Zeo-C filter, and an ideal single graphene sheets used as a piston. The system was 

firstly equilibrated with z-direction pressure coupling at 1atm for 10 ns, followed by 

30 ns productive simulations under a given constant piston pressure in the otherwise 

NVT ensemble.

S.3.2 Script of the movement of ions in the electric field

#!perl

use strict;

use Getopt::Long;

use MaterialsScript qw(:all);

my  $doc = $Documents{"packmol- Zeo-C.xsd"};

Modules->Forcite->ChangeSettings([



   ElectricFieldStrength => 1,

   ElectricFieldX => 0,

   ElectricFieldY => 0,

   ElectricFieldZ => 1,

   CounterElectricField =>"No"]);    

my $results = Modules->Forcite->Dynamics->Run($doc, Settings(

Quality => 'Medium',

CurrentForcefield => 'Universal',

ChargeAssignment => 'Use current',

Ensemble3D => 'NVT',

TrajectoryFrequency => 100,

AssignFixedBonds => 'No'));

my $outTrajectory = $results->Trajectory;

my $results = Modules->Forcite->Dynamics->Run($doc, Settings(

ChargeAssignment => 'Use current', 

Ensemble0D => 'NVT',

Ensemble3D => 'NVT',

Temperature => 300,

NumberOfSteps => 8000,

TrajectoryFrequency => 8000));

my $outTrajectory = $results->Trajectory;



S3.3 SPC/E all-atomic water model and force field parameter setting

(1) LJ potential calculation formula：
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Table S1. Parameters of SPC/E model for water molecules

Parameters Values SPC/E water molecule model

ε(kcal/mol) 0.1553

σ(Å) 3.166

R(Å) 1 

θ(°) 109.47

q(q) (±)0.4238

(2) LJ potential parameters

The parameters are summarized in Table S2.

Table S2. LJ and charge parameters employed in this work

Element Cpiston CZeo-C Hw Ow Cl- Na+

ε(kcal/mol) 0.1050 0.1050 0.0 0.1553 0.0128 0.3526

σ(Å) 3.8510 3.8510 0.0 3.1656 2.1600 4.8305

q(e) 0.0 0.0 0.4238 -0.8476 -1.00 1.00

(3) Core code：

Mass：

Ow       15.9994

Hw       1.008

Charge：



Ow       -0.8476

Hw       0.4238

pair_style   lj/cut/coul/long 9.0

pair_coeff   1 1 0.1553 3.166   # 1=Ow, 2=Hw

pair_coeff   1 2 0     0

pair_coeff   2 2 0     0

bond_style harmonic

bond_coeff 1 0.0 1.0   # 1=Ow-Hw

angle_style harmonic

angle_coeff 1 0.0 109.47   # 1=Hw-Ow-Hw

kspace_style pppm 1.0e-4

fix 1 watergroup shake 0.0001 20 0 b 1 a 1



S4. The Self-cleaning Property of Zeo-C

S.4.1 The calculations details of the self-cleaning property

Simulation were carried out by Forcite module of commercially available 

software Materials Studio (Accelrys Software Inc.). Forcite do not support such kind 

of calculation (Applying an electric field in modelled structures) but it has embedded 

PERL interpreter. Thus, the procedure of simulation combined with the electric field 

was carried out by PERL script language. In order to describe interatomic bonds and 

non-bonding potential energy, the COMPASS (Condensed-phase Optimized 

Molecular Potentials for Atomic Simulation Studies) force field was used for 

simulations. Next, the structures were equilibrated by thermostat at desired 

temperature (300 K) during 100 fs. Such time is required to achieve uniform 

temperature distribution for the model, time step of simulation was set at 1 fs. The 

NVT ensemble was used at the next step. From this moment to the end of simulation 

(till 10 ps) at every time step (1 fs) and the constant value (1 V/Å), electric field 

strength was added along the electric field direction vector Z component. 



S5. The POSCAR file of Zeo-C

Zeo-C                                 

1.0

        7.2100000381         0.0000000000         0.0000000000

        0.0000000000         6.0199999809         0.0000000000

        0.0000000000         0.0000000000        15.0000000000

    C

   14

Direct

     0.101630002         0.877770007         0.500000000

     0.898370028         0.122229993         0.500000000

     0.898370028         0.877770007         0.500000000

     0.101630002         0.122229993         0.500000000

     0.287160009         0.194930002         0.500000000

     0.712839961         0.805069983         0.500000000

     0.712839961         0.194930002         0.500000000

     0.287160009         0.805069983         0.500000000

     0.398930013         0.379709989         0.500000000

     0.601069987         0.620290041         0.500000000

     0.601069987         0.379709989         0.500000000

     0.398930013         0.620290041         0.500000000

     0.403290004         0.000000000         0.500000000

     0.596709967         0.000000000         0.500000000



S6. The Applied Pressures of Other 2D Materials

The pressure values required to achieve 100% salt rejection for other 2D materials 

have been identified from the extensive literature and are listed in the table below.

Table S1. The pressure values required to achieve 100% salt rejection for other  materials

References Materials Pressure (MPa)

[1] Nanoporous graphene 125

[2] Graphene kirigami 100

[3] Carbon nanocones (CNCs) 100

[4] Single-layer Metal–Organic Framework Membranes 100

[5] Nanoporous graphitic carbon nitride membranes 60

[6] Nanoporous Boron Nitride Nanosheet Membranes 50

[7] layer-stacked black phosphorus carbide (α-PC) membrane 40

[8] Zeo-C membranes 70

[1] Nano letters, 2012, 12(7): 3602-3608.

[2] Carbon, 2022, 195: 183-190.

[3] Carbon, 2018, 129: 374-379.

[4] Nano Letters, 2019, 19(12): 8638-8643.

[5] Journal of Membrane Science, 2021, 620: 118869.

[6] The Journal of Physical Chemistry C, 2017, 121(40): 22105-22113.

[7] Desalination, 2022, 522: 115422.

[8] This work.



Dynamic simulation of seawater desalination

See Appendix 1.

Dynamic simulation of self-cleaning property

See Appendix 2.


