Electronic Supplementary Information for

The Influence of Fermi Level Position at the GaN Surface on Carrier Transfer across the MAPbI₃/GaN Interface

E. Zdanowicz^{1*}, A. P. Herman¹, Ł. Przypis², K. Opołczyńska^{3,4}, J. Serafińczuk^{5,3}, M. Chlipała⁶,

C. Skierbiszewski⁶ and R. Kudrawiec^{1,3}

¹Department of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

²Saule Research Institute, Duńska 11, 54-427 Wrocław, Poland

³*Lukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland*

⁴Institute of Experimental Physics, University of Wrocław, Max Born Square 9, 50-204 Wrocław, Poland

⁵Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland

⁶Institute of High-Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warszawa, Poland

*ewelina.zdanowicz@pwr.edu.pl

Figure 1 Determination of surface barrier height for uncleaned reference GaN vH, plasma cleaned and two samples of MAPbI₃ covered GaN.

Sample	Φ (eV)
GaN (Ref.)	0.32 ± 0.01
Plasma cleaned GaN	0.74 ± 0.05
MAPbI ₃ /GaN	0.85 ± 0.02

Table 1 Surface barrier determined from fitting procedure shown in Figure S1.

Prior to MAPbI₃ deposition vH GaN substrates were plasma cleaned in order to remove organic residues. The influence of such treatment on Fermi level pinning on GaN surface was investigated for n-type GaN vH set of samples. Figure 1 presents values of built-in electric fields obtained for measured samples (uncleaned GaN as a reference, plasma cleaned and two samples of MAPbI₃ covered GaN). Values of surface barrier heights obtained from fitting of built-in electric fields with Eq. 4 (main part of the article) are presented in Table 1. For plasma cleaned GaN surface higher barrier is observed compared to the reference. After MAPbI₃ deposition further increase was found.

Figure 2 Upper panel: CER spectra of exemplary samples sunder study. Lower panel: determination of surface barrier for reference vH GaN and set of MAPI/GaN structures with 3 and 15 nm thick MAPI films.

Sample	Φ (eV)
GaN (Ref.)	0.44 ± 0.03
3 nm MAPbI ₃ /GaN	0.73 ± 0.02
15 nm MAPbI ₃ /GaN	0.75 ± 0.03

Table 2 Surface barriers obtained for reference GaN vH and 3 nm and 15 nm MAPI/GaNsamples.

In order to verify whether observed MAPI-induced increase of surface barrier height at MAPI/GaN interface depends on MAPI film thickness, set of samples containing reference GaN and several samples with 3 and 15 nm thick MAPI films were checked. Upper panel of Figure 2 shows exemplary CER spectra of each sample. Lower panel of Figure 2 shows the fitting procedure for investigated set of samples. As can be noticed, values of built-in electric fields obtained for vH covered with 3 and 15 nm thick MAPI films are in line with each other. This indicates MAPI thickness independent barrier for electrons at MAPI/GaN interface. Table 2 summarizes extracted values of surface barriers.