Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting information

Transition density matrix (TDM) refers to the transition density matrix in basis function representation. The TDM between ground state and an excited state can be calculated as

$$P^{tran}_{\ \mu\nu} = \sum_{a}^{vir} W^{a}_{\ i} C_{\mu i} C_{\nu a}$$

where $C_{\mu i}$ denotes the expansion coefficient of basis function μ in MO i. The TDM in real space representation, can be constructed easily via TDM in basis function representation:

$$T(r;r') = \sum_{\mu} \sum_{\nu} P^{tran}_{\ \mu\nu} \chi_{\mu}(r) \chi_{\nu}(r')$$

where χ stands for basis function. The off-diagonal elements of TDM essentially represent the coupling between various basis functions during electron excitation.

Table S1. The long-range separation parameter of the LC-PBE0 functional.

Molecule	ω	α	β
Y6	0.01	0.10	0.90
PM6	0.01	0.19	0.81
Y6:PM6 complex	0.01	0.10	0.90