Electronic Supporting Information for Theoretical Study of Vibronic Interactions in the Photoelectron Spectra of Al_6N^-

Rishabh Kumar Pandey
¹, Korutla Srikanth¹, Anuj ${\rm Tak}^1,$

Abhishek Kumar² and Tammineni Rajagopala Rao¹ Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, India 801106 and Indian Association for Cultivation of Science, Kolkata, West Bengal, India 700032*

^{*} rajgopal@iitp.ac.in

	2

Parameter	CAM-B3LYP	M06-2X	MP2
N_1 - Al_2	2.3529	2.3402	2.3514
N_1 - Al_4	1.9848	1.9869	1.9973
N_1 - Al_3	2.3543	2.3416	2.3527
N_1 - Al_7	1.9845	1.9865	1.9968
Al_2-Al_3	2.5918	2.5717	2.6057
Al_4-Al_5	2.9704	2.9644	2.9635
Al_4-Al_7	2.5920	2.6055	2.6297
Al_3-Al_6	2.6508	2.6414	2.66243

Table S.I. Bond lengths for Al_6N (in Å unit) obtained using CAM-B3LYP, M06-2X and MP2 level of theories with a 6-311+g(d) basis set.

Table S.II. Quadratic and higher-order coupling parameters for $\tilde{X}^2 B_1$ state. The parameters are given in the eV unit.

Vibrational mode	frequencies	E_0	γ	C
$\nu_6 (a_2)$	0.0077	2.4260	-0.0042	
$\nu_7 (a_2)$	0.0229	2.4248	-0.0066	
$\nu_8 (a_2)$	0.0303	2.4250	-0.0040	
$ u_9 (b_1)$	0.0233	2.4265	0.0047	
$ u_{10}~(b_1)$	0.0337	2.4246	-0.0064	
$ u_{11} (b_1)$	0.0661	2.4261	-0.0041	
$\nu_{12} (b_2)$	0.0098	2.4252	-0.0095	0.00001
$ u_{13} (b_2)$	0.0132	2.4251	-0.0042	
$ u_{14} (b_2)$	0.0310	2.4251	-0.0049	0.000004
$ u_{15}(b_2)$	0.0650	2.4251	-0.0001	-0.000002

Figure S1. The optimized structure of neutral Al_6N .

Vibrational mode	frequencies	E_0	γ	C
$\nu_{6}(a_{2})$	0.0077	3.1676	-0.0118	
$\nu_7 \ (a_2)$	0.0229	3.1682	-0.0044	
$\nu_8 (a_2)$	0.0303	3.1678	-0.0050	
$ u_9\ (b_1)$	0.0233	3.1671	-0.0088	
$ u_{10}\ (b_1)$	0.0337	3.1673	-0.0046	
$ u_{11}$ (b_1)	0.0661	3.1649	-0.0157	
$ u_{12}$ (b_2)	0.0098	3.1589	-0.0673	0.0016
$ u_{13} (b_2)$	0.0132	3.1647	-0.0454	0.0008
$ u_{14}(b_2)$	0.0310	3.1671	-0.0223	0.0003
$ u_{15}(b_2)$	0.0650	3.1643	-0.0569	0.0009

Table S.III. Quadratic and higher-order coupling parameters for $\tilde{A}^2 A_1$ state. The parameters are given in the eV unit.

Table S.IV. Quadratic and higher-order coupling parameter for $\tilde{B}^2 B_2$ state. The parameters are given in the eV unit.

Vibrational mode	frequencies	E_0	γ
$\nu_6 (a_2)$	0.0077	3.2787	0.0140
$\nu_7 \ (a_2)$	0.0229	3.2784	0.0019
$\nu_8 (a_2)$	0.0303	3.2782	-0.0047
$ u_9 (b_1)$	0.0233	3.2780	-0.0078
$\nu_{10} (b_1)$	0.0337	3.2780	-0.0016
$\nu_{11} (b_1)$	0.0661	3.2776	-0.0091
$\nu_{12} (b_2)$	0.0098	3.2934	0.0642
$\nu_{13} (b_2)$	0.0132	3.2840	0.0251
ν_{14} (b ₂)	0.0310	3.2800	0.0122
$\nu_{15} (b_2)$	0.0650	3.2808	0.0193

Vibrational mode	frequencies	E_0	γ	δ	C
$\nu_6 (a_2)$	0.0077	4.2158	0.0033		
$ u_7(a_2)$	0.0229	4.2123	-0.0093		
$ u_8(a_2)$	0.0303	4.2151	-0.0043		
$ u_9 (b_1)$	0.0233	4.2147	-0.0139		0.0001
$ u_{10}~(b_1)$	0.0337	4.2153	-0.0082		0.00002
$ u_{11}~(b_1)$	0.0661	4.2142	-0.0110		0.0001
$ u_{12} \ (b_2)$	0.0098	4.2154	-0.0019		
$ u_{13}(b_2)$	0.0132	4.2148	-0.0072		
$ u_{14} (b_2)$	0.0310	4.2152	-0.0068	0.00003	
$\nu_{15} (b_2)$	0.0650	4.2019	-0.0942	0.0014	

Table S.V. Quadratic and higher-order coupling parameters for $\tilde{C}^2 A_2$ state. The parameters are given in the eV unit.

Table S.VI. Quadratic and higher-order coupling parameters for $\tilde{D}^2 B_1$ state. The parameters are given in the eV unit.

Vibrational mode	frequencies	E_0	γ
$\nu_6 (a_2)$	0.0077	4.2007	-0.0010
$\nu_7 (a_2)$	0.0229	4.2005	-0.0009
$\nu_8 (a_2)$	0.0303	4.1989	-0.0010
$ u_9 \left(b_1 ight)$	0.0233	4.2008	0.0202
$ u_{10}$ (b_1)	0.0337	4.2012	0.0077
$ u_{11}$ (b_1)	0.0661	4.2035	0.0105
$ u_{12} (b_2)$	0.0098	4.2014	0.0013
$ u_{13} (b_2)$	0.0132	4.2009	0.0021
$\nu_{14} (b_2)$	0.0310	4.2033	0.0168
ν_{15} (b ₂)	0.0650	4.5246	0.0051

Vibrational mode	frequencies	E_0	γ
$\nu_{6}(a_{2})$	0.0077	4.5310	0.0005
$\nu_7 \ (a_2)$	0.0229	4.5326	0.0049
$\nu_8 (a_2)$	0.0303	4.5310	0.0051
$ u_9 \left(b_1 ight)$	0.0233	4.5305	0.0005
$ u_{10} (b_1)$	0.0337	4.5273	0.0153
$ u_{11}(b_1)$	0.0661	4.5294	0.0242
$ u_{12} (b_2)$	0.0098	4.5277	-0.0162
$ u_{13}(b_2)$	0.0132	4.511	-0.0124
$ u_{14} (b_2)$	0.0310	4.5297	0.0007
$ u_{15}(b_2) $	0.0650	4.2696	0.0536

Table S.VII. Quadratic and higher-order coupling parameters for $\tilde{E}^2 A_1$ state. The parameters are given in the eV unit.

Table S.VIII. Quadratic and higher-order coupling parameters for \tilde{F}^2B_2 state. The parameters are given in the eV unit.

Vibrational mode	frequencies	E_0	γ
$\nu_6 (a_2)$	0.0077	4.7526	-0.0004
$\nu_7 (a_2)$	0.0229	4.7527	0.0096
$\nu_8 (a_2)$	0.0303	4.7532	0.0142
$ u_9 \left(b_1 ight)$	0.0233	4.7591	0.0276
$ u_{10}~(b_1)$	0.0337	4.7534	0.0092
$ u_{11}$ (b_1)	0.0661	4.7610	0.0298
$ u_{12} (b_2)$	0.0098	4.7541	0.0021
$\nu_{13} (b_2)$	0.0132	4.7693	0.0289
$\nu_{14} (b_2)$	0.0310	4.7541	0.0126
$\nu_{15} (b_2)$	0.0650	4.7630	0.0237

Combination of normal modes	Primitive basis	S SPF
ν_2	8	[12,12,12,12,12,12]
$ u_1,\! u_3$	8,10	[10, 10, 10, 10, 10, 10, 10]
$ u_4$	10	$\left[9,\!9,\!9,\!9,\!9,\!9,\!9,\!9\right]$
$ u_5$	8	[7, 7, 7, 7, 7, 7, 7, 7]
$ u_2, u_6, u_{12}, u_{13}$	10,10,10,10	[12, 12, 12, 12, 12, 12, 12]
$ u_1, u_3, u_7, u_8, u_9$	8,8,8,8,8,	$\left[10, 10, 10, 10, 10, 10, 10, 10\right]$
$\nu_5, \nu_{10}, \nu_{11}, \nu_{14}, \nu_{15}, \nu_4$	6, 6, 6, 6, 6, 6, 6	$[8,\!8,\!8,\!8,\!8,\!8,\!8]$
$ u_2$	12	[12, 12, 12, 12, 12, 12, 12]
$ u_1, u_3$	8,10	[10, 10, 10, 10, 10, 10, 10]
$ u_4$	10	$\left[9,\!9,\!9,\!9,\!9,\!9,\!9,\!9\right]$
$ u_5 $	8	[7, 7, 7, 7, 7, 7, 7]
$ u_2, u_6, u_{12}$	8,8,8	$[6,\!6,\!6,\!6,\!6,\!6,\!6]$
$ u_1,\! u_3,\! u_7,\! u_9$	6, 6, 6, 6	$\left[5, 5, 5, 5, 5, 5, 5, 5\right]$
$ u_5, u_4$	$5,\!5$	[3, 3, 3, 3, 3, 3, 3]

Table S.IX. Normal modes combination, size of the primitive basis and single particle function (SPF) for uncoupled and coupled (TD and TI) calculations of Al_6N^- using the MCTDH approach.

Table S.X. Vibronic level assignments for fundamental and first overtone excitation (in cm^{-1}) of tuning modes for \tilde{A} state.

No.	Vibronic Energy Level	Assignments
1	0	0
2	280	$ u_1$
3	352	$ u_2 $
4	542	$ u_3$
5	547	$ u_4$
6	633	$ u_5 $
7	716	$2\nu_2$

Table S.XI. Vibronic level assignments for fundamental excitation (in cm⁻¹) of tuning modes for \tilde{B} state.

No.	Vibronic Energy Level	Assignments
1	0	0
2	261	$ u_1 $
3	683	$ u_2 $
4	808	$ u_3$
5	915	$ u_4$
6	924	$ u_5$

Figure S2. Poisson intensity distribution for tuning vibrational modes of $\tilde{X}^2 B_1$ electronic state of Al₆N along vibrational quantum number.

Table S.XII. Vibronic level assignments for fundamental excitation (in cm⁻¹) of tuning modes for \tilde{C} state.

No.	Vibronic Energy Level	Assignments
1	0	0
2	551	$ u_2$
3	693	$ u_4$

Table S.XIII. Vibronic level assignments for fundamental excitation (in cm⁻¹) of tuning modes for \tilde{D} state.

No.	Vibronic Energy Level	Assignments
1	0	0
2	473	$ u_2$
3	547	$ u_3$

Figure S3. Poisson intensity distribution for tuning vibrational modes of $\tilde{A}^2 A_1$ electronic state of Al₆N along vibrational quantum number.

Table S.XIV. Vibronic level assignments for fundamental excitation (in cm⁻¹) of tuning modes for \tilde{E} state.

No.	Vibronic Energy Level	Assignments
1	0	0
2	545	$ u_2 $
3	984	$ u_5$

Table S.XV. Vibronic level assignments for fundamental excitation (in cm⁻¹) of tuning modes for \tilde{F} state.

No.	Vibronic Energy Level	Assignments
1	0	0
2	208	$ u_1 $
3	358	$ u_3$
4	488	$ u_4$
5	538	$ u_5 $

Figure S4. Poisson intensity distribution for tuning vibrational modes of $\tilde{B}^2 B_2$ electronic state of Al₆N along vibrational quantum number.

Figure S5. Poisson intensity distribution for tuning modes of $\tilde{C}^2 A_2$ electronic state of Al₆N along vibrational quantum number.

Figure S6. Poisson intensity distribution for tuning modes of $\tilde{D}^2 B_1$ electronic state of Al₆N along vibrational quantum number.

Figure S7. Poisson intensity distribution for tuning modes of $\tilde{E}^2 A_1$ electronic state of Al₆N along vibrational quantum number.

Figure S8. Poisson intensity distribution for tuning modes of \tilde{F}^2B_2 electronic state of Al₆N along vibrational quantum number.

Figure S9. WP density plot for assignment of fundamental and first overtone of corresponding tuning modes for ground electronic state \tilde{A} .

(e)924 ${\rm cm}^{-1}$

Figure S10. WP density plot for assignment of fundamental bands of corresponding tuning modes for \tilde{B} state.

Figure S11. WP density plot for assignment of fundamental bands of corresponding tuning modes for \tilde{C} state.

Figure S12. WP density plot for assignment of fundamental bands of corresponding tuning modes for \tilde{D} state.

Figure S13. WP density plot for assignment of fundamental bands of corresponding tuning modes for \tilde{E} state.

Figure S14. WP density plot for assignment of fundamental bands of corresponding tuning modes for \tilde{F} state.

Figure S15. Comparison of TD and TI spectra for $\tilde{X}^2 B_1$ electronic state including ν_6 , ν_7 , ν_9 and ν_{12} vibrational modes along with totally symmetric vibrational modes for Al₆N.

Figure S16. Comparison of TD and TI spectra for $\tilde{A}^2 A_1$ electronic state including ν_6 , ν_7 and ν_9 vibrational mode along with totally symmetric vibrational modes for Al₆N.

Figure S17. Comparison of TD and TI spectra for $\tilde{B}^2 B_2$ electronic state including ν_6 , ν_7 and ν_9 vibrational mode along with totally symmetric vibrational modes for Al₆N.

Figure S18. Comparison of TD and TI spectra for $\tilde{C}^2 A_2$ electronic state including ν_6 , ν_7 , ν_9 and ν_{12} vibrational mode along with totally symmetric vibrational modes for Al₆N.

Figure S19. Comparison of TD and TI spectra for $\tilde{D}^2 B_1$ electronic state including ν_9 and ν_{12} vibrational mode along with totally symmetric vibrational modes for Al₆N.

Figure S20. Comparison of TD and TI spectra for $\tilde{E}^2 A_1$ electronic state including ν_9 and ν_{12} vibrational mode along with totally symmetric vibrational modes for Al₆N.

Figure S21. Comparison of TD and TI spectra for $\tilde{F}^2 B_2$ electronic state including ν_6 , ν_7 , ν_9 and ν_{12} vibrational mode along with totally symmetric vibrational modes for Al₆N.