Supporting Information

What Governs the Electrocatalytic N₂ Reduction Activity of sp-Hybridized Boron

Yongfei Ji,* Yungan Huang, Gang Wang, Paiyong Liu, Weiquan Cai

School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006,

Guangdong, P. R.China.

E-mail: yongfeiji2018@gzhu.edu.cn

1. Method for Calculating the generalized binding free energies

For give intermediates, such as *HNNH₂, its generalized binding free energies can be calculated by taking N₂ and H₂ as the reference for the energy of N and H:

$$\Delta G(*HNNH_2) = G(*HNNH_2) - G(*) - 2\mu(N) - 3\mu(H)$$

In which $\mu(N) = \frac{1}{2}G(N_2(g))$, and $\mu(H) = \frac{1}{2}G(H_2(g))$, G(*) is the free energy of the substrate. Therefore, $\Delta G(*HNNH_2)$ represents the free energy of *HNNH₂ on the free energy diagram at 0.0 V (Figure 6). On the other hand, the binding energy of HNNH₂ species can be defines as

$$E_{b}(*HNNH_{2}) = E(*HNNH_{2}) - E(*) - E(HNNH_{2})$$

The difference between $\Delta G(*HNNH_2)$ and $E_b(*HNNH_2)$ is a constant on different surfaces. Therefore, $\Delta G(*HNNH_2)$ also reflects the binding strength of the intermediates, which why it is called generalized binding energy. For $*NH_x$ species, their energies are lowered by 0.44 eV so that the energies are equal to $\Delta G(*NH_x) + \Delta G(NH_3(g))$

2. Pearson correlation coefficient

The Pearson correlation coefficient between two varialbes is defined as :

$$R(x,y) = \frac{\sum (x_i - x)(y_i - y)}{\sqrt{\sum (x_i - \bar{x})^2 \sqrt{(y_i - \bar{y})^2}}}, \text{ in which } \bar{x} = \sum x_i/n, \, \bar{y} = \sum y_i/n$$

Figure S1, structure fluctuation of the B-doped GYs

Figure S2, the potential energy surface for switching sp-B with sp²-C on AGY. Inserted are the structures of the initial, intermediate, final and the transition states.

Figure S3, the band structures of the pristine and doped GYs: p-GYs means the pristine GYs, the orange and green lines represent the spin-up and the spin-down components, and the black line means the result is non-magnetic.

Figure S4, the projected density of states (PDOS) of the pristine GYs

Figure S5, the adsorption structure of other intermediates on the Boron-doped GYs.

Figure S6, the scaling relations between the energies of the descriptors and other intermediates.

Species	Surface	E_interacting/eV	E_dist(sub)/eV	E_dist(Mole)/eV	Eads
*N2_e	AGY	-2.09	0.68	1.17	-0.25
	BGY	-2.15	0.72	1.17	-0.26
	GY	-1.96	0.63	1.17	-0.16
	GDY_2	-1.99	0.66	1.18	-0.15
	GDY_3	-1.89	0.63	1.17	-0.09
	GTY_2	-2.18	0.68	1.18	-0.32
	GTY_3	-2.01	0.70	1.17	-0.15
	GTY_4	-2.10	0.71	1.17	-0.22
*N2_s	AGY	-2.95	1.16	2.72	0.93
	BGY	-2.50	1.10	2.50	1.10
	GY	-2.56	1.20	2.76	1.40
	GDY_2	-2.40	1.08	2.81	1.49
	GDY_3	-2.60	1.10	2.74	1.24
	GTY_2	-2.04	0.99	2.56	1.51
	GTY_3	-2.61	1.16	2.64	1.20
	GTY_4	-2.73	1.25	2.84	1.36

Table S1, the distortion-interaction analysis on the adsorption enery of N2

 $E_{interacting}$, $E_{dist(sub)}$, $E_{dist(Mole)}$, and Eads are the interacting energy, the distortion energy of the substrate, the distortion energy of the molecule and the adsorption energy of the molecule.

	N ₂ -e	N ₂ -s	HNN-e	HNN-s	HNNH-e	HNNH-s	H ₂ NN	Ν
AGY	0.28	1.45	0.12	0.28	0.86	-0.33	-0.51	-0.79
BGY	0.26	1.62	0.39	0.70	0.84	0.14	-0.35	-0.51
GY	0.37	1.92	0.25	0.46	0.81	0.47	-0.08	-0.87
GDY_2	0.36	2.01	0.70	0.75	0.71	0.52	0.36	-0.37
GDY_3	0.43	1.76	0.48	0.47	1.00	0.39	0.22	-0.66
GTY_2	0.21	2.03	0.81	0.78	0.52	0.50	0.49	-0.29
GTY_3	0.37	1.72	0.52	0.44	0.72	0.32	0.24	-0.61
GTY_4	0.31	1.89	0.74	0.40	0.60	0.11	0.30	-0.31
	HNNH ₂ -e	HNNH ₂ -s	NH	NH2	H ₂ NNH ₂ -e	H ₂ NNH ₂ -s	NH3	
AGY	-0.18	-0.54	-1.77	-1.86	0.17	0.52	-1.50	
BGY	0.00	0.00	-1.64	-1.67	0.15	0.79	-1.52	
GY	0.22	0.30	-1.32	-1.49	0.30	1.01	-1.40	
GDY_2	0.18	0.46	-0.84	-1.71	0.21	1.24	-1.49	
GDY_3	0.48	0.17	-1.17	-1.46	0.27	0.95	-1.42	
GTY_2	0.27	0.47	-0.86	-2.01	0.13	1.43	-1.61	
GTY_3	0.39	0.19	-1.26	-1.43	0.19	1.08	-1.51	
GTY_4	0.48	0.03	-0.96	-1.76	0.15	0.90	-1.54	

Table S2, the generalized binding free energies of the intermedites.

Table S3, test calculations for the energies of key intermediates on B-doped GY(eV)

Models	$\Delta G(*H_2NN)$	$\Delta G(*HNN_e)$	$\Delta G(*N)$	$\Delta G(* NH)$
PBE	-0.08	0.25	-0.87	-1.32
B3PW91	-0.12	0.08	-1.35	-1.60
PBE-cluster	0.39	0.17	-0.98	-1.08
B3PW91-ref	0.86	0.45	-1.30	-0.86

B3PW91-ref is from Inorg. Chem. 2019, 58, 11843–11849