Supporting Information

Effect of Fluoro and Hydroxy Analogies of Diglyme on Sodium-Ion Storage in Graphite: A Computational Study

R. M. N. M. Rathnayake ^a, Debra J. Searles ^{b, c}, Timothy T. Duignan ^a, X. S. Zhao ^{a,d,*}

* Corresponding author E-mail: <u>chezxs@qdu.edu.cn</u>

^a School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia

^b Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia

^c School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia

^d Institute of Materials for Energy and Environment, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.

Fig. S1 Initial configurations used to identify the most stable structure for D_2 -G system.

Fig. S2 Initial configurations used to identify the most stable structure for D_1 -G system.

Fig. S3 Four different initial configurations used for the calculation of Na₂-D₂-G system. Energies are a) -922.11 eV b) -922.15 eV c) -922.27 eV and d) -922.21 eV, respectively.

Fig. S4 Calculated binding energy for the increased unit cell sizes. The initial unit cell size has been increased along the a and b direction to study the binding energy change when increasing the unit cell size.