Supplementary information

Structure and dynamics of dynamic covalent cross-linked PEOs and PEO/LiPF₆ electrolyte: A coarse-grained simulation study

Tongfei Wu*, Ping Zhang

Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 China * E-mail: wutongfei@mail.sysu.edu.cn

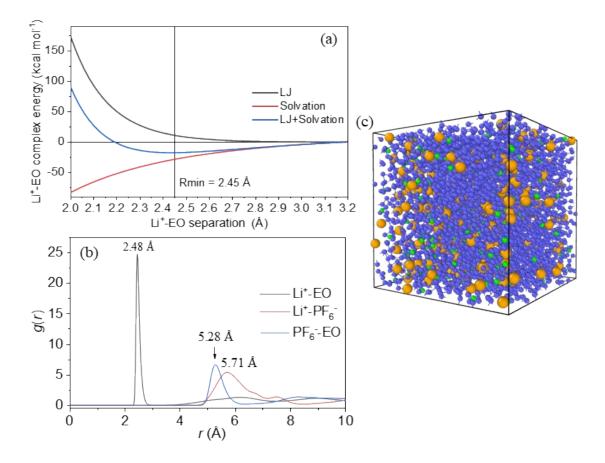


Figure S1. (a) The hybrid Li⁺-EO pairwise potential energies as a function of Li⁺-EO separation with $S_{EO-+} = 34\epsilon$. (b) Radial distribution functions (RDFs) for PEO₁₆-LiPF₆. (c) A snapshot of the simulation box to demonstrate the distribution of Li⁺ (Green) and PF₆⁻ (Khaki) in PEO₁₆-LiPF₆.

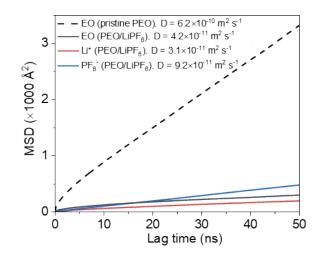
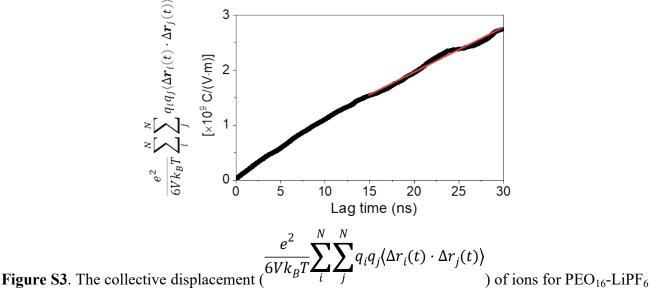



Figure S2. Mean-squared displacements (MSDs) for linear PEO and PEO₁₆-LiPF₆. MSDs were calculated from the following expression:^[1]

$$MSD = \left| \frac{1}{N} \sum_{i=1}^{N} |r_i(t) - r_i(0)|^2 \right|$$
 (1)

where N is the number of particles the MSD is calculated over and $r_i(t)$ is the coordinate of particle i

at time *t*, while <> represents ensemble averaging.

used to calculate ionic conductivity (λ). λ was calculated from the equilibrium dynamics using the following relation:^[2]

$$\lambda = \frac{e^2}{6Vk_BT} \lim_{t \to \infty} \frac{d}{dt} \sum_{i}^{N} \sum_{j}^{N} q_i q_j \langle \Delta r_i(t) \cdot \Delta r_j(t) \rangle \quad (2)$$

where *e* is the electron charge $(1.6022 \times 10^{-19}C)$, *V* is the volume of the simulation box, k_B is Boltzmann's constant (8.6173×10⁻⁵ eV K⁻¹), *T* is the temperature (353 K), *t* is time, q_i and q_j are the charges over ions *i* and *j* in electrons, $\Delta r_i(t)$ is the displacement of ion *i* during time *t*, the summation is performed over all ions, N is the number of cations plus anions, and <> denotes the ensemble average.

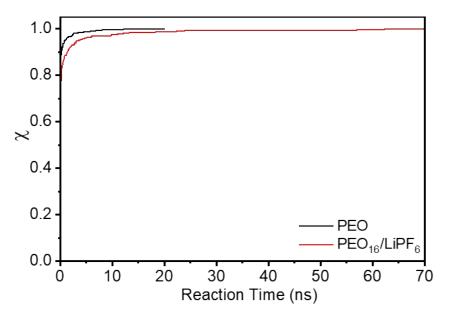


Figure S4. The fractional conversion (χ) as a function of reaction time for the preparation of dynamic covalent cross-linked PEO and PEO₁₆-LiPF₆ electrolyte at 353 K with $E_a = 0.1\epsilon$.

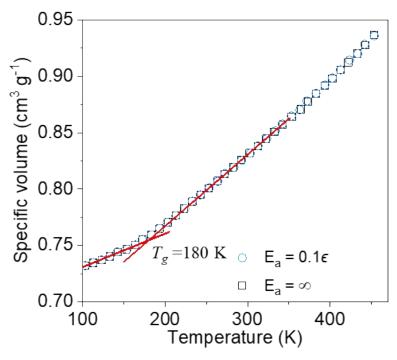


Figure S5. The time-average specific volume of cross-linked PEOs as a function of temperature to determine the glass transition temperature (T_g) by finding the point of intersection of the fitted lines in the rubbery and glassy regions.^[3]

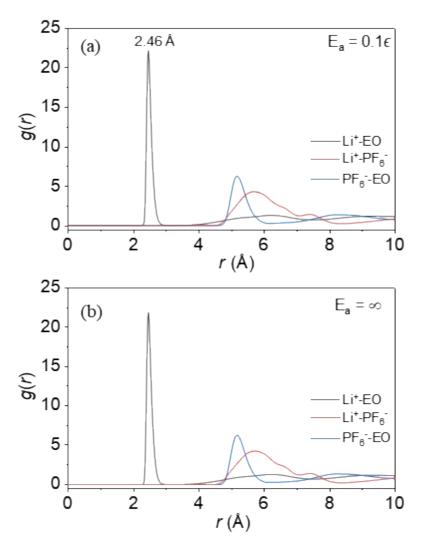
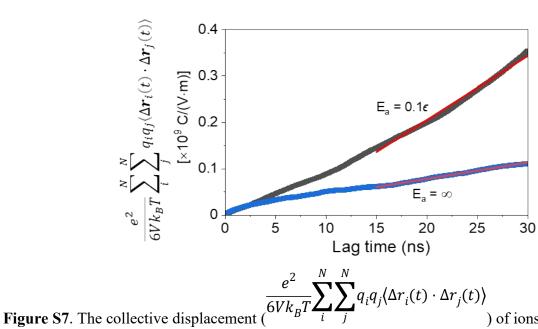



Figure S6. RDFs for cross-linked PEO₁₆-LiPF₆ electrolytes.

) of ions for cross-linked

PEO₁₆-LiPF₆ electrolytes to calculate ionic conductivity.

References:

[1] E. J. Maginn, R. A. Messerly, D. J. Carlson, D. R. Roe and J. R. Elliot, Living J. Comp. Mol. Sci. **1** (1), 6324 (2018).

- [2] O. Borodin and G. D. Smith, J. Phys. Chem. B 113 (6), 1763-1776 (2009).
- [3] F. Khabaz and R. Khare, J. Phys. Chem. B, 119 (44), 14261-14269 (2015).