Lithium Transference in Electrolytes with Star-Shaped Multivalent Anions Measured by Electrophoretic NMR

Saheli Chakraborty*,^{1,2,3} David M. Halat*, ^{1,2,3} Julia Im,² Darby T. Hickson,^{1,2,} Jeffrey A. Reimer,^{1,2,3} Nitash P. Balsara^{1,2,3}

- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- * Both the authors contributed equally

Calculation of the fraction of fully dissociated ion, f

From the discussion surrounding Equation 17 in the main text, we know that

$$v_{+} = f v_{f+} + (1-f) v_{-}$$

where f is the fraction of fully dissociated ions moving freely under the electric field in the +xdirection with a velocity of v_{f+} , while the remainder are tightly coordinated with the anions and migrate with anions in the -x direction with velocity v_{-} .

Thus, assuming the solvent velocity v_0 to be zero, which is a reasonable assumption for the present system, t^{0}_{+} can be written as

$$t_{+}^{0} = \frac{fv_{f+} + (1-f)v_{-}}{fv_{f+} + (1-f)v_{-} - v_{-}}$$

Rearranging the above equation we obtain

$$v_{f+} = \frac{t_{+}^{0} + \left(\frac{1-f}{f}\right)}{t_{+}^{0} - 1} v_{-} \quad (19)$$

Thus, $v_{f+} > 0$ defines an upper bound for f, i.e., we arrange Equation 19 to obtain the inequality $f_{thresh} < \frac{1}{1 - t_{+}^{0}}$. The value of f_{thresh} provides the maximum possible fraction of fully

Figure S1. (a) Using v_{-} and t_{+}^{0} from eNMR and assuming different values of f, values of v_{f+} (represented by orange squares) are calculated. For instance, at all concentrations (except the most highly concentrated sample), even if only 50% of cations are fully dissociated, values of v_{f+} remain positive, as expected. (b) f_{thresh} plotted against c_{+} . f_{thresh} is a weak function of c_{+} , but is found to decrease with c_{+} at the highest salt concentration. For example, at 0.4 M, $f_{thresh} = 0.86$ implies that our model is consistent with 14% or more of the cations being tightly coordinated with the anions. In other words, in principle only a small fraction (~15%) of the cations need to be coordinated with anions to obtain a negative v_{+} .