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1 QM level of theory

An evaluation of the impact of the level of theory and basis set on the Quantum Mechanical (QM) frequencies
was conducted to affirm the integrity of the input data. Using Psi4, QM frequencies across several basis sets

• cc-PVDZ

• cc-PVTZ

• aug-cc-pVTZ

and functionals

• HF

• B3LYP

• B3LYP D3

• B3LYP PCM

• MP2

were calculated and subsequently represented graphically against each other to manifest the extent of the
deviation, as demonstrated below. Please note, that the QM gas phase scaling factors have been applied.1,2
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Even though the Hartree Fock-based method exhibits a small systematic drift when compared to higher levels
of theory, all higher levels of theory show insignificant deviations between frequencies. Thus, for the application
of FFGenOpt, the MP2 level of theory with a cc-PVDZ basis set can be considered sufficient.
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Figure S1: QM frequencies in cm−1 plotted against each other.

2 FFGenOpt

FFGenOpt is predicated on the Automated Frequency Matching Method (AFMM),3 which employs the vibran
module in CHARMM or a Hessian calculation in OpenMM to compute normal mode frequencies derived from
a specified force field. Initially, modifications were restricted solely to bond and angle force constants. The
algorithm is built upon a rudimentary Monte Carlo scheme, offering an effective foundation for the evolution
of more advanced methodologies.

The integrity of the generated parameters was assessed via a merit function:

Y 2 =

3N−6∑
i=1

Ω2
i

(
ν̃FF
i − ν̃QM

i

)2

(1)

The modes ν̃FF
i and ν̃QM

i are aligned by projecting the eigenvectors. However, several ν̃FF
i may map onto the

same ν̃QM
i if the QM eigenvector is the most appropriate fit for both ν̃FF

i . Ω2
i serves as a weight parameter that

may be utilized to induce a bias towards frequencies of higher relevance.
While the merit function remains a feature within FFGenOpt, mode alignment is now conducted using the

Hungarian method,4 ensuring that each Molecular Mechanics (MM) normal mode corresponds to a distinct QM
mode. A key improvement is the substitution of the Monte Carlo method with a genetic algorithm, enhanc-
ing optimization by emphasizing ideal frequencies and facilitating simultaneous adjustments of multiple force
constants.

2.1 Genetic algorithms

Historically, there have been multiple approaches to what is nowadays known as evolutionary computation.
The concept of evolution strategies was explored by Rechenberg5 since the 1960s when the concept of genetic
algorithms was developed by Holland in the 1970s.6,7 Similar to artificial neural networks, which are inspired by
biological neural networks, genetic algorithms are inspired by genetic mutations that occur in nature.6 Nature
successfully uses genetic mutations to solve complex problems.

Supervised machine learning algorithms, including neural networks and support vector machines, present a
significant drawback: the necessity for substantial volumes of data to construct an efficacious model, a process
colloquially referred to as ’training a model’. Such algorithms are ill-suited for scenarios wherein such data is
either unavailable or its generation would be prohibitively costly.

Calculatory methods, though adept at identifying local optima either by equating the gradient of the objec-
tive function to zero and solving sets of equations or through local gradient methods such as steepest descent,
also harbor noteworthy disadvantages. Primarily, these local methods exclusively explore the vicinity, poten-
tially overlooking superior results situated further from the starting point. Additionally, these methodologies
are highly reliant on the existence of a derivative of the objective function. However, objective functions on
real-world problems frequently lack a derivative, deviating from the smoothness characteristic of elementary
mathematical functions, thereby necessitating the approximation of the gradient for such methodologies.
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These beneficial attributes, in conjunction with several other significant advantages over numeric algorithms,
have been succinctly encapsulated by Wirsansky:8

• Global Optimization: In contrast to many conventional optimization algorithms that limit their search
to the vicinity of a starting point and potentially stagnate at local optima, Genetic algorithms operate
with a broad array of solution candidates. As such, they can span an extensive search space and exhibit
robustness towards local minima, contingent on sufficient population diversity.

• Addressing Problems with Complex Mathematical Representation: GA merely necessitates a fitness func-
tion for assessing potential solutions, thereby eliminating dependence on supplementary information
about the search space, such as derivatives.

• Tackling Problems Lacking Mathematical Representation: The fitness function is not predicated on a math-
ematical representation. It is feasible, for instance, to employ subjective user-determined fitness values.

• Noise Resilience: Genetic algorithms may even be implemented for problems wherein the output of the
fitness function, with identical input parameters, is non-deterministic. This includes instances of sensor
data or user input.

• Parallelism and Distributed Processing Support: Fitness evaluations, mutations, and crossovers among
solution candidates can be executed in parallel on distinct members of the population, circumventing
many of the parallelizations challenges common to numerous algorithms.

• Appropriateness for Continuous Learning: Genetic algorithms maintain functionality even amidst envi-
ronmental alterations, and previous populations may be employed to continue the computation.

However, there are also limitations to genetic algorithms which should be considered:

• Requirement for Special Definitions: The task of correctly formulating the problem in terms of chro-
mosome and fitness function can be demanding. The definition of selection, crossover, and mutation
operators must also be specifically tailored based on the representation.

• Hyperparameter Tuning: Much like other optimization methodologies, GA necessitate appropriately tuned
hyperparameters (such as population size or mutation rate) to discern optimal solutions within an accept-
able timeframe.

• Computational Intensity: Owing to their operation on multiple solution candidates as opposed to a singu-
lar one, GA can render computations more iterative.

• Premature Convergence: A population characterized by low diversity, that is, elevated similarity among
population members, can precipitate convergence to the fittest member, consequently stagnating at a local
minimum.

• Absence of Solution Guarantee: There exists no assurance that the global optimum will be located.

It is pertinent to acknowledge that these advantages and constraints are merely a generalized overview. Some
optimization algorithms and GA may address the above-mentioned challenges. However, a thorough analysis
of the plethora of algorithms exceeds the purview of this thesis. When selecting optimization methodologies, it
is recommended to examine domain-specific solutions for optimization problems.

The source code, as well as a tutorial on how to use FFGenOpt, is available free of charge from
github(https://github.com/cbc-univie/FFGenOpt).
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2.2 Alignment of MM and QM normal modes for the ionic liquid ions

This chapter contains all MM normal mode frequencies and their alignment to the QM modes in the gas phase.
A visual representation of these data is given in Fig. 2 of the main article.

2.2.1 Imidazoliums

We focused on the most prominent cation family for ionic liquids, i.e. imidazoliums. Although having the most
force field parameters and the most normal modes, the optimization process for the imidazoliums 1-ethyl-3-
methylimidazolium C2mim+ and 1-butyl-3-methylimidazolium C4mim+ is straightforward as the normal mode
eigenvectors differ significantly from each other and the molecules do not have high symmetry.

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 64 11 18 1105 1022 35 1268 1719
2 43 48 19 1310 1065 36 1423 1808
3 135 117 20 1140 1122 37 3323 1893
4 237 220 21 1119 1126 38 1432 1973
5 216 226 22 1126 1146 39 1635 2048
6 383 361 23 837 1154 40 1600 2199
7 298 439 24 1041 1172 41 3128 2777
8 630 449 25 1388 1215 42 3140 2823
9 599 559 26 1493 1351 43 3247 2888

10 662 603 27 1492 1363 44 3202 2892
11 803 618 28 1379 1379 45 3256 2896
12 707 671 29 1197 1418 46 1056 3118
13 728 729 30 1455 1525 47 3107 3224
14 422 790 31 1507 1590 48 3217 3341
15 795 813 32 1485 1601 49 3223 3341
16 980 1008 33 1519 1605 50 3343 3427
17 1151 1010 34 1476 1627 51 3331 3444

Table S1: Normal modes of 1-ethyl-3-methylimidazolium C2mim+.

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 30 32 24 1046 970 47 1288 1434
2 75 67 25 931 973 48 1431 1519
3 62 80 26 1033 978 49 1146 1555
4 81 98 27 1155 1045 50 1422 1633
5 119 130 28 1387 1073 51 1634 1743
6 201 186 29 1102 1096 52 1600 1756
7 253 256 30 1065 1118 53 1408 1836
8 326 276 31 1237 1191 54 1475 1848
9 248 317 32 1486 1216 55 3128 3007

10 634 372 33 1195 1232 56 3095 3010
11 278 378 34 1336 1245 57 3090 3047
12 626 445 35 1321 1258 58 3128 3055
13 668 552 36 1519 1262 59 3083 3072
14 403 586 37 1485 1264 60 3154 3111
15 435 628 38 1500 1284 61 3201 3113
16 744 739 39 836 1288 62 3247 3115
17 750 767 40 1122 1293 63 3193 3117
18 802 819 41 1502 1297 64 3256 3117
19 794 840 42 1509 1325 65 3205 3118
20 727 856 43 1490 1342 66 3135 3120
21 1105 891 44 1282 1352 67 3343 3261
22 945 923 45 1455 1388 68 3324 3263
23 1150 944 46 1374 1406 69 3331 3603

Table S2: Normal modes of 1-butyl-3-methylimidazolium C4mim+.
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2.2.2 Tetrafluoroborate

While the frequencies of BF−
4 are matched well, the experimental spectrum of [C4mim]BF4 shows a peak in the

region between 1000 and 1100 cm−1, where neither the cation nor the anion produce any frequencies in the gas
phase.

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 750 352 4 516 371 7 1127 1130
2 516 370 5 346 514 8 1126 1132
3 516 371 6 346 515 9 1126 1134

Table S3: Normal modes of tetrafluoroborate BF−
4 .

2.2.3 Trifluoromethanesulfonate

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 97 69 7 308 414 13 1026 832
2 183 178 8 312 414 14 1271 1044
3 204 179 9 595 479 15 1313 1044
4 633 255 10 503 482 16 1186 1304
5 427 256 11 535 483 17 757 1357
6 242 275 12 127 644 18 1177 1358

Table S4: Normal modes of trifluoromethanesulfonate OTf−.

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 69 66 7 553 373 13 1092 962
2 213 219 8 554 373 14 1364 1175
3 213 219 9 620 415 15 1364 1175
4 332 266 10 620 415 16 1391 1239
5 374 319 11 699 461 17 1309 1298
6 374 319 12 822 612 18 1309 1298

Table S5: Normal modes of trifluoromethanesulfonate OTf− of the original force field.9

2.2.4 Acetate

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 16 202 6 426 898 11 979 1452
2 1788 466 7 1477 1112 12 1380 1593
3 875 563 8 1464 1201 13 3047 3092
4 634 767 9 1017 1375 14 3138 3160
5 606 823 10 1299 1408 15 3159 3167

Table S6: Normal modes of acetate OAc−.

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 467 414 6 1073 1031 11 1561 1521
2 36 591 7 1130 1035 12 1886 1612
3 683 626 8 1532 1303 13 3142 2908
4 677 687 9 1424 1365 14 3199 2969
5 959 901 10 1572 1520 15 3227 2970

Table S7: Normal modes of acetate OAc− of the original force field.10

6



2.2.5 Dicyanamide

The QM vibrational frequency of the C≡N bond is difficult to reproduce, both regarding the gas phase normal
modes and in the bulk IR spectra. The quantum mechanical frequencies around 2500 cm−1 are significantly
higher than expected, while experimental values are in the range typically associated with triple bonds (around
2100 to 2200 cm−1).

The low frequencies are challenging to reproduce in both acetate and dicyanamide, leading to some of the
largest discrepancies in the entire investigated set of ions. In all cases, extra care has to be taken to account
for degenerate eigenmodes, arising due to symmetry, as well as to perform an RMS calculation and align the
coordinates to the reference prior to matching the eigenvectors.

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 532 28 4 508 716 7 1306 1394
2 516 64 5 654 769 8 2167 2435
3 163 284 6 928 1148 9 2186 2485

Table S8: Normal modes of dicyanamide N(CN)−2 .

ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1] ν̃QM [cm−1] ν̃FF [cm−1]
1 627 61 4 191 634 7 1410 1253
2 637 115 5 584 652 8 2509 2065
3 1007 235 6 765 1006 9 2464 2136

Table S9: Normal modes of dicyanamide N(CN)−2 of the original force field.9
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2.3 Optimized force constants of FFGenOpt

All displayed force constants here are not modified by the scaling factor for the liquid phase.

2.3.1 C2mim+

CCH4

CD

H4

NA+

C3

H1
H1

H1

CC

H5
AN

C3
H1

H1

C3
HC

CH

HC

Atom type 1 Atom type 2 k1 k2

[kcalmol−1 Å
−2

] [kcalmol−1 Å
−2

]

C3 H1 335.9 318.91
C3 NA 334.7 258.67
CC NA 438.8 622.3
CD NA 438.8 518.59
CC H5 356.0 459.42
CC CD 504.0 414.37
CC H4 350.1 150.0
CD H4 350.1 453.83
C3 C3 303.1 654.61
C3 HC 337.3 427.82

Table S10: C2mim+ bond parameters. k1 taken from Ref. 9, k2 from FFGenOpt

Atom type 1 Atom type 2 Atom type 3 k1 k2

[kcalmol−1 rad−2] [kcalmol−1 rad−2]

C3 NA CC 62.56 188.47
H1 C3 H1 39.18 47.5
H1 C3 NA 49.9 45.28
NA CC NA 73.65 191.59
NA CC H5 49.76 59.48
NA CD CC 72.91 200.0
NA CD H4 50.22 21.96
NA C3 C3 65.73 77.82
CC NA CD 63.88 211.83
CC NA CC 68.94 140.09
NA CC CD 72.91 161.11
NA CC H4 50.22 210.8
CC CD H4 47.19 127.63
CD NA C3 62.56 138.34
CD CC H4 47.19 185.0
C3 C3 HC 46.37 65.82
H1 C3 C3 46.36 20.0
HC C3 HC 39.43 28.06

Table S11: C2mim+ angle parameters. k1 taken from Ref. 9, k2 from FFGenOpt
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Atom type 1 Atom type 2 Atom type 3 Atom type 4 n k1 k2

[kcalmol−1] [kcalmol−1]

X C3 NA X 2 0.00 0.00
X CC NA X 2 0.85 0.85
X CD NA X 2 0.85 0.85
X CC CD X 2 2.00 2.00
X C3 C3 X 3 0.08 0.08
CC NA C3 C3 1 0.01 0.01
CC NA C3 C3 2 0.12 0.12
CC NA C3 C3 3 0.16 0.16
CC NA C3 C3 4 0.02 0.02
CC NA C C3 6 0.01 0.01

Table S12: C2mim+ dihedral parameters, X denotes a wildcard. k1 taken from Ref. 9, k2 from FFGenOpt

2.3.2 C4mim+

CWAH

CW

AH

NA+

CT

HC
HC

HC

CR

HA
AN

CT
CH

HC

CT
HC

CH

CT
HC

CH

CT
HC

CH

HC

Atom type 1 Atom type 2 k1 k2

[kcalmol−1 Å
−2

] [kcalmol−1 Å
−2

]

CR HA 367.0 507.6
CR NA 476.68 304.13
CT HC 340.0 372.53
CT CT 267.82 510.01
CW HA 367.0 413.75
CW CW 519.65 408.67
CW NA 426.72 453.98
HN NA 474.0 979.10
NA CT 336.78 219.79

Table S13: C4mim+ bond parameters. k1 taken from Ref. 11, k2 from FFGenOpt
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Atom type 1 Atom type 2 Atom type 3 k1 k2

[kcalmol−1 rad−2] [kcalmol−1 rad−2]

CA CA CA 70.0 140.08
CA CA HA 35.0 62.22
CA CA NA 70.0 80.73
CA NA CA 70.0 24.65
CA NA CT 70.0 92.22
CR NA CW 69.95 136.73
CT CT CT 58.31 171.72
CT CT HC 37.47 45.41
CT CT NA 58.31 71.63
CT NA CW 69.95 89.09
CT NA CR 69.95 124.34
CW CW HA 34.98 70.56
CW CW NA 69.95 149.34
HA CA NA 35.0 49.55
HA CR NA 34.98 52.05
HA CW NA 34.98 28.88
HC CT NA 37.47 40.07
HC CT HC 33.0 28.78
NA CR NA 69.95 81.48

Table S14: C4mim+ angle parameters. k1 taken from Ref. 11, k2 from FFGenOpt

Atom type 1 Atom type 2 Atom type 3 Atom type 4 n k1 k2

[kcalmol−1] [kcalmol−1]

CA NA CT CT 2 15.72 12.72
CA NA CT CT 4 26.27 26.27
CA NA CT HC 2 17.43 17.43
CR NA CT CT 1 20.94 20.94
CR NA CT HC 3 0.45 0.45
CT CT CT CT 1 37.76 37.76
CT CT CT CT 2 19.56 19.56
CT CT CT CT 3 10.34 10.34
CT CT CT HC 3 0.14 0.14
CW NA CT HC 3 1.78 1.78
CW NA CT CT 1 28.08 28.08
CW NA CT CT 2 3.49 3.49
CW NA CT CT 3 10.47 10.47
HC CT CT HC 3 0.02 0.02
NA CT CT CT 1 23.78 23.78
NA CT CT CT 2 8.29 8.29
NA CT CT CT 3 10.25 10.25
NA CT CT HC 1 18.99 18.99
X CA CA X 2 28.84 28.84
X CW CW X 2 2.13 2.13
X NA CA X 2 14.44 14.44
X NA CR X 2 3.23 3.23
X NA CW X 2 3.29 3.29

Table S15: C4mim+ dihedral parameters, X denotes a wildcard. k1 taken from Ref. 11, k2 from FFGenOpt
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2.3.3 Tetrafluoroborate

B - F F - B - F
[kcalmol−1 Å

−2
] [kcalmol−1 rad−2]

k1 386.33 80.00
k2 100.0 141.67

Table S16: BF−
4 force field parameters. k1 taken from Ref. 11, k2 from FFGenOpt

2.3.4 Trifluoromethanesulfonate

Atom type 1 Atom type 2 k1 k2

[kcalmol−1 Å
−2

] [kcalmol−1 Å
−2

]

C3 F 363.8 397.35
C3 S6 254.0 296.58
O S6 541.1 406.24

Table S17: OTf− bond parameters. k1 taken from Ref. 9, k2 from FFGenOpt

Atom type 1 Atom type 2 Atom type 3 k1 k2

[kcalmol−1 rad−2] [kcalmol−1 rad−2]

C3 S6 O 41.66 20.0
F C3 F 71.26 26.81
F C3 S6 81.22 158.37
O S6 O 46.66 75.97

Table S18: OTf− angle parameters. k1 taken from Ref. 9, k2 from FFGenOpt

Atom type 1 Atom type 2 Atom type 3 Atom type 4 n k1 k2

[kcalmol−1] [kcalmol−1]

F C3 S6 O 3 0.07 0.07

Table S19: OTf− dihedral parameters. k1 taken from Ref. 9, k2 from FFGenOpt
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2.3.5 Acetate

Atom type 1 Atom type 2 k1 k2

[kcalmol−1 Å
−2

] [kcalmol−1 Å
−2

]

OD2C2A CD2O2A 527.00 50.0
CD2O2A CD33A 110.00 439.47
CD33A HDA3A 322.00 365.67

Table S20: OAc− bond parameters. k1 taken from Ref. 10, k2 from FFGenOpt

Atom type 1 Atom type 2 Atom type 3 k1 k2

[kcalmol−1 rad−2] [kcalmol−1 rad−2]

OD2C2A CD2O2A OD2C2A 83.70 54.65
OD2C2A CD2O2A CD33A 23.80 178.52
CD2O2A CD33A HDA3A 27.70 57.47
HDA3A CD33A HDA3A 35.50 22.0

Table S21: OAC− angle parameters. k1 taken from Ref. 10, k2 from FFGenOpt

Atom type 1 Atom type 2 Atom type 3 Atom type 4 n k1 k2

[kcalmol−1] [kcalmol−1]

OD2C2A CD2O2A CD33A HDA3A 6 0.21 0.21

Table S22: OAc− dihedral parameters. k1 taken from Ref. 10, k2 from FFGenOpt

2.3.6 Dicyanamide

Atom type 1 Atom type 2 k1 k2

[kcalmol−1 Å
−2

] [kcalmol−1 Å
−2

]

CG NE 509.50 584.06
CG N1 994.70 1429.27

Table S23: N(CN)−2 bond parameters. k1 taken from Ref. 11, k2 from FFGenOpt

Atom type 1 Atom type 2 Atom type 3 k1 k2

[kcalmol−1 rad−2] [kcalmol−1 rad−2]

CG NE CG 66.00 117.11
NE CG N1 65.04 80.90

Table S24: N(CN)−2 angle parameters. k1 taken from Ref. 11, k2 from FFGenOpt

Atom type 1 Atom type 2 Atom type 3 Atom type 4 n k1 k2

[kcalmol−1] [kcalmol−1]

CG NE CG N1 2 0.00 0.00

Table S25: N(CN)−2 dihedral parameters. k1 taken from Ref. 11, k2 from FFGenOpt
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2.4 IR Spectra using scaled force constants

The IR spectra have been evaluated utilizing not only the force constants given in Tables S10 to S25, but also
from trajectories with force constants for bond and angle terms subjected to scaling by 0.95, 0.90, 0.80, and
0.60. It should be noted, however, that in this particular methodology, the dihedral terms were not subjected to
scaling.

60080010001200140016001800

a) [C2mim]OAc
Exp.
FFGenOpt 1.00

0.95
0.90

0.80
0.60

60080010001200140016001800

b) [C2mim]OTf
Exp.
FFGenOpt 1.00

0.95
0.90

0.80
0.60

500750100012501500175020002250

c) [C2mim]N(CN)2
Exp.
FFGenOpt 1.00

0.95
0.90

0.80
0.60

60080010001200140016001800

d) [C4mim]BF4
Exp.
FFGenOpt 1.00

0.95
0.90

0.80
0.60

 / cm 1

(
)

n(
) [

ar
b.

 u
ni

ts
]

Figure S2: IR spectra calculated from polarizable MD trajectories using scaled force constants for bond and
angle terms

The resulting IR spectra, as depicted in Fig. S2, demonstrate a consistent trend of progressive red-shift in
correlation with decreasing scaling factors. Upon examination of [C2mim]OAc and [C2mim]N(CN)2, it becomes
evident that the shapes of the resulting IR spectra undergo significant alterations upon the transition from
a scaling factor of 0.80 to 0.60. This essentially establishes a boundary concerning the extent of the scaling
magnitude that can be implemented.
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3 Technical issues of calculating IR spectra

3.1 Numerical time-derivative versus velocities

The time derivative of the molecular dipole moment can be obtained by numerical derivation of the transient
coordinates

˙⃗µi(t) =
∑
β

qiβ
dr⃗iβ(t)

dt
(2)

or by using the atomic velocities
˙⃗µi(t) =

∑
β

qiβ v⃗iβ(t). (3)

This also applies to the collective dipole moment ˙⃗
MD(t) =

∑
i
˙⃗µi(t). However, as visible in Fig. S4 both ways

of calculating the derivative yield similar IR spectra. Since writing the velocity trajectories in addition to the
coordinate trajectories need extra disk space and computational time, the numerical derivative method is fine.
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Figure S3: IR spectra calculated from polarizable MD trajectories.
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3.2 The influence of SHAKE

In classical MD simulations time steps of 1 or 2 fs are used after applying the SHAKE algorithm to keep bond
fixed involving hydrogens. However, the time interval between two frames in our polarizable MD simulations
has to be reduced to 0.5 fs due to the Drude oscillators. As visible in Fig. S4 there is no visible difference
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Figure S4: IR spectra calculated using the FFGenOpt force fields with and without hydrogen - heavy atom bonds
frozen (SHAKE restraints)

between the IR spectra obtained from the numerical derivative of the molecular dipole moment with (blue)
and without (red) SHAKE. Of course, vibrations beyond 3000 cm−1 are not detectable in MD simulations using
SHAKE. These vibrations are also not visible in the red curves in the simulations without SHAKE and using the
numerical derivative of the molecular dipole moments. This may be due to the fact that not all frames have been
saved to disk but every tenth frame. This is common procedure for coordinate trajectories. If one is interested
in the vibrations beyond 3000 cm−1, one should use the velocities written at each time step (yellow curve) to
compute the corresponding IR spectra.
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3.3 Machine learning potentials

Unfortunately, the agreement between IR spetra from numerical derivation and velocities is no longer given
in case of machine learning potentials as visible in Fig. S5. Here, the computing of the IR spectra from the
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Figure S5: IR spectra calculated using machine learning potentials

numerical derivative of the molecular dipole moments fails (orange curve for ˙⃗µ and red curve for ˙⃗
MD). One

must use the velocities which may be due to the fact that the machine learning potentials have no functional
form.
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3.4 Mixed MD/ML approaches

In principle, two methods exist for the mixing of MD and ML approaches:
First, using one approach for the cations and the other for the anions. We applied this in the case of

[C4mim]BF4 (see Fig. S6) as boron is not available in ANI-2x.12 Consequently, the cation was propagated by
an ML potential and the forces for BF−

4 as well as the interactions between cations and anions were computed
by a polarizable force field. Interestingly, the peak at 1040 cm−1 (yellow and green curve in Fig. S6) concerns
the anion. Despite being modelled by a polarizable force field in the ML + FF trajectories, the agreement is
significantly better than that obtained from the pure polarizable trajectories (blue curve). This emphasizes again
the importance of the local environment of the molecules for computing IR spectra.
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Figure S6: Comparison of IR spectra calculated by polarizable MD (red and blue lines) and a mixed setup using
the ML potential for the cation and the MD potential for the anion (yellow)

The second approach to mix MD and ML is a dual topology approach. Here, the molecule is described by
two potentials at the very same time, one from ML and one from polarizable MD. The parameter λ denotes
the weighting between these two potentials. In our case, we used λ=0.5 for [C2mim]N(CN)2 and yielded
reasonable agreement with the experimental spectrum (see Fig. 5c in the main article).

However, all mixed approaches suffer from the disadvantages of the ML approaches: The additional compu-
tational time and the restriction to the velocities.
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