Boosting Photo-assisted efficient Electrochemical CO₂ Reduction Reaction

on Transition Metal Single-Atom Catalysts Supported on C₆N₆ nanosheet:

A Computational Study

Supriti Dutta, Swapan K Pati*

Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.

*Corresponding author. E-mail: <u>swapan.jnc@gmail.com</u> Phone: 080-22082839 ORCID ID: orcid.org/0000-0002-5124-7455

Figure S1. Optimized geometry of C_6N_6 nanosheet and various possible adsorption sites (S1, S2, S3) considered on the surface for doping single TM atom (TM = Fe, Co, Ni).

Figure S2. Variation of energy with time for AIMD simulation of (a) Fe@C₆N₆, (b) Co@C₆N₆ and,
(c) Ni@C₆N₆ sheet at 500 K for a period of 20 ps with a time step of 2 fs.

Figure S3. Optimized adsorption configurations for CO_2 adsorption and the corresponding adsorption energies (in eV) on Fe@C₆N₆.

Figure S4. Optimized adsorption configurations for CO_2 adsorption and the corresponding adsorption energies (in eV) on $Co@C_6N_{6.}$

Figure S5. Optimized adsorption configurations for CO_2 adsorption and the corresponding adsorption energies (in eV) on Ni@C₆N₆.

*CHOH

*OCH₂

*CH₂OH

Figure S6. Optimized geometries for the intermediates along CO_2RR pathway on Fe@C₆N₆

*CHOH

*OCH₂

*CH₂OH

Figure S7. Optimized geometries for the intermediates along CO_2RR pathway on $Co@C_6N_6$

*HCOOH

*CHO

*CHOH

*OCH₂

*CH₂OH

*OCH₃

Figure S8. Optimized geometries for the intermediates along CO₂RR pathway on Ni@C₆N₆

Figure S9. The complete Gibbs Free energy profile for CO_2RR on (a) Fe@C₆N₆, (b) Co@C₆N₆ and (c) Ni@C₆N₆ nanosheet.

Figure S10. The spin-polarised band structures of the (a) $Fe@C_6N_6$, (b) $Co@C_6N_6$ and, (c) $Ni@C_6N_6$ sheet from the HSE06 functional.

	ZPE	TS
CO ₂	0.31	0.66
СО	0.14	0.61
H_2	0.28	0.40
H_2O	0.57	0.58
НСООН	0.89	0.77
CH ₃ OH	1.36	0.74
CH ₄	1.19	0.58

Table S1. The ZPE and TS values (in eV) for gaseous molecules at 298 K.

Adsorbates	Fe@C ₆ N ₆		$Co@C_6N_6$		Ni@C ₆ N ₆	
	ZPE	TS	ZPE	TS	ZPE	TS
*CO ₂	0.32	0.29	0.31	0.25	0.32	0.31
*СООН	0.60	0.27	0.61	0.27	0.60	0.30
*OCHO	0.59	0.27	0.61	0.23	0.59	0.30
*CO	0.20	0.17	0.20	0.16	0.20	0.17
*НСООН	0.89	0.23	0.90	0.23	0.90	0.23
*СНО	0.55	0.08	0.46	0.21	0.55	0.09
*СОН	0.46	0.22	0.47	0.20	-	-
*СНОН	0.78	0.19	0.78	0.21	0.78	0.14
*CH ₂ O	0.76	0.21	0.76	0.21	0.76	0.21
*CH ₃ O	1.07	0.23	1.08	0.22	1.07	0.23
*CH ₂ OH	1.08	0.22	1.08	0.24	1.08	0.11
*CH	0.33	0.09	0.26	0.10	0.32	0.12
*CH ₂	0.60	0.12	0.61	0.11	0.73	0.04
*CH ₃	0.93	0.14	0.93	0.15	0.92	0.19
*0	0.06	0.06	0.06	0.07	0.05	0.09
*ОН	0.34	0.11	0.33	0.15	0.34	0.14
*CH ₃ OH	1.40	0.30	1.36	0.31	1.37	0.24
*CH ₄	1.20	0.29	1.21	0.25	1.21	0.27

Table S2. The ZPE and TS values (in eV) for the adsorbates on $TM@C_6N_6$ systems (TM = Fe, Co, Ni).

		ΔG (eV)		
	Elementary steps	Fe@C ₆ N ₆	Co@C ₆ N ₆	Ni@C ₆ N ₆
1. 0	$CO_2 + * \rightarrow *CO_2$	-0.09	-0.08	0.08
2. *	$*CO_2 + H^+ + e^- \rightarrow *COOH$	0.60	0.47	0.55
3. *	$*CO_2 + H^+ + e^- \rightarrow *OCHO$	-0.15	0.29	0.30
4. *	$*COOH + H^+ + e^- \rightarrow *CO + H_2O$	-0.70	-1.10	-1.00
5. *	$*CO \rightarrow CO + *$	0.83	1.35	1.01
6. *	$*COOH + H^+ + e^- \rightarrow *HCOOH$	-0.86	-0.56	-0.68
7. *	$OCHO + H^+ + e^- \rightarrow HCOOH$	-0.12	-0.38	-0.44
8. *	*HCOOH \rightarrow HCOOH + *	0.94	0.76	0.64
9. *	$*CO + H^+ + e^- \rightarrow *CHO$	0.26	0.88	0.65
10. *	$*CO + H^+ + e^- \rightarrow *COH$	1.54	1.99	-
12. *	*HCOOH + H ⁺ + e ⁻ \rightarrow *CHO + H ₂ O	0.43	0.34	0.33
12. *	$*CHO + H^+ + e^- \rightarrow *CHOH$	0.84	0.48	0.36
13. *	$*CHO + H^+ + e^- \rightarrow *CH_2O$	0.05	0.04	0.16
14. *	$*COH + H^+ + e^- \rightarrow *C + H_2O$	0.88	1.26	-
15. *	$*C + H^+ + e^- \rightarrow *CH$	-0.61	-0.09	-1.18
16. *	$*CHOH + H^+ + e^- \rightarrow *CH_2OH$	-0.48	-0.34	-0.76
17. *	*CHOH + H ⁺ + $e^- \rightarrow$ *CH + H ₂ O	0.71	1.80	1.64
18. *	$*CH_2O + H^+ + e^- \rightarrow *CH_2OH$	0.31	0.10	-0.56
19. *	$*CH_2O + H^+ + e^- \rightarrow *OCH_3$	-0.55	-0.12	-0.12
20. *	$*CH_2OH + H^+ + e^- \rightarrow CH_3OH + *$	-0.39	-0.26	0.16

21.	$*OCH_3 + H^+ + e^- \rightarrow CH_3OH + *$	0.47	-0.04	-0.28
22.	$*OCH_3 + H^+ + e^- \rightarrow *O + CH_4$	0.26	-1.85	0.49
23.	$^{*}\mathrm{CH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}$	-0.90	-1.82	-1.19
24.	$*CH_2OH + H^+ + e^- \rightarrow *CH_2 + H_2O$	0.29	0.32	1.20
25.	$^{*}\mathrm{CH}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}$	-1.03	-1.23	-1.46
26.	$^{*}\mathrm{CH}_{3} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{CH}_{4} + ^{*}$	-0.84	-0.56	-0.79
27.	$*O + H^+ + e^- \rightarrow *OH$	-1.21	-1.24	-1.61
28.	$*OH + H^+ + e^- \rightarrow H_2O + *$	0.22	1.85	-0.36

Table S3. The Free energy changes (in eV) for the proposed elementary steps for CO_2RR pathways on $TM@C_6N_6$ systems (TM = Fe, Co, Ni).

		Fe@C ₆ N ₆	Co@C ₆ N ₆	Ni@C ₆ N ₆
HER		0.40	0.38	0.61
CO ₂ RR	*COOH	Н 0.60		0.55
	*OCHO	-0.15	0.29	0.30

Table S4. Free energy change (in eV) of HER and CO_2RR on $TM@C_6N_6$ systems (TM = Fe, Co, Ni).

Pro	oducts	Fe@C ₆ N ₆ Co@C ₆ N ₆		Ni@C ₆ N ₆	
СО	PDS	$*CO \rightarrow CO + *$			
	$\Delta G_{max}(eV)$	0.83	1.35	1.01	
НСООН	PDS	*HCOOH \rightarrow HCOOH + *			
	$\Delta G_{max}(eV)$	0.94	0.76	0.64	
CH ₃ OH	PDS	*HCOOH + H ⁺ + e ⁻ \rightarrow *CHO + H ₂ O			
	$\Delta G_{max}(eV)$	0.43	0.34	0.33	
CH ₄	PDS	*HCOOH + H ⁺ + $e^- \rightarrow$ *CHO + H ₂ O		*OCH ₃ + H ⁺ + e ⁻ \rightarrow *O + CH ₄	
	$\Delta G_{max}(eV)$	0.43	0.34	0.49	

Table S5. The maximum Gibbs Free energy values (in eV) of the potential determining steps for various C_1 products on TM@C₆N₆ systems (TM = Fe, Co, Ni).