Absolute Quantum Yield for Understanding the Upconversion and Downshift Properties of Luminescent PbF₂:Er³⁺,Yb³⁺ Crystals

Eduard Madirov, Dmitry Busko, Ian A. Howard, Bryce S. Richards and Andrey Turshatov

Table S1. Integrated absorption cross-section of the PbF_2 : Er^{3+} , Yb^{3+} samples used in the Judd-Ofelt calculations, $\times 10^{-20}$ cm²

	Er1.5Yb1.5	Er2Yb2	Er2Yb3	Er2Yb5	Er2Yb7
${}^{4}G_{11/2}$	5.982	6.628	6.628	6.757	7.825
${}^{2}\mathrm{H}_{9/2}$	0.620	0.877	0.853	0.789	0.988
${}^{4}\mathbf{F}_{7/2}$	2.797	3.860	3.911	3.931	4.782
${}^{2}\mathrm{H}_{11/2}$	6.099	6.860	6.715	6.747	8.450
⁴ S _{3/2}	0.972	1.649	1.361	1.293	1.727
⁴ F _{9/2}	5.624	7.443	7.789	7.964	9.657
${}^{4}I_{13/2}$	34.724	41.620	42.104	44.380	54.139

Table S2. Concentrations of the doping ions based on WDXRF and ions per cm³, unit cell parameters of the PbF₂ doped with Er^{3+} , Yb³⁺.

Sample name	I	Er ³⁺	١	b ³⁺	a, Å
Sampe name	mol.,%	N, ×10 ²⁰ cm ⁻³	mol.,%	N, ×10 ²⁰ cm ⁻³	
Er1.5Yb1.5	1.61	3.34	1.436	2.98	5.9301
Er2Yb2	2.106	4.36	2.141	4.44	5.9236
Er2Yb3	2.186	4.53	3.285	6.81	5.9174
Er2Yb5	2.116	4.38	5.142	10.66	5.9078
Er2Yb7.5	2.116	4,38	7.713	15,99	5.8887

	E1, cm ⁻¹	E2, cm ⁻¹	ΔE, cm ⁻¹	A, s ⁻¹	β	τ_{rad} , ms
${}^{2}\mathrm{H}_{9/2} - {}^{2}\mathrm{H}_{11/2}$	24756	19337	5419	18.634	0.0140	0.751
$-{}^{4}F_{9/2}$	24756	15455	9301	41.471	0.0311	
$- {}^{4}I_{11/2}$	24756	10346	14410	118.013	0.0886	
$- {}^{4}I_{13/2}$	24756	6712	18044	542.343	0.407	
$- {}^{4}I_{15/2}$	24756	217	24539	611.763	0.459	
${}^{2}\mathrm{H}_{11/2} - {}^{4}\mathrm{I}_{13/2}$	19337	6712	12625	41.151	0.0282	0.686
$-{}^{4}I_{15/2}$	19337	217	19120	1416.983	0.972	
${}^{4}S_{3/2} - {}^{4}F_{9/2}$	18583	15455	3128	0.3421	3.818E-4	1.116
$- {}^{4}I_{9/2}$	18583	12597	5986	30.958	0.0345	
$- {}^{4}I_{11/2}$	18583	10346	8237	19.825	0.0221	
$- {}^{4}I_{13/2}$	18583	6712	11871	247.769	0.277	
$-{}^{4}I_{15/2}$	18583	217	18366	597.118	0.666	
${}^{4}\mathrm{F}_{9/2} - {}^{4}\mathrm{I}_{9/2}$	15455	12597	2858	0.726	0.00117	1.468
$- {}^{4}I_{11/2}$	15455	10346	5109	31.586	0.0464	
$-{}^{4}I_{13/2}$	15455	6712	8743	28.874	0.0424	
$-{}^{4}I_{15/2}$	15455	217	15238	620.141	0.9102	
${}^{4}\mathbf{I}_{9/2} - {}^{4}\mathbf{I}_{11/2}$	12597	10346	2251	3.319	0.0399	12.033
$-{}^{4}I_{13/2}$	12597	6712	5885	25.395	0.306	
$-{}^{4}I_{15/2}$	12597	217	12380	54.392	0.654	
${}^{4}\mathbf{I}_{11/2} - {}^{4}\mathbf{I}_{13/2}$	10346	6712	3634	22.446	0.259	11.517
$-{}^{4}I_{15/2}$	10346	217	10129	64.383	0.741	
${}^{4}\mathbf{I}_{13/2} - {}^{4}\mathbf{I}_{15/2}$	6712	217	6495	103.025	1	9.706

Table S3. Predicted radiative lifetimes and branching ratios of some transitions in the Er1.5Yb1.5

 sample.

	E1, cm ⁻¹	E2, cm ⁻¹	ΔE, cm ⁻¹	A, s ⁻¹	β	τ_{rad} , ms
${}^{2}\mathrm{H}_{9/2} - {}^{2}\mathrm{H}_{11/2}$	24756	19337	5419	20.613	0.0121	0.588
$-{}^{4}F_{9/2}$	24756	15455	9301	45.873	0.0270	
$- {}^{4}I_{11/2}$	24756	10346	14410	146.500	0.0862	
$-{}^{4}I_{13/2}$	24756	6712	18044	685.112	0.403	
$- {}^{4}\mathbf{I}_{15/2}$	24756	217	24539	801.826	0.471	
${}^{2}\mathrm{H}_{11/2} - {}^{4}\mathrm{I}_{13/2}$	19337	6712	12625	51.242	0.0323	0.629
$- {}^{4}I_{15/2}$	19337	217	19120	1537.217	0.968	
${}^4S_{3/2} - {}^4F_{9/2}$	18583	15455	3128	0.447	3.817E-4	0.853
$-{}^{4}I_{9/2}$	18583	12597	5986	40.692	0.0347	
$- {}^{4}I_{11/2}$	18583	10346	8237	25.958	0.0221	
$-{}^{4}I_{13/2}$	18583	6712	11871	324.008	0.276	
$- {}^{4}I_{15/2}$	18583	217	18366	780.852	0.666	
${}^{4}\mathrm{F}_{9/2} - {}^{4}\mathrm{I}_{9/2}$	15455	12597	2858	0.726	8.072E-4	1.111
$-{}^{4}I_{11/2}$	15455	10346	5109	40.562	0.0451	
$-{}^{4}I_{13/2}$	15455	6712	8743	37.706	0.0419	
$- {}^{4}\mathbf{I}_{15/2}$	15455	217	15238	820.850	0.912	
${}^{4}\mathbf{I}_{9/2} - {}^{4}\mathbf{I}_{11/2}$	12597	10346	2251	3.457	0.0316	9.147
$-{}^{4}I_{13/2}$	12597	6712	5885	33.213	0.304	
$- {}^{4}I_{15/2}$	12597	217	12380	72.657	0.665	
${}^{4}\mathbf{I}_{11/2} - {}^{4}\mathbf{I}_{13/2}$	10346	6712	3634	25.155	0.234	9.305
$- {}^{4}I_{15/2}$	10346	217	10129	82.314	0.766	
${}^{4}I_{13/2} - {}^{4}I_{15/2}$	6712	217	6495	119.264	1	8.385

Table S4. Predicted radiative lifetimes and branching ratios of some transitions in the Er2Yb2 sample.

	E1, cm ⁻¹	E2, cm ⁻¹	ΔE, cm ⁻¹	A, s ⁻¹	β	τ_{rad} , ms
${}^{2}\mathrm{H}_{9/2} - {}^{2}\mathrm{H}_{11/2}$	24756	19337	5419	20.971	0.0121	0.561
$-{}^{4}F_{9/2}$	24756	15455	9301	46.741	0.0262	
$- {}^{4}I_{11/2}$	24756	10346	14410	152.445	0.0854	
$- {}^{4}I_{13/2}$	24756	6712	18044	717.234	0.402	
$- {}^{4}\mathbf{I}_{15/2}$	24756	217	24539	846.532	0.474	
${}^{2}\mathrm{H}_{11/2} - {}^{4}\mathrm{I}_{13/2}$	19337	6712	12625	53.226	0.0330	0.621
$- {}^{4}I_{15/2}$	19337	217	19120	1558.149	0.967	
${}^4S_{3/2} - {}^4F_{9/2}$	18583	15455	3128	0.473	3.817E-4	0.807
$- {}^{4}I_{9/2}$	18583	12597	5986	42.869	0.0346	
$- {}^{4}I_{11/2}$	18583	10346	8237	27.426	0.0221	
$-{}^{4}I_{13/2}$	18583	6712	11871	342.655	0.277	
$- {}^{4}I_{15/2}$	18583	217	18366	825.792	0.666	
${}^{4}\mathrm{F}_{9/2} - {}^{4}\mathrm{I}_{9/2}$	15455	12597	2858	0.728	7.720E-4	1.060
$- {}^{4}I_{11/2}$	15455	10346	5109	42.759	0.0453	
$-{}^{4}I_{13/2}$	15455	6712	8743	39.364	0.0417	
$- {}^{4}I_{15/2}$	15455	217	15238	860.269	0.912	
${}^{4}\mathbf{I}_{9/2} - {}^{4}\mathbf{I}_{11/2}$	12597	10346	2251	3.487	0.0305	8.754
$- {}^{4}I_{13/2}$	12597	6712	5885	35.116	0.307	
$- {}^{4}I_{15/2}$	12597	217	12380	75.630	0.662	
${}^{4}\mathbf{I}_{11/2} - {}^{4}\mathbf{I}_{13/2}$	10346	6712	3634	25.785	0.229	8.889
$- {}^{4}I_{15/2}$	10346	217	10129	86.719	0.771	
${}^{4}I_{13/2} - {}^{4}I_{15/2}$	6712	217	6495	123.125	1	8.122

Table S5. Predicted radiative lifetimes and branching ratios of some transitions in the Er2Yb3 sample.

	E1, cm ⁻¹	E2, cm ⁻¹	ΔE, cm ⁻¹	A, s ⁻¹	β	τ_{rad} , ms
${}^{2}\mathrm{H}_{9/2} - {}^{2}\mathrm{H}_{11/2}$	24756	19337	5419	21.339	0.012	0.562
$-{}^{4}F_{9/2}$	24756	15455	9301	46.813	0.0263	
$- {}^{4}I_{11/2}$	24756	10346	14410	154.156	0.0872	
$- {}^{4}I_{13/2}$	24756	6712	18044	716.779	0.402	
$- {}^{4}I_{15/2}$	24756	217	24539	839.599	0.472	
${}^{2}\mathrm{H}_{11/2} - {}^{4}\mathrm{I}_{13/2}$	19337	6712	12625	54.359	0.0343	0.617
$- {}^{4}I_{15/2}$	19337	217	19120	1567.031	0.966	
${}^4S_{3/2} - {}^4F_{9/2}$	18583	15455	3128	0.465	3.816E-4	0.820
$- {}^{4}I_{9/2}$	18583	12597	5986	42.997	0.0356	
$-{}^{4}I_{11/2}$	18583	10346	8237	27.092	0.0221	
$-{}^{4}I_{13/2}$	18583	6712	11871	336.800	0.276	
$- {}^{4}I_{15/2}$	18583	217	18366	811.681	0.666	
${}^{4}\mathrm{F}_{9/2} - {}^{4}\mathrm{I}_{9/2}$	15455	12597	2858	0.708	7.303E-4	1.031
$-{}^{4}I_{11/2}$	15455	10346	5109	42.022	0.0432	
$-{}^{4}I_{13/2}$	15455	6712	8743	40.814	0.0428	
$- {}^{4}I_{15/2}$	15455	217	15238	886.471	0.914	
${}^{4}I_{9/2} - {}^{4}I_{11/2}$	12597	10346	2251	3.493	0.0291	8.424
$- {}^{4}I_{13/2}$	12597	6712	5885	34.553	0.291	
$- {}^{4}I_{15/2}$	12597	217	12380	80.655	0.679	
${}^{4}\mathbf{I}_{11/2} - {}^{4}\mathbf{I}_{13/2}$	10346	6712	3634	25.712	0.232	9.020
$- {}^{4}I_{15/2}$	10346	217	10129	85.155	0.768	
${}^{4}\mathbf{I}_{13/2} - {}^{4}\mathbf{I}_{15/2}$	6712	217	6495	122.337	1	8.174

Table S6. Predicted radiative lifetimes and branching ratios of some transitions in the Er2Yb5 sample.

	E1, cm ⁻¹	E2, cm ⁻¹	ΔE, cm ⁻¹	A, s ⁻¹	β	τ_{rad} , ms
${}^{2}\mathrm{H}_{9/2} - {}^{2}\mathrm{H}_{11/2}$	24756	19337	5419	23.065	0.0106	0.445
$-{}^{4}F_{9/2}$	24756	15455	9301	59.028	0.0262	
$- {}^{4}I_{11/2}$	24756	10346	14410	190.396	0.0855	
$- {}^{4}I_{13/2}$	24756	6712	18044	903.994	0.402	
$- {}^{4}I_{15/2}$	24756	217	24539	1072.468	0.477	
${}^{2}\mathrm{H}_{11/2} - {}^{4}\mathrm{I}_{13/2}$	19337	6712	12625	65.929	0.0327	0.493
$-{}^{4}I_{15/2}$	19337	217	19120	1962.310	0.967	
${}^{4}S_{3/2} - {}^{4}F_{9/2}$	18583	15455	3128	0.603	3.819E-4	0.633
$- {}^{4}I_{9/2}$	18583	12597	5986	53.822	0.0346	
$- {}^{4}I_{11/2}$	18583	10346	8237	34.857	0.022	
$- {}^{4}I_{13/2}$	18583	6712	11871	437.221	0.277	
$- {}^{4}I_{15/2}$	18583	217	18366	1053.695	0.667	
${}^{4}\mathrm{F}_{9/2} - {}^{4}\mathrm{I}_{9/2}$	15455	12597	2858	0.943	8.138E-4	0.862
$- {}^{4}I_{11/2}$	15455	10346	5109	54.590	0.0471	
$- {}^{4}I_{13/2}$	15455	6712	8743	48.078	0.0413	
$-{}^{4}I_{15/2}$	15455	217	15238	1055.930	0.910	
${}^{4}\mathbf{I}_{9/2} - {}^{4}\mathbf{I}_{11/2}$	12597	10346	2251	3.638	0.0264	7.222
$- {}^{4}I_{13/2}$	12597	6712	5885	44.770	0.323	
$- {}^{4}I_{15/2}$	12597	217	12380	90.052	0.650	
${}^{4}\mathbf{I}_{11/2} - {}^{4}\mathbf{I}_{13/2}$	10346	6712	3634	29.061	0.207	7.150
$-{}^{4}I_{15/2}$	10346	217	10129	110.796	0.792	
${}^{4}\mathbf{I}_{13/2} - {}^{4}\mathbf{I}_{15/2}$	6712	217	6495	142.934	1	6.996

Table S7. Predicted radiative lifetimes and branching ratios of some transitions in the Er2Yb7.5 sample.

		${}^{4}\mathbf{I}_{13/2} {}^{-4}\mathbf{I}_{15/2}$			
	crystal		τ, ms		
	Er1.5Yb1.5		11.0±0.5		
	Er2Yb2		7.8±0.4		
	Er2Yb3		8.2±0.4		
	Er2Yb5		8.8±0.4		
	Er2Yb7.5		8.9±0.4		
		${}^{4}\mathrm{F}_{9/2} - {}^{4}\mathrm{I}_{15/2}$			
	crystal		τ, ms		
	Er1.5Yb1.5		$0.44{\pm}0.05$		
	Er2Yb2		0.36 ± 0.04		
	Er2Yb3		0.38 ± 0.04		
	Er2Yb5		0.36 ± 0.04		
	Er2Yb7.5		0.37±0.04		
		${}^{4}S_{1/2} - {}^{4}I_{15/2}$			
crystal	τ_1, ms	\mathbf{A}_{1}	τ_2 , ms	\mathbf{A}_{2}	
Er1.5Yb1.5	0.18 ± 0.04	0.37	1.08 ± 0.24	0.58	
Er2Yb2	$0.08 {\pm} 0.02$	0.94	$0.94{\pm}0.21$	0.12	
Er2Yb3	0.06 ± 0.01	1.00	0.64 ± 0.14	0.08	
Er2Yb5	$0.05 {\pm} 0.01$	0.96	0.56±0.13	0.05	
Er2Yb7.5	0.04 ± 0.01	1.01	0.25±0.06	0.03	

Table S8. Decay times obtained after fitting the experimental decays in Figures 3b-3d with single-exponential (${}^{4}I_{13/2}$ - ${}^{4}I_{15/2}$ and ${}^{4}F_{9/2}$ - ${}^{4}I_{15/2}$ transitions) and bi-exponential (${}^{4}S_{1/2}$ - ${}^{4}I_{15/2}$ transition) functions.

Figure S1 Luminescence decay times of the $Er^{3+}:^4S_{3/2} - {}^4I_{15/2}$, $Er^{3+}:^4S_{3/2} - {}^4I_{13/2}$, $Er^{3+}:^4F_{9/2} - {}^4I_{15/2}$ transitions of the Er2Yb5 crystal and diluted powders.

Figure S2. Luminescence decay times of the Er^{3+} : ${}^{4}S_{3/2} - {}^{4}I_{15/2}$ and Er^{3+} : ${}^{4}F_{9/2} - {}^{4}I_{15/2}$ transitions of the Er2Yb2 crystal and diluted powders.

Figure S3. Lumenescence decay of the Er^{3+} :⁴S_{3/2} – ⁴I_{13/2} of the Er2Yb5 crystal and diluted powders under 522 nm excitation.

Excitation	Emission	Er1.5Yb1.5	Er2Yb2	Er2Yb3	Er2Yb5	Er2Yb7.5
522 nm	${}^4S_{3/2} - {}^4I_{15/2}$	4.4	2.6	2.9	2.6	1.9
	${}^4S_{3/2} - {}^4I_{13/2}$	2	1.2	1.5	1.3	0.9
0.1 W/cm^2	${}^4F_{9/2} - {}^4I_{15/2}$	7	6.3	5.6	3.5	1.1
0.1 W/Cm	${\rm Er^{3+:4}I_{11/2}}$ &					
	$Yb^{3+}:^{2}F_{7/2}$	38.2	40	43.9	36.1	30.1
652 nm	${}^4\!F_{9/2}-{}^4\!I_{15/2}$	18.3	20.1	23.5	22	16.6
0.3 W/cm ²	${\rm Er^{3+:4}I_{11/2}}$ &					
	$Yb^{3+}:^{2}F_{7/2}$	22.8	22.5	21.3	20.1	12.2
0/10 nm	${\rm Er^{3+:4}I_{11/2}}$ &					
$0.1 W/cm^2$	$Yb^{3+}:^{2}F_{7/2}$	29.6	48.8	57.2	40.5	31.2
0.1 w/cm ²	${}^{4}I_{13/2} - {}^{4}I_{15/2}$	3.5	3.1	3.2	2.1	1.9
1495 nm	4 I					
0.1 W/cm ²	1 13/2 1 15/2	83.2	67.2	61.4	62.4	59.1

Table S9. Experimentally obtained ϕ_{DS}^* (%) of some transitions in the PbF₂:Er³⁺, Yb³⁺ samples upon excitation of the ⁴S_{3/2}, ⁴F_{9/2}, Er³⁺:⁴I_{11/2} & Yb³⁺:²F_{7/2} and ⁴I_{13/2} levels as measured in an integrating sphere.

The correction of the measured ϕ_{DS} values for reabsorption was performed as follows (by analogy with to C. de Mello Donegá et al¹.): a part of every crystal was ground to powder in a mortar and then the obtained powders were diluted with BaSO₄ in the ration of 9/1 where the first number is the fraction of BaSO₄ and the second one is the fraction of PbF₂ powder. Then spectra of every single crystal and diluted powder were obtained under 378 nm excitation with a spectrofluorometer (FS5, Edinburgh Instruments) in the visible and NIR ranges. The visible emission was normalised to the peak of the ⁴S_{3/2} - ⁴I_{13/2} transition at 850 nm. In the case of NIR emission bands, each band was normalised to the long wavelength edge (1585 nm in the case of ⁴I_{13/2} - ⁴I_{15/2} emission and 1045 nm in the case of {Er³⁺:⁴I_{11/2} & Yb³⁺:²F_{7/2}} emission). The corrected ϕ_{DS} values were obtained according to Wilson and Richards² as

$$\phi_{DS} = \frac{\phi_{DS}^*}{1 - a + a * \phi_{DS}}$$
$$a = 1 - \frac{\int I_{crystal} d\lambda}{\int I_{powder} d\lambda}$$

Where $\int_{powder}^{I} d\lambda$, $I_{crystal}$ is the normalized emission intensity of a single crystal sample, I_{powder} is the normalized emission intensity of a 9/1 diluted powder sample. The integration ranges are 500 - 580 nm for the combination of ${}^{4}S_{3/2} - {}^{4}I_{15/2}$ and ${}^{2}H_{11/2} - {}^{4}I_{15/2}$ bands, 610 - 705 nm for the ${}^{4}F_{9/2} -$ $\label{eq:4I15/2} {}^{4}I_{15/2} \text{ emission, } 920-1100 \text{ nm for the } \{Er^{3+}: {}^{4}I_{11/2} \text{ \& } Yb^{3+}: {}^{2}F_{7/2}\} \text{ band and } 1430-1700 \text{ nm for the } {}^{4}I_{13/2}- {}^{4}I_{15/2} \text{ emission band.}$

The spectra that were used for the calculations are presented in **figure S4.1-3**.

Figure S4.1. Visible range emission spectra of the single crystals and 9/1 diluted powders of the PbF₂:Er,Yb samples measured under 378 nm excitation with a spectrofluorometer (FS5, Edinburgh Instruments).

Figure S4.2. NIR range emission spectra of the single crystals and 9/1 diluted powders of the PbF₂:Er,Yb samples measured under 378 nm excitation with a spectrofluorometer (FS5, Edinburgh Instruments).

Figure S4.3. NIR range emission spectra of the single crystals and 9/1 diluted powders of the PbF₂:Er,Yb samples measured under 378 nm excitation with a spectrofluorometer (FS5, Edinburgh Instruments).

Figure S5. Energy transfer diagrams for the case of DS emission, where the ground state 0 is $Er^{3+}:^{4}I_{15/2}$, excited state 1 is either $Er^{3+}:^{4}I_{13/2}$ or $Er^{3+}:^{4}I_{9/2}$ and excited state 2 is either $Er^{3+}:^{4}I_{11/2}$ or $Er^{3+}:^{4}S_{3/2}$

Figure S6. Different algorithms of JO calculation in the case of powder samples a) paper ³; b) paper ⁴; c) papers ^{5, 6}

Emission	Lifetime, ms							
band	Crystal	Method A ³	Method B ⁴	Method C ^{5, 6}				
${}^4G_{9/2} - {}^4I_{15/2}$	0.42	0.52	0.52	0.42				
${}^{2}\text{H}_{11/2} - {}^{4}\text{I}_{15/2}$	0.97	0.97	0.97	0.97				
${}^{4}S_{3/2} - {}^{4}I_{15/2}$	0.67	0.67	0.67	0.66				
${}^{4}\mathrm{F}_{9/2} - {}^{4}\mathrm{I}_{15/2}$	0.91	0.88	0.88	0.93				
${}^{4}\mathbf{I}_{9/2} - {}^{4}\mathbf{I}_{15/2}$	0.83	0.24	0.22	0.83				
${}^{4}I_{11/2} - {}^{4}I_{15/2}$	0.73	0.89	0.78	0.73				
${}^{4}\mathbf{I}_{13/2} - {}^{4}\mathbf{I}_{15/2}$	1	1	1	1				
Relative RM	S (with 419/2)	0.26	0.68	0.68				
Relative RM	(S (w/o 4I9/2)	0.12	0.19	0.11				

Table S10. The comparison of branching ratios of Er2Yb5 powder obtained with different methods.

Figure S7. a) the excitation spectrum of the ${}^{4}S_{3/2} - {}^{4}I_{15/2}$ transition (detection at 540 nm); b) the reflectance spectrum of the Er2Yb2 powder sample.

	Crystal	Method A ³	Method B^4	Method $C^{5,6}$
Ω_2	1.34x10 ⁻²⁰	2.73x10 ⁻²⁰	1.60x10 ⁻²⁰	1.72×10^{-21}
Ω_4	4.70x10 ⁻²¹	4.43x10 ⁻²⁰	7.43x10 ⁻²¹	7.96x10 ⁻²¹
Ω_6	1.79x10 ⁻²⁰	2.23x10 ⁻²⁰	2.34x10 ⁻²⁰	2.54x10 ⁻²⁰
Relat	ive RMS	8.50	0.69	0.86

Table S11. The comparison of Ω_t parameters of Er2Yb2 powder obtained with different methods.

Table S12. The comparison of radiative lifetimes of Er2Yb2 powder obtained with different methods.

Emission	Lifetime, ms					
band	Crystal	Method A^{3}	Method B 4	Method C ^{5,6}		
${}^4G_{9/2} - {}^4I_{15/2}$	0.59	0.43	0.56	0.52		
${}^{2}\mathrm{H}_{11/2} - {}^{4}\mathrm{I}_{15/2}$	0.61	0.35	0.84	0.78		
${}^{4}S_{3/2} - {}^{4}I_{15/2}$	0.85	0.73	0.69	0.65		
${}^{4}\mathrm{F}_{9/2} - {}^{4}\mathrm{I}_{15/2}$	1.14	0.64	1.42	1.32		
${}^{4}I_{9/2} - {}^{4}I_{15/2}$	9.47	4.93	13.99	12.75		
${}^{4}\mathbf{I}_{11/2} - {}^{4}\mathbf{I}_{15/2}$	9.26	8.21	8.83	7.70		
${}^{4}\mathbf{I}_{13/2} - {}^{4}\mathbf{I}_{15/2}$	8.39	8.39	12.31	8.39		
Relative RM	S (with 419/2)	0.84	0.83	0.57		
Relative RM	S (w/o 4I9/2)	0.69	0.68	0.45		

Figure S8. Sample temperature as a function of incident 976 nm intensity.

Figure S9. Measured ϕ_{UC} and slopes (k) of the ϕ_{UC} dependence of a) total UC emission in the 400 – 900 nm range, b) emission of the ${}^{4}S_{3/2} - {}^{4}I_{15/2}$ transition, c) emission of the ${}^{4}F_{9/2} - {}^{4}I_{15/2}$ transition in the intensity range of 0.1 – 350 W/cm².

Figure S10. Relative change in ϕ_{UC} of a sample versus total absorptance and slope (k) of the ϕ_{UC} intensity dependence.

Figure S11. (a) Ratio of the intensities of the ${}^{4}F_{9/2} - {}^{4}I_{15/2}$ (Red) transition and the ${}^{4}S_{3/2} - {}^{4}I_{15/2}$ (Green) transition as a function of 976 nm excitation intensity in the 0.1 – 350 W/cm²; (b) ${}^{\phi}{}_{DS}$ of the Er³⁺: ${}^{4}I_{13/2} - {}^{4}I_{15/2}$ transition as a function of intensity at 940 nm excitation.

References

- 1. C. de Mello Donegá, A. Meijerink and G. Blasse, J. Lumin., 1994, 62, 189-201.
- 2. L. R. Wilson and B. S. Richards, *Appl. Opt.*, 2009, 48, 212-220.
- 3. W. Luo, J. Liao, R. Li and X. Chen, *PCCP*, 2010, **12**, 3276-3282.
- Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia and R. Hua, *PCCP*, 2018, 20, 15876-15883.
- 5. E. Cantelar, M. Marin-Dobrincic, T. Jardiel, A. C. Caballero and F. Cussó, *Opt. Mater.*, 2015, **41**, 122-125.
- 6. A. Egaña, M. Tardío, C. de la Torre-Gamarra, A. Várez, E. Cantelar and J. E. Muñoz Santiuste, *J. Lumin.*, 2018, **202**, 232-238.