Electronic Supplementary Material Scanning the latent phases and superconductivity in the Nb-

Pb system at high pressure

Yanqing Qin^a, Jiexi Song^a, Xinyu Chen^b, Diwei Shi^{c,*}, Rongrong Ren^a, Yaocen Wang^a, Xiaojun Bai^a, Xiaoguang Yang^{d,e,*}and Chongde Cao^{a,*}

^a School of Physical Science and Technology, Northwestern Polytechnical University, Xian 710072, China

^b School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology,
200 Xiao Ling Wei Street, Nanjing 210094, China

^c School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic China

^d Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

^e Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Author to whom correspondence should be addressed: caocd@nwpu.edu.cn; shidiwei@zjou.edu.cn; xgyang@semi.ac.cn

Space Group	OQMD-ID ^a	relative total energies (meV/atom)	
Pmn (A15) ^b	17740	7.68527	
P63/mmc	318944	68.17163	
Pmm	343430	76.01067	
I4/mmm	298645	149.0937	
Fmm	309183	177.5072	

Table S1 The relative total energies of several Nb₃Pb (at 0 GPa) compounds.

a: ID from The Open Quantum Materials Database (OQMD), Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., and Wolverton, C. "Materials Design and Discovery with High-Throughput Density b: https://materials.springer.com/isp/crystallographic/docs/sd_0251819, Dataset ID:sd_0251810, references 4.

The relative total energies calculated in this work of all Nb₃Pb structures listed in the Open Quantum Materials database (OQMD) together with Cmcm-Nb₃Pb can be found in Table S1. The total energy of the Cmcm-Nb₃Pb is set to 0 eV/atom compared to other structures. It can be found that the relative total energy of A15-Nb₃Pb is about 7.6 meV/atom above that of Cmcm-Nb₃Pb, which can imply that Cmcm-Nb₃Pb is more stable than other possible Nb₃Pb compounds at atmospheric pressure

Fig. S1 The illustration of the global structure search of the Nb-Pb system at pressures.

Compounds	Lattice parameters (Å, °)	Atoms	X	У	Z
I4/mmm- NbPb2	a=b=c=5.02476	Nb (2b)	1/2	1/2	0
	α=β=140.9438	Pb (8h)	0.17491	0.17491	0
	γ=56.4231	Pb (8h)	0.82509	0.82509	1
Pmm2- Nb ₅ Pb ₃		Nb (1d)	1/2	1/2	0.73358
		Nb (1b)	0	1/2	0.27888
	a=3.19062	Nb (1a)	0	0	0.50710
	b=4.23137	Nb (1b)	0	1/2	0.22745
	c=8.54208	Nb (1c)	1/2	0	0.26940
	α=β=γ=90.0000	Pb (1c)	1/2	0	0.75581
		Pb (1a)	0	0	0.02315
		Pb (1d)	1/2	1/2	0.47907
I4/mmm-	a=b=c=5.02476	Nb (8h)	0.17491	0.17491	0
	α=β=140.9438	Nb (8h)	0.82509	0.82509	1
Nb_2Pb	γ=56.4231	Pb (2b)	1/2	1/2	0
		Nb (8g)	0.36483	0.63517	3/4
		Nb (8g)	0.63517	0.36483	1/4
Cmcm-Nb ₃ Pb	a=b=5.71134	Nb (8g)	0.84323	0.64219	3/4
	c=4.70318	Nb (8g)	0.64219	0.84323	1/4
	α=γ=90.0000	Nb (8g)	0.35781	0.15677	3/4
	β=114.0557	Nb (8g)	0.15677	0.35781	1/4
		Pb (8g)	0.84954	0.15046	3/4
		Pb (8g)	0.15046	0.84954	1/4
P4/m-Nb9Pb		Nb (1a)	0	0	0
		Nb (4k)	0.11088	0.70148	1/2
		Nb (4j)	0.18234	0.39329	0
	a=b=7.14754 c=3.29985 α=β=γ=90.0000	Nb (4k)	0.29852	0.11088	1/2
		Nb (4j)	0.39329	0.81766	0
		Nb (4j)	0.60671	0.18234	0
		Nb (4k)	0.70148	0.88912	1/2
		Nb (4j)	0.81766	0.60671	0
		Nb (4k)	0.88912	0.29852	1/2
		Pb (1d)	1/2	1/2	1/2

Table S2 The optimized crystal parameters of the Nb-Pb intermetallics (at 0 GPa).

Fig. S2 The Electron Localization Function (ELF) of NbPb₂ (a), Nb₂Pb (b), Nb₃Pb (c), Nb₉Pb (d) and Nb₅Pb₃ (e).

Fig. S3 The energy band structures of Nb-Pb intermetallics with soc and without soc.