ELECTRONIC SUPPLEMENTARY INFORMATION

The E₃ state of FeMoco: one hydride, two hydrides or dihydrogen?

Yunjie Pang^{a,b} and Ragnar Bjornsson^{b,c}*

^aCollege of Chemistry, Beijing Normal University, 100875, Beijing, China.

^bMax-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany. ^cPresent address: Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, F-38054 Grenoble, Cedex, France. E-mail: ragnar.bjornsson@cea.fr

Contents

1. Definitions of QM-regions and additional energetic results	2
2. Results for a CBS ₂₆ -BH ₂₆ -TH ₆ model	4
3. Results for CBS ₂₆ -DH ₆ models	5
4. Additional results of the 2-hyd-CBS class	6
5. Electron configurations of E ₀ and E ₃ states based on localized orbital analysis	9
6. N ₂ binding to the E ₃ state models	12
7. Orientations of protons of protonated S2B and S5A	14
8. Additional information on spin-state and BS-state energies	18
9. Additional results for different functionals	21
10. Additional comparisons for three lowest-energy isomers: dispersion correction a zero-point vibrational energy	and 32
11. The results of the C3H model	34
12. The energies, spin populations of investigated models	35
References	58

1. Definitions of QM-regions and additional energetic results

Figure S1 shows the definitions of the three QM regions used in this study. The QM-A region was used to systematically explore all possible models in three spin states and 35 BS states (per spin state) and also used in optimizations comparing different functionals (B97-D3, r²SCAN, TPSSh, B3LYP*, B3LYP, and TPSS). The QM-B region was utilized to optimize the lowest-energy state for each model (according to the results of the QM-A region). Finally, single-point calculations were carried out using the large QM-C region based on the optimized geometry of the QM-B region.

The QM-cluster model is identical to the QM-A region but instead of an MM environment, the cluster is surrounded by a continuum. The r²SCAN functional was used and the same basis set as in the QM/MM calculations. The CPCM solvation model was used (relevant parameters: $\varepsilon = 4$, refrac: 1.3300; rsolv: 1.3000; surface type: Gaussian vdW; radius for H, C, N, O, S, Fe, and Mo: 1.32, 2.04, 1.86, 1.82, 2.16, 2.40, and 2.40 Å, respectively). During optimizations of the cluster model, His195, homocitrate and Cys275 were kept frozen; this is necessary as the anionic homocitrate is otherwise not well described and spontaneous proton transfer between His442 and homocitrate would occur. All other atoms were allowed to move.

Figure S1. The definitions of QM regions. The number of atoms in the QM-A, QM-B, and QM-C regions are 59, 145, and 191 (link-atoms included), respectively.

There are 27 water molecules within 10 Å of iron ions of α -FeMoco in the crystal structure (PDB: $3U7Q^1$), and most of them located arround the negatively charged homocitrate (see Figure S2a). Figure S2c shows the positions of 10 water molecules in the QM-C region after optimization. Compared to the crystal structure(Figure S2b), two water molecules labelled (2) and (4) have moved 2.21 and 3.7 Å.

Figure S2. Comparison of the water molecules in X-ray structure (a and b) and the QM/MM optimized calculation using the QM-C region. Red balls indicate water molecules. X-ray structure PDB ID: 3U7Q¹.

Figure S3 shows the relative energies of models **e-q** (see Figure 2 in article for definitions) using different QM-region QM/MM calculations. Also shown are the results of the QM-cluster model using a model with the same size as the QM/MM-QM-A region. As shown, the QM/MM calculations, give a consistent trend towards convergence in going from QM-A, QM-B to QM-C region, with some minor deviations for QM-A. The cluster model (despite having the same QM-cluster size as the QM/MM-QM-A calculation) behaves quite different from QM/MM results, due to the lack of protein environment around FeMoco. The QM-cluster model correctly predicts the stability associated with **2hyd-OBS** models (**g-l**) but is not capable of correctly differentiating between the isomers, in particular due to the lack of residues like His195 that interact with e.g. the terminal sulfhydryl group in those isomers. A QM-cluster model that includes surrounding protein residues would be able to incorpate such effects, but this was not further explored in this work.

Figure S3. The relative energies of models (e-q) using the QM-A, QM-B, and QM-C regions from the QM/MM calculations compared to the QM-A-cluster model (r²SCAN functional used). The spin states and BS solutions of each model are the same as used for the data in Figure 2 of the manuscript.

2. Results for a CBS₂₆-BH₂₆-TH₆ model

Figure S4 shows the results of a CBS_{26} - BH_{26} - TH_6 model that were reported to be a little higher than the lowest-energy isomer (3H.2x.26.2bterm) in a study by Dance². He found that there is a small energy difference between $M_S = 1$ and 0. We explored this model in the spin state of $M_S = 0$ (suggested by Dance) using all possible 35 BS solutions and our r²SCAN-based QM/MM protocol. Our results reveal that geometry optimizations of all 35 BS solutions converged to an isomer best described as CBS_{26} - $2TH_6$ i.e. containing two terminal hydrides at Fe6, which was found to be higher than the lowest energy isomer (OBS_6 - DH_2 , see Figure 2k in the manuscript) by 12.3 kcal/mol (r²SCAN is used). We note in this context that a hydride in a partially bridging hydride conformation is only classified as bridging (and drawn as such) if both Fe-H distances were not longer than 2.0 Å.

Figure S4. All states of the **CBS**₂₆-**BH**₂₆-**TH**₆ (a) in $M_S = 0$ and 35 BS solutions were converged to **CBS**₂₆-**2TH**₆ (b) using the QM-A region and r²SCAN. The lowest-energy state of the **CBS**₂₆-**2TH**₆ is 12.3 kcal/mol relative to the lowest model **OBS**₆-**DH**₂ (see Figure 2k in the manuscript).

3. Results for CBS₂₆-DH₆ models

A H₂-bound E_3 model with a closed belt sulfide-bridge, CBS_{26} -DH₆ (see Figure S5) was previously found to be quite favorable in a study by Dance.² Such a model was investigated here in a spin state of $M_s = 0$ (as suggested by Dance) with all possible 35 BS solutions using the QM-A region and r²SCAN. We found that only one BS solution (BS257) resulted in the suggested structure with a H₂ bound, which is 28.3 kcal/mol higher than the OBS₆-DH₂ model (see Figure 2k in the manuscript). For all other BS states, H₂ dissociated (corresponds to falling back to the E_1 redox state).

In contrast, models with an H_2 ligand and an open belt sulfide-bridge (instead of a closed belt sulfide-bridge like here) are stable and low energy structures (see Figure 2 k and l in the manuscript). Our results thus suggest that H_2 -bound FeMoco structures at the E_3 redox level are stabilized by having an open belt sulfide-bridge present.

Figure S5. Results of a model containing a closed protonated belt sulfide-bridge, one H₂ at Fe6 in the spin state of M_s = 0 and 35 BS solutions using the QM-A region and r²SCAN. The energy in blue of (a) is relative to the lowest model **OBS₆-DH₂** (see Figure 2k in the manuscript).

4. Additional results of the 2-hyd-CBS class

The optimized geometries of **CBS**₂₆-**2BH**_{26(5),37}, **CBS**₂₆-**2BH**_{26(3),37}, **CBS**₃₇-**2BH**_{26(5),37}, and **CBS**₃₇-**2BH**_{26(3),37} models are shown in Figure S6 to Figure S9. These four models contain two bridging hydrides between different pairs of iron ions (Fe2/Fe6 and Fe3/Fe7) and a protonated closed belt sulfide-bridge at S2B (between Fe2 and Fe6) or S5A (between Fe3 and Fe7), which are similar to **E**₄-**2CBS**_{26,37}-**2BH**_{26(3),37} and **E**₄-**2CBS**_{26,37}-**2BH**_{26(5),37} models (see Figure 1 in the manuscript) in the **E**₄ state but with one less proton (the charge of FeMoco remains the same). A previous study³ reported that such **E**₄ models are stable, however, most BS states of four **E**₃ models designed from them converged to other models with one or two terminal hydrides, shown in Figure S6 to Figure S9, which is similar to results reported by Ryde and Jiang⁴ (please see models **352** and **552** in that paper).

We found that four converged models **CBS**₃₇-**BH**₃₇-**TH**₂ (Figure S6b), **CBS**₃₇-**2TH**_{6,7} (Figure S6c), **CBS**₂₆-**BH**₂₆-**TH**₃ (Figure S8c), and **CBS**₃₇-**BH**₃₇-**TH**₂ (Figure S9b) are higher than the lowest-energy model (**OBS**₆-**DH**₂, Figure 2k in the manuscript) between 15 and 20 kcal/mol, which are similar to two models (see Figure 2 e and f in the manuscript suggested by Ryde and Cao) in energy and geometry⁵.

According to results of the **CBS**₃₇-**2BH**_{26(3),37} in three spin states ($M_S = 0, 1, \text{ and } 2$) and 35 BS solutions (Figure S6), models with a protonated closed belt-sulfide bridge and 2 bridging hydrides between different pairs of iron ions are unstable and converge to structures with 1 or 2 mostly-terminal hydrides. Energies between three spin states are small for this type of models containing two bridging hydrides between different pairs of iron ions in this study, and Dance found that $M_S = 1$ and 0 are also small for the **E**₃ state in his study². Therefore, we performed optimizations for **CBS**₂₆-**2BH**_{26(5),37}, and **CBS**₃₇-**2BH**_{26(5),37} models with $M_S = 1$ and 35 BS solutions.

Figure S6. Models (a-h) converged from 35 BS solutions and three spin states starting from $CBS_{37}-2BH_{26(3),37}$ (a). The energies calculated using QM-A region and r²SCAN in blue are the lowest-energy one for each model, which are relative to the lowest model OBS_6-DH_2 (see Figure 2k in the manuscript). A hydride is defined as bridging only if both Fe-H distances in Fe-H-Fe are not longer than 2.0 Å.

Figure S7. Models (a-i) converged from 35 BS solutions and the spin state of $M_s = 1$ starting from **CBS**₂₆-**2BH**_{26(3),37} (a). The energies calculated using QM-A region and r²SCAN in blue are the lowest-energy version of each model, which are relative to the lowest model **OBS**₆-**DH**₂ (see Figure 2k in the manuscript). A hydride is defined as bridging only if both Fe-H distances in Fe-H-Fe are not longer than 2.0 Å.

Figure S8. Models (a-g) are converged from optimizations starting from $CBS_{26}-2BH_{26(5),37}$ (a) in the spin state of $M_S = 1$ and 35 BS solutions. The energies calculated using QM-A region and r²SCAN in blue are the lowest-energy version for each model, which are relative to the lowest model **OBS₆-DH**₂ (see Figure 2k in the manuscript). A hydride is defined as bridging only if both Fe-H distances in Fe-H-Fe are not longer than 2.0 Å.

Figure S9. Models (a-f) are the lowest-energy structures found when using the structure in $CBS_{37}-2BH_{26(5),37}$ (a) as starting structure in the spin state of $M_s = 1$ and 35 BS solutions. The energies calculated using QM-A region and

 r^2 SCAN in blue are the lowest-energy version for each model, and their relative energies in blue are relative to the lowest model **OBS₆-DH**₂ (see Figure 2k in the manuscript). A hydride is defined as bridging only if both Fe-H distances in Fe-H-Fe are not longer than 2.0 Å.

The **CBS**₂₆-**BH**₂₆-**TH**₅ suggested by Ryde and co-workers⁵ is also investigated here. However, we obtained some other models (**CBS**₂₆-**2TH**_{5,6} and **CBS**₂₆-**2TH**_{2,5}) with a mostly terminal hydride at Fe2 or Fe6 (see Figure S10).

Figure S10. Models (a-c) are the lowest-energy structures found when using the structure **CBS₂₆-BH₂₆-TH₅** (a) suggested by Ryde and co-workers⁵ as starting structure in three spin states and 35 BS solutions. The energies calculated using QM-A region and r²SCAN in blue are the lowest-energy version for each model, and their relative energies in blue are relative to the lowest model **OBS₆-DH₂** (see Figure 2k in the manuscript). A hydride is defined as bridging version if both Fe-H distances in Fe-H-Fe are not longer than 2.0 Å.

5. Electron configurations of E₀ and E₃ states based on localized orbital analysis

Figure S11 shows the electron configurations as interpreted from a localized orbital analysis of the BS7 class of the E_0 state.

Figure S11. The localized orbital analysis of the BS7 class including BS235, BS247, and BS346 with $M_s = 3/2$ of the E_0 state from our previous paper (r²SCAN used)³. The QM-I and QM-VI regions defined in our previous paper are the same as the QM-A and QM-C regions in the present study, respectively.

The localized orbitals associated with hydrides or H_2 of **OBS₆-DH₂-BS147** ($M_s = 1$), **OBS₆-BH₂₆-TH₂-BS235** ($M_s = 2$), and **OBS₆-2BH₂₆-BS347** ($M_s = 1$) models are shown in Figure S12 to Figure S14.

Figure S12. The localized orbital analysis of **OBS₆-DH₂-BS147** ($M_8 = 1$) using the QM-C region and r²SCAN. Alphaspin electrons are shown in green and beta-spin electrons in purple. Numbers in green and purple indicate the localized orbital populations of alpha and beta electrons, respectively.

Figure S13. The localized orbital analysis of **OBS**₆-**BH**₂₆-**TH**₂-**BS235** ($M_s = 2$) using the QM-C region and r²SCAN. Alpha-spin electrons are shown in green and beta-spin electrons in purple. Numbers in green and purple indicate the localized orbital populations of alpha and beta electrons, respectively.

Figure S14. The localized orbital analysis of **OBS₆-2BH₂₆-BS347** ($M_S = 1$) using the QM-C region and r²SCAN. Alpha-spin electrons are shown in green and beta-spin electrons in purple. Numbers in green and purple indicate the localized orbital populations of alpha and beta electrons, respectively.

6. N₂ binding to the E₃ state models

Figure S15 shows the binding energy of N_2 to either Fe2 or Fe6 site in the **OBS-2BH**₂₆ model of the **E**₃ state, in three spin states and 35 BS solutions using the QM-A region.

Figure S15. The binding energy of N_2 binding to the Fe2 of **OBS₆-2BH₂₆** or Fe6 of **OBS₂-2BH₂₆** in three spin states and 35 BS solutions using the QM-A region and r²SCAN. Binding energies are relative to the lowest-energy model **OBS₆-DH₂** (Figure 2k in the manuscript, r²SCAN used).

The ligand field diagram of N₂ bound states were derived from the combination of localized orbital analysis, diamagnetic substitution, and quasi-restricted orbital analysis.³ The structure in Figure S16a was calculated using the QM-C region, which was analysed by using the localized orbital method indicating that the Fe2 in **OBS₆-2BH₂₆-N₂@Fe2** is low-spin Fe³⁺. The Fe and Mo except Fe2 ions were then diamagnetically substituted by Ga³⁺ and In³⁺, respectively (see Figure S16b). The single-point calculation of the diamagnetic model with an Fe³⁺ (S = 1/2) was carried out and used to obtain quasi-restricted orbitals (shown in Figure S16), which finally was used to make ligand-field diagram. The d_{xz} and d_{yz} orbitals of diamagnetically substituted FeMoco of **OBS₆-2BH₂₆-N₂@Fe2** overlap with π^* orbitals of N₂.

Figure S16. The structures of **OBS₆-2BH₂₆-N₂@Fe2-BS147** ($M_S = 0$) with a full FeMoco (a) and diamagnetically substituted FeMoco (b) using the QM-C region and r²SCAN. Also shown is the ligand-field diagram based on the diamagnetically substituted FeMoco and the quasi-restricted orbitals.

Figure S17. Different orientations of protons of either open or closed protonated belt sulfide-bridges. We use H-togroup to represent the orientation of the proton.

In this study, after optimizations of all states in spin states and 35 BS solutions for each model, the lowest-energy state was next used to explore all possible orientations of protons of either the closed or open protonated belt-sulfide bridges. The lowest-energy orientation was finally utilized in the study for obtaining results with the QM-C region (Results and Discussion section D) and was also used in the functional comparison (Results and Discussion section C).

If there is a terminal SH⁻ on Fe2, the proton has four orientations: H-to-Phe, H-to-hyd, H-to-Val, and H-to-Cys, shown in Figure S17. When the terminal SH⁻ is on Fe6, possible orientations of the proton are H-to-Phe, H-to-homo, H-to-Val, and H-to-hyd. In terms of a closed bridge at S2B (or S5A), proton orientations can be: H-to-Phe and H-to-Val (or H-to-Arg359 and H-to-Arg96).

Table S1. Relative energies of different orientations of the proton of an open bridge in OBS_6-2BH_{26} and OBS_2-2BH_{26} models (kcal/mol). All energies are relative to the lowest-energy model OBS_6-DH_2 (see Figure 2k in the manuscript).

(g) OBS6-2BH26	ΔE (polarized QM energy)	$\Delta E(MM energy)$	$\Delta E(QM/MM)$			
H-to-homo	-0.8	2.2	1.3			
H-to-hyd	-hyd -0.1 1.7					
H-to-Phe	converged to H-to-homo					
H-to-Val	converged to H-to-hyd					
(h) OBS ₂ -2BH ₂₆	ΔE (polarized QM energy)	$\Delta E(MM energy)$	$\Delta E(QM/MM)$			

H-to-Val	11.4	1.9	13.3			
H-to-Cys	12.7	1.4	14.2			
H-to-Phe	converged to H-to-Cys					
H-to-hyd	converged to H-to-Val					

Note: The spin states and BS solutions of **OBS₆-2BH₂₆** and **OBS₂-2BH₂₆** are BS347 ($M_S = 1$) and BS2356 ($M_S = 0$), respectively, which were calculated using QM-A region and r²SCAN.

The lowest-energy orientation of the proton of an open belt-sulfide bridge at Fe2 in **OBS₂-2BH₂₆**, **OBS₂-2BH₂₆-TH₆** and **OBS₂-DH₆** models are H-to-Val, H-to-Cys, and H-to-Cys, respectively, shown in Table S1 to Table S3. If the proton at Fe6 in **OBS₆-2BH₂₆**, **OBS₆-BH₂₆-TH₂**, and **OBS₆-DH₂** models, the lowest-energy orientations are H-to-homo, H-to-hyd, and H-to-homo, respectively, shown in Table S1 to Table S3.

Table S2. Results of different orientations of the proton of an open belt sulfide-bridge in $OBS_2-2BH_{26}-TH_6$ and $OBS_6-BH_{26}-TH_2$ models (kcal/mol). All energies are relative to the lowest-energy model OBS_6-DH_2 (see Figure 2k in the manuscript).

(j) OBS2-BH26-TH6	ΔE (polarized QM energy)	QM energy) $\Delta E(MM energy) \Delta E(QM/MM)$				
H-to-Val	conver	converged to H-to-hyd				
H-to-Cys	9.6	4.0	13.6			
H-to-Phe	14.5	2.7	17.2			
H-to-hyd	10.5	3.5	14.0			
(i) OBS ₆ -BH ₂₆ -TH ₂						
H-to-homo	-0.9	2.1	1.2			
H-to-hyd	-2.2	2.5	0.2			
H-to-Phe	converged to H-to-hyd					
H-to-Val	converged to H-to-hyd					

Note: The spin states and BS solutions of **OBS₂-BH₂₆-TH₆** and **OBS₆-BH₂₆-TH₂** are BS147 ($M_s = 1$) and BS235 ($M_s = 2$), respectively, which were calculated using QM-A region and r²SCAN.

Table S3. Results of different orientations of the proton of an open belt sulfide-bridge in **OBS₂-DH₆** and **OBS₆-DH₂** models (kcal/mol). All energies are relative to the lowest-energy model **OBS₆-DH₂** (see Figure 2k in the manuscript).

(l) OBS₂-DH₆	ΔE (polarized QM energy)	$\Delta E(MM energy)$	$\Delta E(QM/MM)$		
H-to-Val	1.3	6.3	7.6		
H-to-Cys	-0.7	6.4	5.7		
H-to-Phe	3.8	5.3	9.1		
H-to-hyd	conver	·			
(k) OBS ₆ -DH ₂					
H-to-homo	0.0	0.0	0.0		
H-to-hyd	conver				
H-to-Phe	-1.0	1.4	0.4		
H-to-Val	0.4	1.3	1.7		

Note: The spin states and BS solutions of **OBS₂-DH₆** and **OBS₆-DH₂** are BS346 ($M_S = 2$) and BS147 ($M_S = 1$), respectively, which were calculated using QM-A region and r²SCAN.

Table S4 shows the relative energies of two protons on both an open belt sulfide-bridge (S2B) at Fe2 or Fe6 and a closed belt sulfide-bridge (S5A) in different orientations in **CBS₃₇-OBS₂-BH₂₆** and **CBS₃₇-OBS₆-BH₂₆** models. The lowest-energy orientation of **CBS₃₇-OBS₂-BH₂₆** and **CBS₃₇-OBS₆-BH₂₆** models are H_{S2B}-to-Cys-H_{S5A}-to-Arg359 and H_{S2B}-to-homo-H_{S5A}-to-Arg96, respectively.

Table S4. Results of different orientations of the proton of an open and a closed belt sulfide-bridge in CBS₃₇-OBS₂-BH₂₆ and CBS₃₇-OBS₆-BH₂₆ models (kcal/mol). All energies are relative to the lowest-energy model OBS₆-DH₂ (see Figure 2k in the manuscript).

(m) CBS ₃₇ -OBS ₂ -BH ₂₆	ΔE (polarized QM energy)	$\Delta E(MM energy)$	$\Delta E(QM/MM)$			
H _{S2B} -to-Cys-H _{S5A} -to-Arg359	21.9	2.8	24.7			
H _{S2B} -to-hyd-H _{S5A} -to-Arg359	27.1	0.0	27.1			
H _{S2B} -to-Phe-H _{S5A} -to-Arg359	converged to Hs2	2B-to-hyd-H _{S5A} -to-Arg	359			
H _{S2B} -to-Val-H _{S5A} -to-Arg359	converged to H _{S2B} -to-Cys-H _{S5A} -to-Arg359					
H _{S2B} -to-Cys-H _{S5A} -to-Arg96	20.5 4.4 25					
H _{S2B} -to-hyd-H _{S5A} -to-Arg96	22.0	5.3	27.3			
H _{S2B} -to-Phe-H _{S5A} -to-Arg96	converged to H_{S2B} -to-hyd- H_{S5A} -to-Arg96					
H _{S2B} -to-Val-H _{S5A} -to-Arg96	converged to H _{S2B} -to-Cys-H _{S5A} -to-Arg96					
(n) CBS37-OBS6-BH26						
H _{S2B} -to-homo-H _{S5A} -to-Arg359	7.5	5.8	13.4			
H _{S2B} -to-hyd-H _{S5A} -to-Arg359	7.9	5.7	13.5			
H _{S2B} -to-Phe-H _{S5A} -to-Arg359	converged to H _{S2}	2B-to-hyd-H _{S5A} -to-Arg	g359			
H _{S2B} -to-Val-H _{S5A} -to-Arg359	converged to Hs2	2B-to-hyd-H _{S5A} -to-Arg	g359			
H _{S2B} -to-homo-H _{S5A} -to-Arg96	6.9	6.1	13.1			
H _{S2B} -to-hyd-H _{S5A} -to-Arg96	7.3	6.0	13.2			
H _{S2B} -to-Phe-H _{S5A} -to-Arg96	converged to H _{S2B} -to-hyd-H _{S5A} -to-Arg96					
H _{S2B} -to-Val-H _{S5A} -to-Arg96	converged to H _{\$28} -to-hvd-H _{\$54} -to-Arg96					

Note: The spin states and BS solutions of CBS₃₇-OBS₂-BH₂₆ and CBS₃₇-OBS₆-BH₂₆ are BS147 ($M_S = 1$) and BS247 ($M_S = 2$), respectively, which were calculated using QM-A region and r²SCAN.

The relative energies of two protons on both closed hydrogenated S2B (between Fe2 and Fe6) and S5A (between Fe3 and Fe7) in **2CBS_{26,37}-BH₂₆₍₅₎**, **2CBS_{26,37}-BH₂₆₍₃₎**, and **2CBS_{26,37}-BH₃₇** models are shown in Table S5 to Table S7. The lowest-energy orientations of these three models are H_{S2B}-to-Phe-H_{S5A}-to-Arg359, H_{S2B}-to-Val-H_{S5A}-to-Arg359, and H_{S2B}-to-Phe-H_{S5A}-to-Arg359, respectively.

Because the energies of CBS₂₆-2BH_{26(5),37}, CBS₂₆-2BH_{26(3),37}, CBS₃₇-2BH_{26(5),37}, and CBS₃₇-2BH_{26(3),37} models are much higher than the lowest model OBS₆-DH₂ (see Figure 2k in the manuscript), we did not investigate the orientations of protons at a closed belt sulfide-bridge (S2B or S5A). Different orientations of protons at the closed belt sulfide-bridge (S2B) of models CBS₂₆-BH₂₆-TH₅, CBS₂₆-2TH_{4,5} and C3H have been investigated in the previous paper⁵.

Table S5. Results of different orientations of the proton of two closed belt sulfide-bridges in $2CBS_{26,37}$ -BH₂₆₍₅₎ models (kcal/mol). All energies are relative to the lowest-energy model OBS₆-DH₂ (see Figure 2k in the manuscript).

(0) 2CBS26,37-BH26(5)	ΔE (polarized QM energy)	$\Delta E(MM energy)$	$\Delta E(QM/MM)$	
H _{S2B} -to-Phe-H _{S5A} -to-Arg359	16.3	4.0	20.3	

H _{S2B} -to-Phe-H _{S5A} -to-Arg96	16.4	4.6	21.0
H _{S2B} -to-Val-H _{S5A} -to-Arg359	21.6	3.2	24.8
H _{S2B} -to-Val-H _{S5A} -to-Arg96	21.7	3.8	25.5

Note: The spin state and BS solution of $2CBS_{26,37}$ -BH₂₆₍₅₎ are BS14 and M_S = 2, respectively (using QM-A region and r²SCAN).

Table S6. Results of different orientations of the proton of two closed sulfide-bridges in $2CBS_{26,37}$ -BH₂₆₍₃₎ models (kcal/mol). All energies are relative to the lowest-energy model OBS₆-DH₂ (see Figure 2k in the manuscript).

(p) 2CBS _{26,37} -BH ₂₆₍₃₎	ΔE (polarized QM energy)	$\Delta E(MM energy)$	$\Delta E(QM/MM)$
H _{S2B} -to-Phe-H _{S5A} -to-Arg359	9.9	11.5	21.4
H _{S2B} -to-Phe-H _{S5A} -to-Arg96	11.9	10.1	22.0
H _{S2B} -to-Val-H _{S5A} -to-Arg359	8.6	9.9	18.4
H _{S2B} -to-Val-H _{S5A} -to-Arg96	9.5	9.8	19.3

Note: The spin state and BS solution of $2CBS_{26,37}$ -BH₂₆₍₃₎ are BS14 and M_S = 2, respectively (using QM-A region and r²SCAN).

Table S7. Results of different orientations of the proton of two closed sulfide-bridges in **2CBS**_{26,37}-**BH**₃₇ models (kcal/mol). All energies are relative to the lowest-energy model **OBS**₆-**DH**₂ (see Figure 2k in the manuscript).

(q) 2CBS _{26,37} -BH ₃₇	ΔE (polarized QM energy)	$\Delta E(MM energy)$	$\Delta E(QM/MM)$
H _{S2B} -to-Phe-H _{S5A} -to-Arg359	3.6	6.8	10.5
H _{S2B} -to-Phe-H _{S5A} -to-Arg96	6.6	8.2	14.8
H _{S2B} -to-Val-H _{S5A} -to-Arg359	8.8	6.8	15.6
H _{S2B} -to-Val-H _{S5A} -to-Arg96	5.6	5.5	11.1

Note: The spin state and BS solution of $2CBS_{26,37}$ -BH₃₇ are BS346 and M_S = 2, respectively (using QM-A region and r²SCAN).

8. Additional information on spin-state and BS-state energies

Figure S18 shows the energy difference between the three spin states for E_3 isomers e to q (see Figure 2), and the lowest energy BS state for each M_s state is plotted. The difference between different spin states for each isomer can be fairly large, especially for isomers k and l.

Figure S18. The spin-state energies for isomers e-q according to QM/MM calculations using QM-region A and r²SCAN. The lowest-energy BS-state for each spin-state is used. The BS solutions of e-q models were shown in section 12.

For every spin-state of each isomer we systematically attempted spin-flipping of 3 Fe ions to find 35 different brokensymmetry states. Some calculations converged, however, to states with either 2 or 4 spin-down Fe ions. A state with only 2 spin-down Fe ions represents an alternative BS state that is typically not included in the BS-state problem of FeMoco, as such a state should generally be high in energy due to a lack of pairwise antiferromagnetic interactions (antiferromagnetic coupling is highly stabilizing). A BS-state with 4 spin-down Fe ions instead, however, should typically represent a mirror image of a BS-state with 3 spin-down Fe ions as whether a local-spin is spin-up or spin-down is arbitrary. This is complicated by the fact, however, that FeMoco is a mixed-valent system and the minority-spin electrons (typically between pairs of Fe ions) can delocalize in multiple ways or localize on different Fe ions. This means that there are actually even more SCF states and the "mirror-image states" do not have to have the same energy.

As an example: The BS2567 state was found when attempting to find BS256 for the **2CBS**_{26,37}-**BH**₂₆₍₅₎ ($M_s = 0$) isomer. BS2567 and BS134 should be mirror-images, and as shown in Table S8, they have identical energies and Mulliken spin populations.

	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS2567	19.3	22.1	1.28	3.32	-3.17	3.02	3.17	-3.01	-2.14	-2.81
BS134	19.0	22.1	-1.29	-3.32	3.17	-3.01	-3.18	3.01	2.16	2.82

Table S8. The Mulliken spin populations of BS2567 and BS134 of $2CBS_{26,37}$ -BH₂₆₍₅₎ with $M_S = 0$.

Note: The results in this table were calculated using QM-A region and r^2 SCAN.

However, for the case of BS2567 and BS134 solutions for isomer $OBS_2-2BH_{26}-N_2@Fe6-M_s=1$ (Figure S15), shown in Table S9, they have considerably different energies and Mulliken spin populations, suggesting that while the basic spin topology is the same, the states likely differ with respect to localization/delocalization degree of the minority-spin electrons.

	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS2567	20.5	19.4	-0.96	-2.83	3.24	-1.87	-2.91	3.12	0.83	3.02
BS134	10.3	10.7	0.82	3.29	-3.03	3.22	3.16	-2.77	-0.58	-2.56

Table S9. The Mulliken spin populations of BS2567 and BS134 of $OBS_2-2BH_{26}-N_2@Fe6$ with $M_S = 1$.

Note: The results in this table were calculated using QM-A region and r²SCAN.

The 35 different BS solutions can be grouped into 10 BS classes according to analysis made popular by Noodleman. In order to understand the general stability of different BS solutions of the E_3 isomers we have grouped the 3 lowest energy BS solutions for each isomer and spin-state into which of the 10 BS classes it belongs to as shown in Table S10. We note that for the cases where the spin-flipping resulted in low-energy BS states with 4 spin-down Fe ions was, the state was grouped according to its mirror image BS if their energy difference was small, for example, if BS2356 and BS147 have a very small energy difference (< 0.5 kcal/mol) or even the same, the BS2356 was grouped into BS10 (as its mirror-image BS147). However, for the case of where BS2356 and BS147 had larger energy difference (and different electronic structure) we labelled it as BS2356 in the table.

The results in Table S8 overall reveal that the most stable BS states for E_3 isomers belong to the BS7, BS8 and BS10 class (and to a lesser extent BS6 and BS9).

Table S10. The classification of the three lowest-energy BS states (lower than 5 kcal/mol) of each spin state and each isomer into the 10 common BS classes and selected unusual BS states.

		$\Delta E_{max}{}^a$	BS1	BS2	BS3	BS4	BS5	BS6	BS7	BS8	BS9	BS10	BS2356	BS3456	BS13	BS14
a: CBS26-2BH26(5),37	(Ms = 1)	0.8 ^b														
b: CBS26-2BH26(3),37	(M _s = 1)	4.9									¢ C					
c: CBS ₃₇ -2BH _{26(5),37}	(Ms = 1)	3.9														
d: CBS37-2BH26(3),37	(Ms = 1)	2.5														
	(Ms = 2)	1.6														
e: CBS26-BH26-TH5	(Ms = 1)	4.0														
	(Ms = 0)	3.4														
	(M _s = 2)	3.0														
f: CBS ₂₆ -2TH _{4,5}	(Ms = 1)	2.4														
	$(M_{\rm S} = 0)$	2.1														
	(M _s = 2)	1.4														
g: OBS6-2BH26	(Ms = 1)	3.0														
	(M _s = 0)	3.3														
	(Ms = 2)	3.0														
h: OBS2-2BH26	(Ms = 1)	1.3														
	(Ms = 0)	1.3														
	(Ms = 2)	4.3														
i: OBS6-BH26-TH2	(Ms = 1)	0.5														
	(Ms = 0)	2.8														

	(Ms = 2)	2.6							
j: OBS2-BH26-TH6	(Ms = 1)	1.3							
	(M _S = 0)	0.9							
	(Ms = 2)	0.5							
k: OBS6-DH2	(Ms = 1)	1.6							
	(Ms = 0)	0.4							
	(Ms = 2)	0 ^d							
l: OBS2-DH6	(Ms = 1)	2.6							
	(Ms = 0)	0.6							
	(Ms = 2)	0.9							
m: CBS37-OBS2-BH26	(Ms = 1)	2.0							
	(Ms = 0)	1.0							
	(Ms = 2)	0.6							
n: CBS ₃₇ -OBS ₆ -BH ₂₆	(M _S = 1)	0.2							
	(Ms = 0)	0.5							
	(Ms = 2)	1.6							
0: 2CBS26,37-BH26(5)	(M _S = 1)	0.1							
	(Ms = 0)	2.8							
	(Ms = 2)	3.8							
p: 2CBS26,37-BH26(3)	(M _S = 1)	0.4							
	(Ms = 0)	2.2							
	(Ms = 2)	0.5							
q: 2CBS26,37-BH37	(Ms = 1)	1.4							
	(M _S = 0)	2.8							
OBS2-2BH26-N2@Fe6e	(M _S = 0)	0.1							
OBS6-2BH26-N2@Fe2e	(Ms = 0)	2.5							

^aThe maximum energy difference between three selected BS states. ^bOnly two states converged to the initial input structure (what we designed). ^cTwo states belongs to the same BS class. ^dThere is only one BS solution, because the second lowest-energy state is higher than the first lowest-energy state by 7.4 kcal/mol. ^eThe three lowest-energy states for **OBS₂-2BH₂₆-N₂@Fe6** and **OBS₆-2BH₂₆-N₂@Fe2** are all $M_S = 0$, so only the $M_S = 0$ BS states are included. All results in this table were calculated using QM-A region and r²SCAN.

9. Additional results for different functionals

Relative energies with different functionals

Figure S19 shows additional results related to the functional dependency presented in section C of the manuscript. TPSSh, B97-D3, and r^2 SCAN give very similar trend for all isomers, and **g**, **i**, and **k** are found to be three lowest energy isomers.

B3LYP*, B3LYP, and TPSS give results quite different from the other three functionals. The **g** and **i** isomers are also lower-energy isomers when using TPSS; however, the **k** isomer is higher than **g** and **i** by about 8 kcal/mol and also less stable than **f**. B3LYP* favors **r** containing a triply protonated carbide ion, which is a little lower than **g**, **i**, and **k** isomers. The energy difference between **g**, **i**, and **k** isomers when using B3LYP* is larger than TPSSh, B97-D3, and r²SCAN, and **k** with H₂ bound to Fe2 is more stable than **g** and **i**. B3LYP has a similar trend to B3LYP* but the energy difference between **r** and other isomers is much larger than B3LYP*. As dicussed in previous studies⁶ from our group TPSSh, B97-D3, B3LYP* and r²SCAN are known to describe Fe-Fe/Mo-Fe distances of spin-coupled sulfidebridged Fe-Fe/Mo-Fe dimers as well as FeMoco very similarly and better than both most regular GGA/meta-GGA functionals (like TPSS) and also common hybrid functionals (like B3LYP). However, B3LYP* gives here a very different trend from TPSSh, B97-D3, and r²SCAN for the energetics of the **E**₃ state. TPSS was previously shown to systematically underestimate Fe-Fe/Mo-Fe distances and this was found to correlate with a tendency to overestimate covalency in the bridging Fe-S bonds⁶.

The B3LYP and B3LYP* functionals favor the C3H E_3 model (r), however, there is no experimental evidence that suggests reduced FeMoco states with a protonated carbide are ever formed. According to recent ¹³C ENDOR measurements of multiple trapped FeMoco states, the carbide hyperfine coupling is practically unchanged, suggesting an unchanged carbide environment.

In a recent study, both TPSSh and B3LYP were found to favor the **C3H** isomer⁴, but in this work we find that **C3H** is higher than isomer **k** by 25.1 kcal/mol (0.9 kcal/mol in that study⁴) when using TPSSh. The reason for this difference is most likely the basis set, we have in this work consistely used an all-electron scalar relativistic treatment with a large ZORA-def2-TZVP on the cofactor while a much smaller basis, def2-SV(P) basis set was utilized in the previous study without scalar relativistic effects included⁴. The spin state and BS solution of this model used in the previous study are $M_S = 1$ and BS136⁴. We explored this model in three spin states and 6 BS solutions belonging to BS10 class, and found that the lowest-energy isomer has $M_S = 1$ and BS146, slightly lower than BS136 by 0.6 kcal/mol.

Finally, we note that the covalency of Fe-H bonds and the ability of DFT protocols to describe such bonds is an underexplored area and few studies have been dedicated to this topic. This is likely highly relevant in this context of E_3 isomers.

Figure S19. The comparison for isomers **a-r** between different functionals. The **c** isomer is missing for the TPSS functional, because three BS states of this isomer converge to other isomers with one terminal hydride on Fe2 (the distance of Fe2-hydride is longer than 2 Å), shown in Table S14 and Figure S9. The information about spin states and BS solutions of each model have been shown in Tables S12 to S28 of the SI.

Electronic structure analysis with different functionals

Figure S20 to Figure S25 shows electron configurations derived from localized orbital analysis as well as selected geometric parameters of each isomer \mathbf{g} , \mathbf{I} and \mathbf{k} with TPSSh, B97-D3, r²SCAN, B3LYP*, and TPSS used in this study.

For the **g** (**OBS**₆-**2BH**₂₆) isomer (Figure S20), the common theme is that there are four electrons associated with the two bridging hydrides, but the difference is the degree of delocalization of these electrons to either Fe2 or Fe6. The r^2 SCAN and B3LYP* give similar electronic structures, two bridging hydrides share four electrons with Fe2, which is associated with shorter Fe2-hydride distances than Fe6-hydride (see Figure S21), and one electron has transferred from the Fe₄ sub-cubane to the hydrides compared to the **E**₀ state (see Figure S11). In contrast, there are four electrons delocalized between hydrides and Fe6 for TPSSh, which is correlated with shorter Fe6-hydride distances than Fe2-hydride distances, and one electron has transferred from the MoFe₃-cubane to the hydrides. Interestingly, TPSS and B97-D3 give a trend in-between r^2 SCAN, B3LYP* and TPSSh, those four electrons are shared with both Fe2 and Fe6, correlating with similar distances between hydrides and Fe2/Fe6, but one electron has transferred from MoFe₃ subcubane to hydrides and Fe6 share one electron. We also note that part of the trends seen may be related to different BS solutions preferred by different functionals.

Figure S20. The comparison of electronic configurations for isomer **g** between different functionals. The green and purple numbers are localized orbital populations. The configurations of r^2 SCAN and other functionals were calculated using the QM-C and QM-A regions, respectively. Our previous paper show that the geometric and electronic structure differences between the QM-A and QM-C region are minor³.

Figure S21. The comparison of key distances for isomers \mathbf{g} with different functionals. The geometries of r²SCAN and other functionals were calculated using the QM-C and QM-A regions, respectively. Our previous paper show that the geometric and electronic structure differences between the QM-A and QM-C region are minor³.

For isomer **i** (**OBS**₆-**BH**₂₆-**TH**₂), the molecular and electronic structure is overall quite similar for the five functionals in that the terminal hydride has 2 electrons associated with it (shared to different extent between H and Fe2), and the bridging hydride shares electrons with both Fe2 and Fe6, and the distances of Fe2/Fe6-hydrides are similar with differences, as shown in Figure S22 and Figure S23. There are some differences, however, associated with Fe2 vs Fe6 vs. H contribution to the bridging hydride and TPSS differs in that an electron from the MoFe₃ sub-cubane is donated to the hydrides while for the other functionals an Fe₄ sub-cubane electron has been donated. Also B3LYP* prefers localizing the minority-spin electrons while the others show more mixed-valence delocalization.

Figure S22. The comparison of electronic configurations for isomer **i** between different functionals. The green and purple numbers are localized orbital populations. The configurations of r^2 SCAN and other functionals were calculated using the QM-C and QM-A regions, respectively. Our previous paper show that the geometric and electronic structure differences between QM-A and QM-C regions are minor³.

Figure S23. The comparison of key distances for isomers **i** with different functionals. The geometries of r^2 SCAN and other functionals were calculated using the QM-C and QM-A regions, respectively. Our previous paper show that the geometric and electronic structure differences between the QM-A and QM-C region are minor³.

The five functionals give similar electronic configurations for isomer k (OBS₆-DH₂) (see Figure S24) according to localized orbital analysis. Two electrons can be found in the dihydrogen ligand bound to Fe2, and 1 additional electron is located in the Fe₄ sub-cubane compared to the E_0 state (see Figure S11). The distances of Fe2-Fe6 are overall similar (see Figure S25), but the H-H bond lengths with B97-D3 and TPSS functionals are longer than with the other functionals. This correlates with shorter Fe2-H₂ distances for B97-D3 and TPSS compared to the other functionals, implying that the dihydrogen ligand is more activated in B97-D3 and TPSS calculations. The H-H bond of free H₂ is almost the same for five functionals (see Table S11), suggesting that the differences arise from the Fe-H₂ interaction.

Figure S24. The comparison of electronic configurations for isomer **k** with different functionals. The green and purple numbers are localized orbital populations. The configurations of r^2 SCAN and other functionals were calculated using the QM-C and QM-A regions, respectively. Our previous paper show that generally the geometric and electronic structure differences between the QM-A and QM-C regions are relatively minor³.

Figure S25. The comparison of key distances for isomer **k** with different functionals. The r^2 SCAN geometry was calculated using the QM-C region while the other functionals were calculated using the QM-A region. Our previous paper show that the geometric and electronic structure differences between the QM-A and QM-C region are minor³.

Table S11. The H-H bond of free H_2 calculated using different functionals in vacuum (same basis sets as H_2 in OBS₆-DH₂: ZORA-def2-TZVP).

	B3LYP*	TPSSh	B97-D3	r ² SCAN	TPSS
The H-H Bonds of free H ₂	0.75 Å	0.74 Å	0.75 Å	0.74 Å	0.74 Å

Table S12 to Table S28 show relative polarized QM and QM/MM energies for all 6 functionals using QM-region A and the BS solutions calculated. All energies are relative to isomer \mathbf{k} (Figure 2k) for each functional.

Table S12. The relative polarized QM and QM/MM energies between five functionals for $CBS_{26}-2BH_{26(5),37}$ (kcal/mol).

a: CBS ₂₆ -2BH _{26(5),37}	F	B3LYP*		TPSSh	1	B97-D3	I	² SCAN		TPSS	B	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
BS245 $(M_s = 1)$	46.3	47.0	37.8	36.8	-	-	36.4	39.0	31.9	30.4	67.4	68.1
BS145 (M _s = 1)	46.2	44.9	37.6	35.8	38.7	37.5	37.8	39.8	34.9	34.8	68.4	66.5

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S13. The relative polarized QM and QM/MM energies between five functionals for $CBS_{26}-2BH_{26(3),37}$ (kcal/mol).

b: CBS ₂₆ -2BH _{26(3),37}	В	3LYP*	1	ГРSSh	E	897-D3	r	2SCAN		TPSS	I	B3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS137 (M_S = 1)$	-	-	24.9	30.5	-	-	24.4	34.3	17.6	23.9	-	-
$BS145 (M_S = 1)$	-	-	27.1	32.1	27.8	33.9	28.3	37.8	24.0	30.2	-	-
$BS245 (M_S = 1)$	38.9	47.1	24.9	30.5	-	-	29.2	39.3	20.1	27.2	57.1	65.3

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S14. The relative polarized QM and QM/MM energies between five functionals for CBS_{37} - $2BH_{26(5),37}$ (kcal/mol).

c: CBS ₃₇ -2BH _{26(5),37}	В	3LYP*]]	ſPSSh	B	897-D3	r	2SCAN		TPSS	B	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
BS345 (M _s = 1)	43.8	40.1	36.3	30.6	-	-	35.0	32.8	-	-	64.3	60.4
$BS126 (M_S = 1)$	-	-	36.9	32.0	-	-	36.6	35.0	-	-	-	-
BS157 (M _s = 1)	46.1	43.1	38.3	33.1	37.1	33.4	38.1	36.7	-	-	66.2	62.9

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S15. The relative polarized QM and QM/MM energies between five functionals for CBS_{37} - $2BH_{26(3),37}$ (kcal/mol).

d: CBS ₃₇ -2BH _{26(3),37}	B3L	YP*	1	ſPSSh	I	397-D3	r	2SCAN		TPSS	E	33LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
BS345 (M _s = 1)	40.5	43.3	28.1	28.8	26.3	28.4	26.8	31.4	-	-	-	-
$BS126 (M_S = 1)$	44.0	47.8	28.3	30.9	-	-	28.0	33.9	-	-	-	-

$BS135 (M_S = 1)$	36.6	40.1	28.8	30.3	26.2	29.2	27.2	32.4	23.7	25.5ª	58.9	62.2
-------------------	------	------	------	------	------	------	------	------	------	-------	------	------

^a This state converged to BS15.

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S16. The relative polarized QM and QM/MM energies between five functionals for $CBS_{26}-BH_{26}-TH_5$ (kcal/mol).

e: CBS ₂₆ -BH ₂₆ -TH ₅	B3L	YP*	1	ſPSSh	E	897-D3	r	2SCAN		TPSS	B	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
BS13 ($M_{\rm S} = 2$)	32.0	31.4	17.2	14.8	16.6	14.8	16.8	17.8	13.7	11.2	56.5	55.5
$BS236 (M_S = 2)$	23.7	21.7	16.5	12.8	18.3	15.5	16.4	16.2	17.2	13.8	46.1	43.6
$BS126 (M_S = 2)$	27.4	25.9	18.4	15.6	17.5	15.7	16.9	17.8	15.9	13.1ª	51.4	48.7
BS236 (M _s = 1)	25.7	25.7	18.8	16.8	22.2	21.1	16.6	18.4	21.1	17.5	40.7	40.6
$BS2356 (M_S = 0)$	32.7	29.9	21.2	16.6	22.7	18.9	19.9	18.8	21.5	17.8	51.9	49.0

^a This state converged to BS12. Numbers in blue indicate the lowest one between states.

Table S17. The relative	polarized OM and	OM/MM energies	between five func	ctionals for CBS ₇	6-2TH ₄ 5 (kcal/mol).
		C			0 = = ====,3 (=== =======================

f: CBS ₂₆ -2TH _{4,5}	B3I	LYP*]	ſPSSh	E	897-D3	r	2SCAN		TPSS	E	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS346 (M_S = 2)$	20.9	26.0	10.0	13.4	10.1	13.9	10.1	16.6	6.5	9.6	41.2	45.8
$BS345 (M_S = 2)$	20.2	25.2	10.8	14.0	12.5	16.3	8.9	15.4	10.9	13.6	40.6	44.7
$BS234 (M_S = 1)$	18.3	25.3	8.1	13.2	5.9	11.0	7.8	15.7	2.5	6.8	43.5	48.3
$BS167 (M_s = 1)$	18.8	25.9	8.3	13.8	7.6	13.3	7.1	15.6	4.5	7.5ª	40.1	46.5
BS236 ($M_s = 1$)	19.7	25.1	13.1	16.9	13.5	17.8	11.3	18.0	10.1	12.7	43.8	48.0

^a This state converged to BS17. Numbers in blue indicate the lowest one between states.

Table S18. The relative polarized QM and QM/MM energies between five functionals for **OBS₆-2BH₂₆** (kcal/mol).

g: OBS ₆ -2BH ₂₆	B3I	LYP*]	ſPSSh	ŀ	397-D3	r	² SCAN		TPSS	В	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS345 (M_s = 1)$	11.9	12.6ª	5.1	4.2	2.7	1.9	1.2	1.9	5.1	5.1	-	-
$BS347 (M_s = 1)$	11.9	12.6	4.0	3.7	1.4	1.0	0.3	1.3	4.6	4.5	30.7	30.8
BS2356 ($M_{\rm S} = 0$)	11.9	13.0	0.0	0.0	0.0	0.0	0.1	1.6	0.0	0.0	34.2	34.5
BS2467 ($M_{\rm S} = 0$)	13.2	14.2	1.3	1.4	0.5	0.9	1.0	2.8	0.4	0.8	39.2	35.8
$BS147 (M_s = 0)$	11.9	13.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	38.7	34.3

^a This state converged to BS347. Numbers in blue indicate the lowest one between states.

Table S19. The relative polarized QM and QM/MM energies between five functionals for **OBS₂-2BH₂₆** (kcal/mol).

h: OBS ₂ -2BH ₂₆	B3	LYP*]]	ſPSSh	E	897-D3	r	2SCAN		TPSS	B	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
BS147 ($M_s = 1$)	20.5	22.3	12.8	12.7	13.6	15.0	10.5	14.2	15.8	15.7	47.7	44.6

$BS2356 (M_S = 0)$	21.0	22.1	12.6	11.5	12.0	12.6	11.4	13.3	12.5	12.2	50.2	45.9
$BS2467 (M_S = 0)$	20.2	22.6	12.4	12.3	11.2	12.9	10.7	14.1	11.9	12.2	49.4	45.9
BS135 ($M_{\rm S} = 0$)	20.2	22.6	12.4	12.3	11.3	13.0	10.8	14.2	11.8	12.2	49.4	45.9
$BS147 (M_s = 0)$	21.7	22.7	13.5	12.2	12.5	13.1	12.5	14.2	13.3	13.0	49.7	45.6

Table S20. The relative polarized QM and QM/MM energies between five functionals for $OBS_6-BH_{26}-TH_2$ (kcal/mol).

i: OBS ₆ -BH ₂₆ -TH ₂	B3I	LYP*		ſPSSh	I	897-D3	r	2SCAN		TPSS	E	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
BS235 ($M_{\rm S} = 2$)	10.4	11.1	2.8	2.2	1.5	1.1	-2.2	0.2	3.7	3.6	28.5	29.7
$BS247 (M_S = 2)$	9.3	11.5	1.9	2.9	0.3	1.1	-1.9	1.7	2.8	3.5	28.7	30.1
$BS156 (M_S = 1)$	13.2	15.7	3.4	4.3	1.0	1.7	0.0	2.5	2.0	2.3	35.5	38.2
$BS157 (M_s = 1)$	13.0	15.1	3.7	4.1	1.4	1.7	0.2	2.5	3.7	4.2	39.6	41.2
BS346 (M _s = 1)	12.5	12.7	5.5	4.3	2.1	1.2	1.3	2.2	6.9	5.6	30.5	31.0
BS147 ($M_s = 1$)	9.6	10.6	4.1	3.9	3.0	2.5	0.5	2.0	8.5	8.2	26.8	27.3

Numbers in blue indicate the lowest one between states.

Table S21. The relative polarized QM and QM/MM energies between five functionals for OBS_2 - BH_{26} - TH_6 (kcal/mol).

j: OBS ₂ -BH ₂₆ -TH ₆	B3L	AAA	1	FPSSh	F	897-D3	r	2SCAN		TPSS	E	33LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS235 (M_S = 1)$	20.3	23.7	14.1	15.2	8.8	10.3	11.8	14.9	11.7	11.5	42.4	45.0
$BS247 (M_S = 1)$	20.9	23.6	15.2	15.2	11.2	12.4	12.6	14.9	13.3	13.1	45.0	47.2
$BS347 (M_S = 1)$	23.0	26.8	15.0	16.2	10.8	13.6	10.5	14.2	-	-	-	-
$BS147 (M_s = 1)$	19.0	22.0	14.5	14.7	13.2	14.7	9.6	13.6	18.3	18.3	42.3	44.8
BS2356 ($M_{\rm S} = 0$)	23.9	25.4	14.6	14.2	14.0	15.2	12.8	15.4	-	-	44.2	45.3

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S22. The relative polarized QM and QM/MM energies between five functionals for OBS₆-DH₂ (kcal/mol).

k: OBS ₆ -DH ₂	B3	LYP*	, , , , , , , , , , , , , , , , , , ,	FPSSh	I	397-D3	r	² SCAN		TPSS	E	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
BS235 ($M_{\rm S} = 2$)	9.8	9.2	4.5	2.1	3.9	2.1	1.2	1.8	-	-	24.9	24.1
BS236 ($M_s = 2$)	7.8	7.0	3.6	1.8	6.2	4.8	1.1	2.0	15.5	13.6	21.4	19.8
BS346 ($M_s = 1$)	9.5	8.5	4.4	2.1	2.5	0.7	0.8	1.6	10.5	8.4	24.9	23.3
BS135 ($M_s = 1$)	5.5	4.5	5.3	2.4	4.4	2.2	1.2	1.2	14.6	12.4	23.7	21.8
BS147 (M _s = 1)	8.5	6.6	4.2	1.1	4.1	1.5	0	0.0	14.1	11.2	22.9	20.6

Note: The '-' in the table means that this state converged to another isomer; in this case, H_2 dissociates from the Fe. Numbers in blue indicate the lowest one between states.

Table S23. The relative polarized QM and QM/MM energies between five functionals for **OBS₂-DH₆** (kcal/mol).

l: OBS ₂ -DH ₆	В	3LYP*]	ſPSSh	B	897-D3	r	2SCAN		TPSS	E	33LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS346 (M_S = 2)$	-	-	-	-	1.2	5.0	-0.7	5.7	8.7	11.2	-	-
$BS236 (M_S = 2)$	9.9	15.5	-	-	11.9	15.1	7.2	13.1	20.1	21.6	-	-
$BS235 (M_S = 1)$	-	-	-	-	7.5	10.3	9.3	12.1	10.7	12.0	-	-
BS347 ($M_s = 1$)	-	-	-	-	9.8	13.0	6.0	9.5	17.2	19.3	-	-
$BS127 (M_S = 0)$	21.2	24.3ª	12.9	14.4	10.4	12.5	10.1	14.2	16.2	17.0	41.2	38.5
BS147 ($M_{\rm S} = 0$)	20.2	23.9	12.3	14.1	12.0	14.2	8.5	13.7	16.7	17.8	-	-

^aThis state converged to BS1267.

Note: The '-' in the table means that this state converged to another minimum; in this case, H_2 dissociates from the Fe. Numbers in blue indicate the lowest one between states.

Table S24. The relative polarized QM and QM/MM energies between five functionals for CBS₃₇-OBS₂-BH₂₆ (kcal/mol).

m: CBS ₃₇ -OBS ₂ -BH ₂₆	B3L	YP*]]	[PSSh]	B	897-D3	r	2SCAN		TPSS	B	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS235 (M_S = 2)$	27.6	27.5	22.3	22.8	25.7	27.4	22.7	26.7	-	-	44.1	44.6
BS247 ($M_s = 2$)	30.2	31.7	23.9	23.1	26.0	25.6	23.3	25.9	31.4	29.4	44.2	46.8
BS347 ($M_S = 1$)	28.3	30.7	24.4	25.1	22.9	23.5	22.4	25.9	27.3	25.7ª	46.7	50.0
BS125 (M _S = 1)	35.3	34.7	24.9	26.5	26.0	27.8	21.9	26.7	34.7	35.0	50.1	50.2
BS147 (M _s = 1)	26.1	28.0	21.2	21.6	23.9	23.6	21.9	24.7	-	-	43.6	46.1

^a This state converged to BS3467.

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S25. The relative polarized QM and QM/MM energies between five functionals for CBS_{37} - OBS_6 - BH_{26} (kcal/mol).

n: CBS ₃₇ -OBS ₆ -BH ₂₆	B3I	LYP*	1	ſPSSh	E	897-D3	r	2SCAN		TPSS	B	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS247 (M_S = 2)$	13.9	17.3	8.1	11.1	8.3	11.1	6.9	13.1	13.2	16.2	25.9	26.2
$BS237 (M_S = 2)$	16.6	20.1	12.1	15.0	13.5	15.1	9.0	14.0	19.6	21.5	29.4	28.4
$BS347 (M_S = 1)$	12.7	16.2	11.8	15.1	10.9	13.1	8.2	13.8	18.4	19.6	24.5	27.0
$BS234 (M_S = 1)$	20.1	21.7	10.0	13.4	9.3	11.8	9.7	14.6	15.2	17.4	24.5	28.3
BS156 (M _S = 1)	18.0	20.0	12.3	16.0	12.3	14.5	8.8	14.6	15.2	17.8	39.1	39.8

Table S26. The relative polarized QM and QM/MM energies between five functionals for $2CBS_{26,37}$ - $BH_{26(5)}$ (kcal/mol).

o: 2CBS _{26,37} -BH ₂₆₍₅₎	B3L	YP*]	FPSSh	B	897-D3	r	2SCAN		TPSS	B	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS134 (M_S = 0)$	26.4	28.4	19.2	19.2	23.9	23.4	19.0	22.1	29.6	30.0	41.8	45.3
$BS2467 (M_S = 0)$	22.8	27.5	12.6	16.4	17.3	20.2	15.6	22.1	18.3	21.6	39.7	43.8
$BS14 (M_s = 2)$	-	-	-	-	18.5	19.0	16.3	20.3	19.6	20.3	46.7	49.8

$BS347 (M_S = 2)$	25.7	28.2	15.0	16.1	15.5	16.7	16.7	21.0	-	-	38.2	41.8
$BS126 (M_s = 2)$	23.3	26.7	16.2	18.9	16.3	17.9	16.8	21.9	19.6	20.4ª	45.0	44.8

^aThis state converged to BS12.

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S27. The relative polarized QM and QM/MM energies between five functionals for $2CBS_{26,37}$ -BH₂₆₍₃₎ (kcal/mol).

p: 2CBS _{26,37} -BH ₂₆₍₃₎	B3L	YP*	1	ſPSSh	E	897-D3	r	2SCAN		TPSS	F	B3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
$BS134 (M_S = 0)$	20.5	30.2	11.3	20.2	16.3	24.3	11.5	23.8	11.7	21.7ª	39.7	47.4
$BS2467 (M_S = 0)$	22.7	30.2	4.6	15.5	8.9	19.5	7.1	21.7	9.6	20.2	47.9	64.2
$BS145 (M_S = 0)$	18.4	31.0	9.0	19.2	11.5	19.7	10.7	23.6	11.6	20.8	32.0	45.1
$BS135 (M_S = 0)$	15.4	27.1	4.5	15.5	8.9	19.5	7.2	21.6	9.6	20.2	30.4	42.6
$BS14 (M_S = 2)$	-	-	7.0	14.1	10.5	17.6	8.6	18.4	10.9	17.8	-	-

^a This state converged to BS13.

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S28. The relative polarized QM and QM/MM energies between five functionals for 2CBS_{26,37}-BH₃₇ (kcal/mol).

q: 2CBS _{26,37} -BH ₃₇	B3I	LYP*		FPSSh	B	897-D3	r	2SCAN]]	rpss	B	3LYP
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM
BS346 ($M_8 = 1$)	14.9	19.5	8.2	13.0	10.6	15.2	4.4	13.4	5.23	8.4	31.6	36.0
$BS135 (M_s = 1)$	16.2	20.7	6.8	11.4	8.7	12.8	7.3	13.8	6.30	10.2 ^b	31.2	35.3
$BS167 (M_S = 2)$	14.8	21.5ª	4.7	11.2	8.5	14.1	5.3	13.4	-	-	30.0	36.7
BS235 ($M_{\rm S} = 2$)	12.0	17.3	2.3	7.4	8.5	12.5	6.2	13.0	11.63	15.1	28.8	33.2
BS346 ($M_{\rm S} = 2$)	9.9	15.4	0.0	5.5	4.8	8.8	3.6	10.5	6.33	10.6	23.6	29.5

^aThis state converged to BS257.

^b This state converged to BS15.

Note: The '-' in the table means that this state converged to another isomer. Numbers in blue indicate the lowest one between states.

Table S29. The relative polarized QM and QM/MM energies between five functionals for C3H (kcal/mol).

r: C3H	B	B3LYP*		TPSSh		B97-D3		r ² SCAN		TPSS		B3LYP	
	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	QM	QM/MM	
$BS125 (M_S = 1)$	13.2	14.1	-	-	31.3	28.9	47.8	47.9	73.4	76.0	10.9	12.0	
BS127 ($M_s = 1$)	1.2	0.0	32.9	30.0	35.3	32.9	49.9	50.5	81.6	78.1	11.7	12.9	
BS135 ($M_s = 1$)	3.3	2.7	51.7	52.0	34.7	33.0	51.3	52.3	80.3	75.9	2.7	2.0	
BS136 $(M_s = 1)$	0.6	0.3	25.7	25.7	31.1	29.8	52.6	54.7	75.9	73.0	0.5	0.0	
BS146 (M _s = 1)	0.0	0.2	25.3	25.1	34.1	31.7	47.8	49.0	105.0	105.9	0.0	0.0	
BS147 (M _s = 1)	3.2	2.8	27.5	26.9	36.5	33.6	50.4	51.5	-	-	2.8	2.2	

10. Additional comparisons for three lowest-energy isomers: dispersion correction and zero-point vibrational energy

Additional calculations were carried out for the 3 lowest energy isomers: \mathbf{g} , \mathbf{i} and \mathbf{k} to see whether their relative energies might be affected much by either dispersion or zero-point vibrational effects.

Table S30 shows the effect of not including the D4 dispersion correction in r^2 SCAN calculations. The effect of dispersion is found to be relatively small, not affecting much the relative energies of these 3 isomers. We note that the dispersion correction was used throughout the study.

Table S30. The relative QM/MM energies (kcal/mol) between three lowest-energy isomers with and without D4 corrections utilizing QM-region C.

	$\Delta E(QM/MM)$ with D4	$\Delta E(QM/MM)$ without D4
g: OBS6-2BH26	3.1	3.2
i: OBS ₆ -BH ₂₆ -TH ₂	3.3	3.6
k: OBS6-DH2	0.0	0.0

Note: The results were calculated using r²SCAN. The spin states and BS solutions of **OBS6-2BH26**, **OBS6-BH26-TH2**, and **OBS6-DH2** are BS347 ($M_s = 1$), BS235 ($M_s = 2$), and BS147 ($M_s = 1$), respectively.

The inclusion of zero-point vibrational motion could have an effect on E_3 isomer energies as the isomers differ in terms of Fe-H bonding. Table S31 shows the results of calculations where zero-point vibrational corrections were explicitly included via partial Hessian QM/MM calculations. Different partial Hessian approximations were tested. The ZPVE correction can change the energy differences by up to 0.7 kcal/mol as seen here but this differs with partial Hessian size and QM-region size. Overall the ZPVE effect is fairly small.

Table S31. The relative QM/MM energies between three lowest-energy isomers with and without zero-point vibrational energy (ZPVE) corrections (kcal/mol).

Including Fe2+Fe6+2hydrides/H ₂ as partial Hessian using QM-A region	$\Delta E(QM/MM)$ without ZPVE	$\Delta E(QM/MM)$ with ZPVE
g: OBS ₆ -2BH ₂₆	1.3	1.0
i: OBS ₆ -BH ₂₆ -TH ₂	0.2	0.0
k: OBS ₆ -DH ₂	0.0	0.3
Including FeMoco as partial Hessian using QM-A region		
g: OBS ₆ -2BH ₂₆	1.3	1.1
i: OBS ₆ -BH ₂₆ -TH ₂	0.2	0.0
k: OBS ₆ -DH ₂	0.0	0.2
Including the full QM-A region as partial Hessian using QM-A region		
g: OBS ₆ -2BH ₂₆	1.3	1.3
i: OBS ₆ -BH ₂₆ -TH ₂	0.2	0.0
k: OBS ₆ -DH ₂	0.0	0.5
Including the full QM-B region as partial Hessian		
g: OBS -2BH	2.8	26
i. OBS2-BH22	3.1	2.0
k: OBS ₆ -DH ₂	0.0	0.0

Note: The results were calculated using r²SCAN. The spin states and BS solutions of **OBS₆-2BH₂₆**, **OBS₆-BH₂₆**-**TH₂**, and **OBS₆-DH₂** are BS347 ($M_s = 1$), BS235 ($M_s = 2$), and BS147 ($M_s = 1$), respectively.

11. The results of the C3H model

Functionals with at least 20% HF exchange are known to predict interstitial carbide protonation in both E_3 and E_4 redox states, for example, B3LYP^{5,7,8}. However, according to recent ¹³C ENDOR studies of multiple trapped FeMoco states, the carbide hyperfine coupling is practically unchanged, suggesting an unchanged carbide environment. Overall, the carbide is interpreted to as more likely having a stabilizing role during catalysis⁹.

Ryde and co-workers suggested a triply protonated model **C3H** (isomer **r**) can be favorable when calculated using B3LYP and TPSSh⁴. Their previous result showed that the low-energy spin state and BS solutions of this model are $M_S = 1$ and BS136, belonging to the BS10 class⁵. We explored the **C3H** model using three spin states and 6 BS solutions (BS125, BS127, BS135, BS136, BS146, and BS147) in the BS10 class using our computational protocol at the r²SCAN level. The results show that all five lowest-energy states (BS125, BS127, BS135, BS146, and BS147) are in $M_S = 1$, as shown in Table S32, and a previous study showed that BS136 with $M_S = 1$ is the lowest-energy state when using B3LYP, therefore, we calculated all six BS solutions in the spin state of $M_S = 1$ for other functionals (shown in Table S12 to Table S29).

The C3H model is higher than OBS_6 -DH₂ by 47.9 kcal/mol using r²SCAN and QM-A region, shown in Table S32, which is very similar to the result reported by Ryde and co-workers⁴.

Table S32. The relative polarized QM and QM/MM energies for C3H model using r^2 SCAN and QM-A region (kcal/mol).

	$M_{S} = 0$		М	s = 1	$M_S = 2$		
	QM	QM/MM	QM	QM/MM	QM	QM/MM	
BS125	72.4	74.5	47.8	47.9	54.3	56.3	
BS127	57.9	60.5	49.9	50.5	53.9	56.1	
BS135	66.1	66.9	51.3	52.3	58.4	59.6	
BS136	55.8	58.5	52.6	54.7	56.2	58.1	
BS146	67.1	68.2	47.8	49.0	54.9	55.4	
BS147	57.8	60.9	50.4	51.5	55.6	51.6	

12. The energies, spin populations of investigated models

Tables in this section shows the polarized QM energies, QM/MM energies and spin populations of metal ions of all investigated E_3 models. The data in blue represent the lowest-energy state for each isomer.

Table S33. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the **OBS₂-2BH₂₆** model.

OBS₂-2BH₂₆ (M _S = 2), QM-A region, H-to-val, r^2 SCAN										
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS567	42.1	44.3	1.08	1.48	2.54	2.80	2.97	-3.07	-1.05	-2.90
BS234	20.1	22.3	-1.12	3.34	-0.51	-3.05	-3.00	2.95	2.16	2.89
BS13	21.2	24.9	-1.20	-3.26	2.17	-3.20	2.46	2.74	2.25	2.52
BS14	21.1	21.4	-1.23	-3.27	1.96	2.41	-3.19	2.70	2.48	2.68
BS134	37.4	38.0	-1.25	-0.26	2.82	-2.82	-2.85	3.10	2.19	2.99
BS256	29.9	31.4	0.20	3.12	-3.16	1.60	3.08	-2.91	-1.15	2.71
BS267	27.8	31.7	0.23	3.19	-3.14	3.05	1.74	2.81	-1.55	-2.74
BS357	20.2	23.1	0.36	3.50	3.03	-3.00	3.35	-2.82	1.79	-2.73
BS457	19.0	24.5	0.39	3.51	3.06	3.36	-3.01	-2.84	1.80	-2.70
BS157	17.3	22.6	0.36	-3.26	3.16	3.30	3.18	-2.68	2.23	-2.44
BS235	18.4	21.0	-0.35	3.34	-1.62	-3.12	3.12	-2.99	2.34	2.79
BS247	20.7	23.5	-0.27	3.32	-1.73	3.09	-3.08	2.89	2.37	-2.91
BS245	30.2	32.7	-0.33	3.28	-2.49	3.34	-2.49	-2.66	1.83	2.93
BS246	15.1	18.0	-0.43	3.29	-3.04	2.91	-3.14	2.88	-1.65	2.72
BS345	19.6	22.2	-0.58	3.33	2.98	-2.96	-2.46	-1.55	2.17	2.83
BS347	19.1	22.5	-0.57	3.34	3.00	-2.54	-2.96	2.95	2.10	-1.38
BS126	14.0	18.3	-0.56	-3.33	-3.19	3.21	3.06	2.87	-1.16	2.84
BS137	26.9	31.7	-0.41	-3.24	3.01	-2.40	3.26	3.15	2.29	-1.85
BS145	25.2	28.2	-0.31	-3.26	3.25	3.38	-2.64	-2.28	2.27	3.05
BS127	25.8	27.9	-0.36	-3.33	-1.16	3.02	3.19	2.98	2.40	-2.76
BS135	30.9	30.6	-0.45	-2.09	2.67	-2.58	3.13	-2.35	2.47	2.85
BS147	23.1	27.6	-0.38	-3.27	3.32	3.31	-2.69	2.99	2.38	-2.05
	OBS	$2-2BH_{26} (M_S = 1)$, QM-A	region, I	H-to-val	r ² SCAN	N			
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS567	42.2	42.9	1.18	1.76	0.79	2.93	3.12	-3.05	-2.23	-2.90
BS234	19.0	21.7	-1.11	3.34	-2.66	-2.82	-2.73	3.06	1.47	2.96
BS123	29.0	32.4	-1.24	-3.41	-1.00	-3.26	2.99	2.90	2.84	2.53
BS124	30.7	31.3	-1.24	-3.32	-0.88	2.89	-3.22	2.65	2.78	2.79
BS134	28.6	29.5	-1.25	-2.83	2.91	-2.19	-2.94	3.09	2.20	2.99
BS267	37.0	39.4	0.19	0.10	-3.06	3.08	2.89	2.84	-1.55	-2.80
BS357	24.0	25.0	0.47	3.34	2.40	-3.15	3.03	-2.96	1.65	-2.75
BS2367	26.0	27.8	0.10	3.31	-2.16	-2.69	3.29	2.80	-1.10	-2.29
BS456	39.0	40.6	0.30	3.17	1.32	2.13	-2.93	-2.87	-2.38	2.81
BS156	28.0	30.5	0.30	-3.35	2.53	2.08	2.70	-2.93	-1.64	2.39
BS157	11.6	15.7	0.27	-3.37	2.20	3.03	2.99	-2.69	2.45	-2.57
BS167	27.1	29.9	0.31	-3.35	2.38	2.67	2.22	2.62	-1.73	-2.84
BS346	24.3	27.3	-0.34	3.32	1.55	-3.03	-2.97	2.89	-2.42	2.69

BS246	21.9	26.9	-0.12	3.30	-3.02	2.70	-3.16	2.61	-2.06	1.50	
BS345	9.8	14.2	-0.20	3.35	3.18	-3.11	-2.89	-2.78	1.41	2.78	
BS126	18.9	23.9	-0.32	-3.34	-3.23	3.02	3.05	2.39	-1.61	1.97	
BS137	20.8	24.8	-0.38	-3.27	2.62	-2.94	3.14	3.03	2.41	-2.45	
BS145	20.0	23.2	-0.40	-3.27	2.48	3.23	-2.86	-2.54	2.46	2.94	
BS135	13.0	15.5	-0.45	-3.29	2.76	-3.07	3.15	-2.32	2.40	2.85	
BS147	10.5	14.2	-0.43	-3.32	2.99	3.19	-3.14	2.95	2.24	-2.30	
OBS_2-2BH_{26} (M _S = 0), QM-A region, H-to-val, r ² SCAN											
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	
BS2346	13.6	16.1	-0.63	3.35	-2.52	-2.83	-2.82	2.95	-0.96	2.84	
BS123	28.0	31.3	-1.13	-3.34	-2.42	-3.09	3.12	2.95	1.22	2.77	
BS134	23.8	26.1	-1.18	-3.27	2.85	-3.08	-3.09	3.03	2.18	2.90	
BS2567	23.7	26.0	1.16	3.28	-2.91	3.10	3.10	-3.03	-2.12	-2.90	
BS2356	11.4	13.3	0.33	3.32	-2.37	-3.11	3.13	-2.87	-1.91	2.84	
BS2356	12 7	14.2	0 34	3 32	-2.34	-3 11	3 1 3	-2.87	-1 96	2.84	
(H-to-Cys)	12.7	11.2	0.51	5.52	2.51	5.11	5.15	2.07	1.50	2.01	
BS2467	10.7	14.1	0.32	3.30	-2.58	3.10	-3.09	2.94	-1.65	-2.74	
BS357	29.7	30.8	0.39	3.27	-0.31	-3.24	3.18	-2.96	2.50	-2.84	
BS2367	17.6	21.8	0.14	3.30	-3.12	-3.12	3.07	2.67	-0.75	-2.48	
BS2456	19.9	23.7	0.13	3.29	-3.07	3.11	-3.13	-2.63	-0.50	2.47	
BS457	35.1	36.2	0.65	3.21	2.52	1.89	-3.18	-2.97	1.01	-2.85	
BS1256	14.9	16.6	0.16	-3.31	-2.20	3.24	3.16	-2.83	-1.56	2.85	
BS157	13.4	16.0	0.63	-3.36	2.59	2.85	2.82	-2.94	0.83	-2.83	
BS1267	12.4	15.3	0.17	-3.32	-2.22	3.19	3.22	2.96	-1.62	-2.70	
BS345	12.4	15.5	-0.18	3.32	2.28	-3.18	-3.21	-2.92	1.50	2.70	
BS126	30.6	35.1	-0.14	-3.29	-3.15	2.51	2.11	2.43	-2.12	1.79	
BS137	19.6	23.6	-0.15	-3.28	3.10	-3.10	3.13	2.67	0.38	-2.47	
BS145	17.4	21.8	-0.15	-3.30	3.15	3.14	-3.07	-2.64	0.59	2.50	
BS135	10.8	14.2	-0.34	-3.29	2.59	-3.09	3.08	-2.93	1.64	2.72	
BS136	31.2	34.4	-0.34	-3.29	1.66	-3.14	2.94	2.20	-2.43	2.66	
BS147	12.5	14.2	-0.36	-3.31	2.30	3.11	-3.13	2.87	2.02	-2.83	
OBS₂-2BH₂₆ ($M_S = 0$), QM-C region, r^2 SCAN											
BS2356	16.7	15.9	0.32	3.30	-2.34	-3.11	3.13	-2.87	-1.95	2.87	

Table S34. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the $OBS_{6}-2BH_{26}$ model.

OBS_{6} -2 BH_{26} (M_{S} = 2), QM-A region, H-to-homo, r ² SCAN												
	$\Delta E(\text{polarized QM}) \Delta E(\text{QM/MM}) \text{Mo} \text{Fe1} \text{Fe2} \text{Fe3} \text{Fe4} \text{Fe5} \text{Fe6} \text{Fe7}$											
BS2567	18.2	21.4	0.93	3.51	-2.31	3.51	3.34	-2.68	-1.37	-2.36		
BS234	8.6	11.5	-1.25	3.36	-1.66	-2.91	-2.93	2.97	2.75	2.82		
BS13	5.0	8.1	-1.05	-3.24	2.47	-3.23	2.60	2.82	1.47	2.54		
BS14	5.6	7.2	-1.06	-3.27	2.42	2.61	-3.23	2.74	1.56	2.70		
BS134	28.9	29.3	-1.10	-0.64	3.15	-2.59	-2.84	3.14	1.45	3.02		

BS356	18.1	19.2	0.07	3.19	1.04	-3.16	3.07	-3.00	-0.23	2.74
BS467	21.6	23.4	0.05	3.25	0.88	3.01	-3.14	2.90	-0.24	-2.86
BS256	13.6	15.4	0.44	3.24	-2.76	2.42	3.04	-3.00	-2.53	2.57
BS267	15.4	16.6	0.40	3.21	-2.60	2.61	3.03	2.76	-2.97	-2.83
BS357	15.3	17.1	0.20	3.38	2.82	-3.05	3.19	-2.71	1.69	-1.69
BS457	11.5	13.5	0.22	3.38	1.82	3.22	-3.02	-2.43	3.15	-2.73
BS15	8.3	11.8	0.10	-3.39	2.66	3.03	2.88	-2.93	0.02	1.97
BS157	8.5	9.4	0.27	-2.87	2.56	3.25	3.23	-2.76	2.86	-2.63
BS167	8.9	13.1	0.12	-3.39	2.64	2.86	2.95	2.24	-0.06	-2.84
BS34	15.4	17.2	-0.90	3.27	1.76	-3.13	-3.06	2.80	0.37	2.64
BS236	5.6	6.7	-0.43	3.24	-1.90	-3.11	3.09	2.75	-3.11	2.82
BS246	8.9	11.9	-0.18	3.26	-2.63	3.08	-3.06	2.85	-1.75	1.62
BS345	7.9	9.8	-0.53	3.29	2.44	-2.80	-2.36	-2.55	3.12	2.90
BS347	7.2	9.6	-0.53	3.28	2.46	-2.30	-2.84	3.00	3.04	-2.43
BS126	10.5	12.5	-0.74	-3.29	-3.03	2.77	2.73	2.98	-0.65	2.87
BS137	14.6	17.0	-0.75	-3.27	2.52	-2.58	3.22	3.15	3.28	-1.87
BS145	14.7	16.4	-0.69	-3.28	2.64	3.31	-2.70	-2.00	3.24	3.04
BS147	17.7	17.7	-0.50	-1.81	2.67	3.09	-2.66	2.99	2.82	-2.80
	OBS ₆ -	$2BH_{26} (M_{\rm S}=1),$	QM-A re	egion, H	-to-hom	o, r^2 SCA	N			
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS2567	11.1	14.1	0.95	3.36	-2.99	3.32	3.29	-2.80	-1.32	-2.54
BS234	10.3	12.6	-0.99	3.34	-2.50	-2.56	-2.83	3.09	0.53	3.07
BS134	19.2	19.9	-1.11	-2.98	3.08	-1.65	-2.96	3.12	1.42	2.99
BS2356	8.1	10.2	-0.14	3.30	-2.79	-3.01	3.21	-2.03	-0.36	2.89
BS2467	6.6	10.0	-0.07	3.27	-2.72	3.22	-2.98	2.98	-0.70	-1.75
BS357	10.9	11.2	0.21	3.31	1.62	-3.18	3.00	-3.01	3.06	-2.92
BS2367	14.0	16.7	0.00	3.30	-2.65	-2.88	3.19	3.02	-0.57	-2.13
BS457	11.9	14.1	0.25	3.31	1.45	3.00	-3.08	-3.01	3.05	-2.85
BS157	3.4	7.5	0.32	-3.40	2.98	3.23	3.06	-2.67	1.45	-2.44
BS167	8.3	11.6	0.50	-3.34	2.22	2.90	3.04	2.74	-2.87	-2.72
BS235	5.2	8.0	-0.19	3.34	-2.66	-3.03	3.19	-2.81	0.69	2.83
BS236	10.4	11.3	-0.08	3.30	-2.52	-3.18	2.79	1.84	-3.08	2.64
BS245	14.0	17.3	-0.18	3.29	-2.84	3.24	-3.11	-2.69	0.98	2.78
BS246	9.6	12.5	-0.03	3.26	-2.48	2.77	-3.13	2.77	-3.09	1.67
BS345	0.1	1.9	-0.46	3.33	2.22	-3.15	-3.12	-2.85	3.10	2.82
BS347	-0.8	1.3	-0.44	3.33	2.26	-3.17	-3.13	2.94	3.01	-2.75
BS347	-0.1	1.7	-0.44	3.34	2.23	-3.16	-3.13	2.94	3.07	-2.76
(H-to-nya) BS126	6.6	87	0.33	3 3 7	2 33	2 72	2.81	288	3 1 1	2.64
B\$120 B\$137	8.8	12.0	-0.33	-3.52	2.55	_2.72	3.20	2.00	1 70	_2.04
BS145	8.5	11.0	-0.38	-3.20	2.90	3.28	-3.00	_2 37	1.75	2.12
B\$136	15.8	17.9	-0.53	-3.23	2.09	-3.20	2 55	2.57	_0.00	2.50
BS146	17.5	17.9	-0 55	-3.25	2.20	2 57	_3.33	2.05	-0.82	2.57
B\$140 B\$147	28	Δ 3	-0.55	-3.20	2.05	3.17	-3.25	3.04	3.12	_2.70
14/	2.0	4.3	-0.30	-5.50	2.00	5.12	-5.00	5.04	5.12	-2.70
	OBS ₄ -	$2BH_{26} (M_s = 0)$	OM-A re	egion. H	-to-hom	$r^2 SCA$	N			

	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	
BS2567	12.2	14.6	1.08	3.41	-3.08	3.00	2.92	-3.16	-1.48	-2.88	
BS2346	2.0	4.9	-0.59	3.38	-2.82	-2.88	-2.87	3.03	-1.13	2.92	
BS1236	20.4	22.6	-0.70	-3.11	-2.02	-3.04	3.13	2.99	-0.42	2.83	
BS134	12.2	14.6	-1.09	-3.43	3.11	-3.00	-2.89	3.15	1.43	2.88	
BS2356	-1.0	1.6	0.28	3.32	-2.78	-3.02	3.18	-3.00	-1.39	2.73	
BS1267	7.6	9.6	0.05	-3.32	-2.97	3.24	3.24	3.10	-0.74	-2.79	
BS2367	8.5	11.1	0.19	3.31	-3.04	-3.15	3.17	2.77	-0.88	-2.78	
BS2456	9.3	12.2	0.42	3.26	-2.50	3.27	-2.90	-2.96	-1.83	2.57	
BS457	19.4	21.6	0.67	2.71	2.76	2.64	-3.12	-3.00	0.70	-2.89	
BS1256	8.8	11.1	0.04	-3.31	-2.98	3.30	3.20	-2.92	-0.67	3.01	
BS157	1.7	4.9	0.63	-3.39	2.95	2.91	2.89	-3.03	0.86	-2.92	
BS2467	-0.1	2.8	0.31	3.28	-2.80	3.20	-3.00	2.80	-1.36	-2.88	
BS346	9.9	11.9	-0.17	3.31	1.46	-3.23	-3.17	2.64	-3.35	2.70	
BS345	7.5	9.6	-0.06	3.32	3.01	-3.24	-3.24	-3.09	0.67	2.80	
BS347	8.9	11.1	-0.05	3.31	3.01	-3.29	-3.20	2.92	0.62	-3.00	
BS126	15.6	17.5	0.00	-3.30	-2.57	2.69	2.51	2.12	-3.07	1.82	
BS137	8.9	11.9	-0.31	-3.28	2.93	-3.26	3.06	2.99	1.08	-2.65	
BS145	8.2	11.0	-0.22	-3.31	3.05	3.16	-3.18	-2.77	0.86	2.81	
BS135	0.0	2.9	-0.31	-3.28	2.85	-3.19	3.00	-2.79	1.27	2.89	
BS147	-1.1	1.6	-0.27	-3.32	2.86	3.02	-3.18	3.00	1.26	-2.73	
	OBS₆-2BH₂₆ ($M_S = 1$), QM-C region, r ² SCAN										
BS347	2.4	3.1	-0.43	3.33	2.23	-3.15	-3.11	2.94	2.98	-2.70	

Table S35. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the $OBS_6-BH_{26}-TH_2$ model.

	OBS_6 - BH_{26} - TH_2 ($M_S = 2$), QM-A region, H-to-homo, r ² SCAN										
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	
BS567	26.7	30.1	1.18	3.25	1.13	3.29	3.19	-3.01	-2.65	-2.80	
BS234	3.9	6.2	-1.19	3.31	-2.11	-2.80	-2.77	3.09	2.63	3.00	
BS134	23.0	23.3	-1.25	-3.08	2.77	-1.10	-2.86	3.08	3.23	3.06	
BS257	16.1	17.4	0.36	2.79	-2.57	2.31	3.09	-2.83	3.07	-2.68	
BS356	8.5	10.3	0.34	3.35	2.37	-3.13	3.01	-2.84	-2.29	2.82	
BS467	11.2	14.4	0.37	3.33	2.33	3.02	-3.11	2.92	-2.33	-2.67	
BS256	16.1	17.3	0.43	3.13	-2.74	2.48	3.09	-2.98	-2.52	2.66	
BS357	12.6	15.0	0.19	3.34	2.27	-3.11	3.17	-2.84	2.87	-2.21	
BS367	21.1	25.1	0.45	3.43	2.60	-3.17	3.18	2.82	-2.91	-2.69	
BS456	14.6	18.9	0.50	3.51	2.52	3.39	-3.12	-2.85	-3.02	2.60	
BS457	15.1	17.6	0.22	3.30	2.04	3.26	-3.05	-2.39	2.94	-2.63	
BS156	5.4	7.8	0.20	-3.34	2.34	3.21	2.98	-2.66	-1.76	2.99	
BS157	2.9	6.1	0.22	-3.29	2.59	3.23	3.15	-2.56	3.05	-2.38	
BS167	4.7	8.2	0.19	-3.34	2.31	3.03	3.16	3.08	-1.79	-2.52	
BS235	-0.9	1.2	-0.39	3.30	-2.28	-3.03	3.13	-2.89	2.76	2.71	
BS235 (H-to-hyd)	-2.2	0.2	-0.37	3.29	-2.24	-3.03	3.13	-2.90	2.71	2.74	

BS247	-1.9	1.7	-0.33	3.27	-2.29	3.13	-3.00	2.85	2.76	-2.82
BS346	3.8	6.2	-0.30	3.32	2.89	-2.96	-2.93	2.91	-2.24	2.76
BS236	3.9	5.5	-0.38	3.25	-2.42	-3.14	3.16	2.94	-2.98	2.86
BS237	3.4	6.1	-0.48	3.27	-2.45	-3.19	3.13	2.89	2.95	-2.60
BS245	6.5	9.0	-0.45	3.24	-2.38	3.14	-3.12	-2.69	2.95	2.72
BS246	4.6	7.1	-0.38	3.22	-2.38	3.15	-3.08	2.97	-2.96	2.84
BS345	8.2	10.3	-0.42	3.27	2.87	-2.93	-2.36	-2.55	2.74	2.93
BS347	8.6	10.7	-0.43	3.27	2.90	-2.40	-2.97	3.06	2.70	-2.44
BS126	3.7	6.0	-0.29	-3.29	-2.68	3.22	3.20	3.02	-2.67	2.91
BS137	10.4	13.3	-0.53	-3.22	2.70	-2.47	3.19	3.10	3.13	-2.12
BS145	10.4	12.3	-0.47	-3.25	2.80	3.28	-2.59	-2.27	3.14	2.99
BS125	8.9	9.4	-0.46	-3.29	-2.13	3.25	3.08	-2.89	3.07	2.94
BS17	10.7	13.4	-0.36	-3.29	-0.14	2.91	3.01	2.41	2.54	-2.83
BS135	11.8	14.0	0.74	-3.22	2.68	-2.96	3.13	-2.87	3.35	2.95
BS136	14.3	15.8	-0.51	-3.22	2.82	-3.03	3.26	3.13	-1.72	2.91
BS146	22.6	23.3	-0.31	-1.96	2.45	3.22	-2.74	2.89	-2.81	2.96
BS147	15.9	17.5	-0.44	-1.90	2.56	3.05	-2.69	2.98	3.04	-2.74
	OBS ₆ -Bl	$\mathbf{H}_{26}\text{-}\mathbf{TH}_{2}\ (\mathbf{M}_{\mathbf{S}}=1$), QM-A	region,	H-to-ho	no, r ² SC	CAN			
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS1567	36.2	37.2	1.12	-0.81	2.60	3.45	3.04	-2.89	-2.48	-2.47
BS234	1.9	5.8	-1.00	3.34	-2.31	-3.19	-2.96	2.89	2.46	2.27
BS123	14.4	16.8	-1.23	-3.35	-2.42	-3.09	3.21	3.04	2.72	2.83
BS124	13.4	15.1	-1.24	-3.31	-2.44	3.21	-3.05	3.00	2.67	2.92
BS134	22.1	23.1	-1.10	-2.86	2.75	-2.05	-2.99	3.00	2.60	2.63
BS356	10.0	12.7	0.41	3.18	0.78	-3.10	3.13	-2.85	-2.62	2.76
BS467	13.1	15.6	0.46	3.14	0.79	3.12	-3.07	2.86	-2.67	-2.70
BS256	18.2	18.9	0.40	3.17	-2.70	0.80	3.06	-3.04	-2.85	2.63
BS267	20.3	21.8	0.40	3.12	-2.71	3.02	0.86	2.70	-2.80	-2.91
BS367	17.9	18.7	0.34	3.00	1.28	-3.09	3.15	2.82	-2.99	-2.54
BS456	19.6	21.8	0.40	3.04	1.28	3.21	-3.07	-2.78	-2.96	2.70
BS156	-0.8	2.5	0.42	-3.32	2.21	3.06	2.90	-2.84	-2.73	2.57
BS157	-0.6	2.5	0.29	-3.34	2.03	3.09	2.98	-2.81	2.89	-2.70
BS167	-0.2	2.6	0.42	-3.33	2.20	2.94	3.02	2.69	-2.74	-2.72
BS235	17.0	18.5	-0.43	1.92	-2.32	-3.00	2.88	-2.86	2.73	2.73
BS247	6.7	8.4	-0.24	3.23	-2.69	3.07	-3.04	2.82	1.51	-2.89
BS346	0.5	2.2	-0.39	3.29	2.40	-3.02	-3.00	2.88	-3.09	2.77
BS236	9.7	11.2	-0.20	3.25	-2.69	-3.26	2.79	2.29	-2.98	2.58
BS237	11.9	13.3	-0.29	3.27	-3.02	-3.21	2.99	2.87	1.99	-2.82
BS245	15.8	19.1	-0.13	3.25	-2.41	2.88	-5.15	-2.13	2./1	1.51
BS240	11.2	14.2	-0.11	3.23	-2.33	2.15	-5.15	2.74	-2.98	1.89
DS34/	1.5	3.7 12.4	-0.31	2.32	2.84	-3.10	-3.12	2.91	2.32	-2.09
DS120 DS127	9.8	12.4	-0.22	-3.30	-2.08	5.05 2.17	5.09 2.15	2.55	-2.18	2.13
DS13/ BS145		10.0 2 7	-0.47	-3.22	2.33	-3.1/	3.13 2.15	3.01 2.67	2.04	2.34
B\$145 B\$125	5.0	0.7	-0.47	-3.20	_2.01	3.21	-5.15	-2.07	2.07	2.09
DS123 BS127	5.7	9.1 Q /	-0.41	-3.29	-2.09	2.10	2.93	-2.03	2.34	2.41
B2171	0.0	8.4	-0.42	-5.50	-2.70	2.98	5.10	2.12	2.34	-2.18

BS135	1.3	3.6	-0.50	-3.23	2.62	-3.03	3.06	-2.82	3.06	2.86		
BS136	5.2	8.5	-0.33	-3.25	2.39	-3.05	3.18	3.09	-2.85	2.82		
BS146	5.1	7.1	-0.31	-3.28	2.42	3.27	-3.05	2.92	-2.87	2.97		
BS147	-0.3	2.0	-0.45	-3.26	2.64	3.09	-3.03	2.97	3.03	-2.74		
	OBS ₆ - BH ₂₆ - TH ₂ (M _S = 0), QM-A region, H-to-homo, r^2 SCAN											
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7		
BS1567	10.8	14.2	1.01	-3.32	2.34	3.25	3.22	-2.21	-1.94	-2.09		
BS234	11.0	14.3	-0.98	3.32	-2.35	-3.24	-3.21	2.20	1.91	2.08		
BS123	19.1	22.4	-1.16	-3.52	-2.56	-3.32	3.14	2.97	2.22	2.53		
BS124	20.2	20.5	-1.12	-3.35	-2.51	2.99	-3.14	2.84	1.70	2.61		
BS134	15.7	15.7	-1.03	-3.34	2.82	-3.20	-3.19	2.84	2.90	2.51		
BS257	6.0	8.1	0.33	-3.31	-0.04	3.00	2.91	-2.89	3.05	-2.72		
BS2356	2.1	4.3	0.39	3.29	-2.22	-2.91	3.13	-2.78	-2.32	2.84		
BS2467	3.5	6.3	0.37	3.23	-2.36	3.14	-2.90	2.91	-1.92	-2.86		
BS2357	5.3	7.4	0.11	3.28	-2.20	-2.95	3.12	-2.71	2.96	-2.06		
BS2367	11.9	14.4	0.26	3.25	-2.12	-3.03	3.20	2.75	-2.50	-2.19		
BS2457	6.1	9.4	0.17	3.24	-2.20	3.13	-2.91	-2.22	2.99	-2.57		
BS156	7.8	10.4	0.63	-3.35	2.13	2.99	2.86	-2.97	-2.96	1.10		
BS157	5.2	7.2	0.42	-3.33	2.09	2.77	2.75	-3.10	2.29	-2.98		
BS167	7.6	11.0	0.52	-3.34	2.12	2.85	2.92	1.44	-3.05	-2.85		
BS235	22.0	23.9	-0.25	1.73	-2.60	-3.05	2.79	-3.00	1.68	2.70		
BS346	6.0	8.2	-0.38	3.31	-0.12	-2.93	-2.89	2.93	-3.04	2.74		
BS2346	5.5	7.4	-0.45	3.32	-2.10	-2.75	-2.73	3.09	-2.25	2.98		
BS345	7.2	10.3	-0.39	3.31	0.07	-3.07	-3.06	-2.80	2.94	2.76		
BS347	9.7	12.6	-0.36	3.25	0.24	-3.04	-3.06	2.96	2.57	-2.64		
BS137	13.1	16.9	-0.35	-3.19	1.95	-3.21	2.97	2.37	2.60	-2.65		
BS145	12.1	14.4	-0.30	-3.25	2.06	3.06	-3.19	-2.73	2.55	2.15		
BS125	11.0	13.9	-0.36	-3.27	-2.88	2.33	2.87	-3.01	2.44	2.09		
BS127	11.2	13.3	-0.31	-3.27	-2.87	2.88	2.28	2.41	2.12	-2.90		
BS135	3.7	6.3	-0.38	-3.23	2.40	-3.13	2.91	-2.92	1.87	2.85		
BS136	6.6	9.5	-0.21	-3.24	2.17	-3.11	2.93	2.21	-3.00	2.59		
BS146	5.4	7.5	-0.14	-3.28	2.19	2.98	-3.11	2.73	-2.96	2.02		
BS147	2.1	4.4	-0.40	-3.29	2.22	2.92	-3.12	2.81	2.28	-2.84		
	Ol	$\mathbf{BS_{6}}\mathbf{-BH_{26}}\mathbf{-TH_{2}}(\mathbf{N})$	$M_{\rm S} = 2$), (QM-C re	gion, r ² S	SCAN						
BS235	0.9	3.3	-0.37	3.30	-2.23	-3.01	3.13	-2.88	2.69	2.74		

Table S36. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the OBS_2 -BH₂₆-TH₆ model.

OBS_2 - BH_{26} - TH_6 ($M_S = 2$), QM-A region, H-to-Cys												
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7		
BS567	41.5	44.4	1.01	1.56	2.56	3.07	3.12	-3.01	-1.79	-2.79		
BS234	21.5	23.7	-1.07	3.33	-2.05	-2.59	-2.59	3.15	2.19	3.07		
BS13	25.3	31.0	-1.15	-3.48	2.37	-3.32	2.68	2.90	2.10	2.57		
BS356	20.0	21.7	0.22	3.27	2.07	-3.15	2.94	-2.84	-1.75	2.78		

-	1	1								1
BS256	27.3	30.5	0.25	2.71	-3.14	2.77	3.17	-2.99	-1.86	2.60
BS267	30.4	33.9	0.21	3.31	-3.09	2.92	2.90	2.64	-2.28	-2.87
BS367	30.1	32.2	0.11	3.29	2.24	-3.24	2.91	2.99	-1.95	-2.72
BS456	28.3	31.2	0.26	3.24	3.13	1.96	-3.02	-2.92	-1.86	2.71
BS457	21.4	29.1	0.39	3.51	3.16	3.41	-3.06	-2.95	1.80	-2.75
BS156	14.0	17.3	0.19	-3.37	2.39	3.08	2.92	-2.86	-1.16	2.75
BS167	12.7	16.9	0.07	-3.37	2.31	2.97	3.13	3.00	-1.58	-2.61
BS247	15.9	19.5	-0.24	3.32	-2.16	3.18	-2.95	2.87	2.19	-2.63
BS237	20.4	24.0	-0.33	3.30	-2.50	-3.11	3.20	3.00	2.35	-2.34
BS245	24.7	27.8	-0.29	3.30	-2.43	3.25	-3.06	-2.56	2.38	2.87
BS345	20.0	23.5	-0.30	3.30	2.95	-2.94	-2.39	-2.23	2.22	2.91
BS125	24.8	27.2	-0.40	-3.32	-2.36	3.34	3.13	-2.38	2.42	3.04
BS127	23.0	26.4	-0.47	-3.28	-2.33	3.21	3.30	3.13	2.12	-2.02
BS147	26.9	30.2	-0.41	-1.80	3.09	3.15	-2.91	2.91	2.13	-2.39
	OBS	2-BH26-TH6 (MS	= 1), QN	A-A regio	on, H-to-	Cys, r^2SC	CAN	1	1	
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS2567	25.3	28.6	0.92	3.52	-2.82	3.39	3.24	-2.89	-1.85	-2.58
BS234	16.4	19.2	-0.95	3.36	-2.21	-3.17	-2.91	2.97	1.72	2.82
BS123	35.1	38.4	-1.01	-3.23	-1.06	-3.19	2.89	2.88	2.43	2.60
BS356	25.9	26.6	0.24	3.13	0.26	-3.09	3.11	-2.81	-2.18	2.81
BS456	38.6	40.4	0.32	3.12	0.64	3.21	-3.10	-3.01	-2.03	2.48
BS157	13.6	17.9	0.22	-3.38	2.42	3.05	2.95	-2.69	2.21	-2.56
BS167	16.8	20.1	0.29	-3.36	2.17	2.86	2.94	2.42	-2.14	-2.82
BS235	11.0	14.9	-0.08	3.31	-2.72	-3.03	3.09	-2.99	1.43	2.72
BS247	11.7	14.9	-0.23	3.29	-2.82	3.15	-3.00	2.86	1.41	-2.81
BS346	15.3	19.3	-0.40	3.30	2.46	-3.13	-3.05	2.74	-2.65	2.62
BS237	15.6	19.5	-0.30	3.31	-3.15	-3.18	3.12	2.97	1.82	-2.70
BS245	20.6	25.1	-0.11	3.27	-3.09	3.19	-3.08	-2.97	1.89	2.77
BS347	9.6	14.2	-0.23	3.34	3.04	-3.20	-3.17	2.93	1.86	-2.55
BS137	19.7	24.5	-0.29	-3.28	2.88	-3.11	3.21	3.01	2.22	-2.53
BS125	14.2	18.6	-0.29	-3.33	-2.93	3.29	3.10	-2.79	1.94	2.92
BS127	13.1	16.9	-0.33	-3.32	-2.95	3.14	3.25	3.02	1.85	-2.65
BS135	11.6	16.0	-0.37	-3.31	3.11	-3.08	3.16	-2.49	2.07	2.82
BS147	9.6	13.6	-0.42	-3.32	3.13	3.20	-3.11	2.92	2.12	-2.40
BS147	145	17.2	0.40	2 22	2 20	2 10	2.14	2.01	2 10	2.20
(H-to-Phe)	14.5	17.2	-0.40	-5.52	5.20	5.19	-3.14	2.91	2.10	-2.39
BS147 (H-to-hyd)	10.5	14.0	-0.41	-3.32	3.11	3.19	-3.09	2.92	2.11	-2.39
							<u> </u>			
	OBS	$\mathbf{_{2-BH_{26}-TH_6}}(\mathbf{M}_{\mathbf{S}})$	= 0), QN	Aregio	on, H-to-(Cys, r^2SC	CAN	_	_	
	$\Delta E(\text{polarized QM})$	ΔE(QM/MM)	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS1567	17.5	22.2	0.86	-3.36	2.41	3.25	3.22	-2.50	-1.47	-2.37
BS123	26.5	31.9	-1.13	-3.48	-3.09	-3.35	3.10	3.26	2.12	2.96
BS124	26.8	28.6	-1.01	-3.34	-2.32	3.06	-3.16	2.87	1.48	2.72
BS2356	12.8	15.4	0.26	3.33	-2.54	-3.06	3.13	-2.81	-1.67	2.83
BS2467	13.0	16.3	0.29	3.29	-2.83	3.14	-3.02	2.95	-1.41	-2.72

BS357	29.5	30.1	0.62	2.93	1.37	-3.14	3.09	-3.03	1.13	-2.83
BS157	15.4	17.9	0.59	-3.36	2.48	2.93	2.82	-3.02	0.97	-2.84
BS167	31.0	34.2	0.30	-3.31	1.87	2.87	1.41	2.21	-2.10	-2.89
BS247	13.0	16.3	0.29	3.29	-2.84	3.14	-3.02	2.95	-1.41	-2.72
BS126	29.3	34.4	-0.14	-3.33	-3.12	3.11	2.59	1.79	-2.41	1.67
BS135	13.0	16.3	-0.32	-3.29	2.87	-3.14	3.03	-2.94	1.36	2.72
BS136	24.6	28.1	-0.25	-3.30	2.33	-3.18	2.85	1.93	-2.60	2.48
BS146	20.4	24.9	-0.24	-3.30	2.30	2.80	-3.19	2.72	-2.38	1.52
		OBS ₂ -BH ₂₆ -TH	$_{6}(M_{S} =$	1), QM-C	region, 1	² SCAN				
BS147	14.9	14.5	-0.36	-3.31	3.12	3.19	-3.09	2.91	2.13	-2.44

Table S37. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the OBS_6-DH_2 model.

OBS₆-DH ₂ (Ms = 2), QM-A region, H-to-homo, r^2 SCAN											
	ΔE (polarized QM)	Δ (QM/MM)	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	
BS234	2.3	4.2	-1.09	3.34	-2.11	-2.87	-2.85	3.06	2.86	2.94	
BS123	23.2	23.6	-1.17	-3.00	-2.39	-2.28	3.22	3.08	3.06	3.02	
BS14	19.4	18.4	-1.14	-3.24	0.93	2.70	-3.23	2.76	2.90	2.59	
BS134	22.0	21.0	-1.28	-3.13	2.83	-1.29	-2.87	3.11	3.24	3.06	
BS257	17.2	16.6	0.43	2.89	-2.54	2.42	3.14	-2.93	2.96	-2.79	
BS256	18.9	17.7	0.42	2.96	-2.54	2.69	3.19	-3.01	-2.99	2.72	
BS267	15.8	14.9	0.41	3.26	-2.87	2.99	3.14	2.79	-2.93	-2.96	
BS157	3.2	5.3	0.13	-3.40	2.81	3.24	3.12	-2.59	3.03	-2.36	
BS167	5.4	7.8	0.12	-3.37	2.76	3.15	3.19	3.09	-2.32	-2.61	
BS235	1.2	1.8	-0.33	3.32	-2.45	-3.10	3.14	-2.88	2.95	2.74	
BS247	0.0	2.3	-0.26	3.29	-2.44	3.15	-3.04	2.88	2.89	-2.82	
BS236	1.1	2.0	-0.31	3.31	-2.69	-3.17	3.14	3.05	-2.87	2.90	
BS237	4.2	4.9	-0.38	3.31	-2.69	-3.22	3.11	2.98	3.07	-2.62	
BS245	7.3	7.7	-0.35	3.29	-2.65	3.09	-3.15	-2.71	3.09	2.85	
BS246	3.3	4.0	-0.31	3.29	-2.67	3.13	-3.11	3.01	-2.86	2.95	
BS345	7.1	7.5	-0.38	3.30	2.98	-3.08	-2.68	-2.70	3.00	2.94	
BS347	8.1	8.4	-0.40	3.29	2.95	-2.64	-3.08	3.06	2.97	-2.58	
BS126	4.4	5.7	-0.31	-3.30	-2.69	3.26	3.24	3.06	-2.71	2.95	
BS137	8.9	9.4	-0.54	-3.28	2.83	-2.62	3.22	3.11	3.13	-2.15	
BS145	7.9	8.0	-0.48	-3.31	2.91	3.30	-2.71	-2.31	3.16	3.01	
BS125	8.4	8.4	-0.37	-3.28	-2.39	3.31	3.14	-2.82	3.04	2.96	
BS127	7.9	7.7	-0.35	-3.28	-2.33	3.13	3.28	3.08	2.98	-2.75	
BS135	13.1	13.2	-0.61	-3.28	2.81	-2.96	3.24	-1.87	3.22	2.97	
BS147	10.7	11.0	-0.65	-3.32	2.84	3.29	-3.01	3.03	3.18	-1.64	
	0	$\mathbf{BS_6}\text{-}\mathbf{DH_2}\ (\mathrm{Ms}=1)$), QM-A	region, H	I-to-home	, r^2 SCA	N				
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	
BS234	2.2	5.3	-0.99	3.36	-2.44	-3.21	-3.04	2.78	2.84	2.32	
BS123	9.8	13.4	-1.17	-3.35	-2.86	-3.17	3.20	3.06	3.14	3.00	
BS124	12.4	12.2	-1.13	-3.33	-2.83	3.19	-3.16	3.10	3.17	2.90	

BS134	19.3	18.2	-1.21	-3.31	2.91	-3.03	-3.01	3.23	3.16	2.97
BS356	12.4	13.4	0.29	3.20	1.08	-3.14	3.17	-2.91	-2.78	2.76
BS467	12.5	14.9	0.34	3.16	1.08	3.19	-3.10	2.84	-2.82	-2.78
BS256	29.1	27.8	0.41	0.83	-2.61	3.04	3.15	-3.00	-2.95	2.76
BS267	20.8	20.6	0.42	3.20	-2.81	3.00	1.27	2.73	-2.99	-2.94
BS357	16.2	15.8	0.28	2.71	2.62	-3.14	2.90	-3.04	2.76	-2.94
BS367	18.8	18.7	0.37	3.04	2.40	-3.21	2.99	2.56	-3.11	-2.90
BS456	18.8	19.8	0.37	3.13	2.63	2.61	-3.18	-3.01	-3.07	2.51
BS156	2.6	3.7	0.39	-3.36	2.33	3.11	2.98	-2.93	-2.86	2.59
BS167	2.9	3.8	0.38	-3.36	2.30	3.01	3.06	2.71	-2.88	-2.82
BS235	6.7	7.7	-0.36	3.28	-2.96	-3.17	3.02	-3.06	2.37	2.63
BS346	0.8	1.6	-0.39	3.30	2.43	-3.09	-3.08	2.89	-3.00	2.77
BS236	8.5	8.6	-0.17	3.29	-2.85	-3.27	2.98	2.31	-3.00	2.58
BS237	22.7	23.1	-0.38	1.89	-2.66	-3.16	2.84	2.97	3.06	-2.62
BS246	9.9	11.6	-0.09	3.26	-2.77	2.93	-3.16	2.74	-2.96	1.91
BS345	4.0	4.6	-0.43	3.30	2.57	-3.19	-3.25	-2.89	2.92	2.85
BS126	10.5	12.0	-0.40	-3.32	-2.82	3.12	2.78	2.63	-2.77	2.79
BS137	6.8	7.4	-0.47	-3.29	2.69	-3.22	3.12	3.01	2.96	-2.67
BS145	5.3	5.6	-0.47	-3.32	2.73	3.18	-3.19	-2.77	2.97	2.89
BS125	8.6	10.5	-0.34	-3.34	-2.80	3.08	3.00	-2.88	2.84	2.51
BS127	9.2	9.2	-0.33	-3.34	-2.78	3.00	3.03	2.70	2.81	-2.83
BS135	1.2	1.2	-0.47	-3.29	2.74	-3.12	3.06	-2.81	3.03	2.85
BS136	6.7	8.0	-0.53	-3.30	2.68	-3.19	3.20	3.06	-2.68	2.82
BS146	6.1	6.5	-0.46	-3.33	2.69	3.28	-3.20	2.92	-2.70	2.95
BS147	0.0	0.0	-0.43	-3.32	2.74	3.10	-3.12	2.95	3.01	-2.73
BS147 (H-to-Phe)	-1.0	0.4	-0.42	-3.31	2.73	3.09	-3.13	2.96	3.00	-2.72
BS147	0.4	1.7	-0.40	-3.31	2.73	3.09	-3.13	2.96	2.99	-2.73
(H-10- V al)										
	0	$ $ BSDH_ (Ms - ()) OM-A	region F	I-to-home	r^2SCAN	N			
	$\Delta E(polarized OM)$	$\Delta E(OM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS2567	15.6	15.8	1.01	3.33	-2.82	3.20	3.19	-2.82	-2.90	-2.49
BS134	15.6	15.7	-1.03	-3.34	2.82	-3.20	-3.20	2.84	2.90	2.52
BS257	6.0	8.1	0.33	-3.31	-0.05	3.00	2.91	-2.89	3.05	-2.72
BS2467	6.6	8.6	0.42	3.27	-1.62	3.22	-2.89	2.89	-2.89	-2.76
BS267	33.9	32.0	0.36	0.60	-2.95	2.85	2.56	2.73	-2.97	-2.98
BS2357	8.2	8.9	0.14	3.29	-2.11	-3.02	3.14	-2.72	3.05	-2.18
BS2367	13.4	14.6	0.28	3.31	-2.55	-3.09	3.22	3.00	-2.66	-1.94
BS2456	15.6	17.4	0.41	3.24	-1.18	3.27	-3.01	-2.94	-2.90	2.72
BS457	28.6	28.1	0.29	0.44	2.59	3.05	-3.11	-3.04	2.87	-2.93
BS156	11.7	12.5	0.55	-3.37	2.19	3.02	2.89	-2.92	-3.12	1.09
BS157	8.1	8.3	0.41	-3.34	1.93	2.76	2.75	-3.10	2.40	-2.99
BS167	12.7	15.3	0.26	-3.34	2.27	2.78	2.08	2.32	-2.93	-2.89
BS2345	12.8	15.3	-0.30	3.33	-2.21	-2.76	-2.14	-2.32	2.95	2.88
BS247	26.8	25.4	-0.18	2.66	-2.60	1.29	-3.16	2.85	2.56	-2.91
BS236	23.8	23.2	-0.19	1.87	-2.89	-3.26	2.68	2.37	-3.00	2.67
	1	1	· · ·	i	1	-	-	1	1	<u> </u>

BS246	25.3	24.8	-0.12	2.29	-2.86	2.28	-3.29	2.82	-3.01	2.24
BS345	9.3	11.3	-0.39	3.30	0.12	-3.11	-3.10	-2.82	3.00	2.77
BS126	19.1	20.9	-0.40	-3.32	-3.02	2.70	2.57	2.83	-3.12	2.28
BS137	16.1	17.3	-0.45	-3.23	1.18	-3.27	3.00	2.97	2.94	-2.72
BS145	13.4	14.6	-0.31	-3.31	2.54	3.10	-3.22	-2.99	2.74	1.87
BS135	7.4	8.5	-0.45	-3.27	1.61	-3.21	2.88	-2.90	2.92	2.78
BS136	9.2	10.5	-0.26	-3.26	2.12	-3.14	2.97	2.33	-3.05	2.60
BS146	8.2	9.0	-0.18	-3.29	2.09	3.03	-3.13	2.74	-3.03	2.15
OBS₆-DH ₂ (Ms = 1), QM-C region, r^2 SCAN										
BS147	0.0	0.0	-0.40	-3.31	2.70	3.07	-3.10	2.95	3.02	-2.73

Table S38. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the OBS_2-DH_6 model.

OBS ₂ - DH ₆ (Ms = 2), QM-A region, H-to-Cys, r^2 SCAN											
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	
BS567	35.0	39.7	1.04	1.56	2.83	3.10	3.14	-3.00	-2.19	-2.81	
BS257	11.4	17.9	0.37	3.49	-3.17	3.27	3.15	-2.91	2.06	-2.70	
BS357	16.3	21.7	0.37	3.46	3.19	-3.12	3.34	-2.91	2.02	-2.90	
BS456	24.4	28.4	0.37	3.20	3.17	2.41	-3.09	-2.99	-2.24	2.70	
BS457	14.9	22.7	0.34	3.49	3.20	3.36	-3.11	-2.98	1.99	-2.78	
BS157	8.9	17.7	0.13	-3.37	3.34	3.25	3.17	-2.55	2.30	-2.39	
BS346	-0.7	5.7	-0.41	3.34	3.08	-3.08	-3.08	2.88	-2.06	2.75	
BS346 (H-to-Val)	1.3	7.6	-0.36	3.36	3.12	-3.08	-3.05	2.86	-2.12	2.72	
BS346 (H-to-Phe)	3.8	9.1	-0.37	3.35	3.11	-3.06	-3.08	2.87	-2.12	2.73	
BS236	7.2	13.1	-0.34	3.29	-3.13	-3.28	3.14	3.03	-2.02	2.83	
BS246	10.4	17.3	-0.38	3.26	-3.18	3.13	-3.21	2.94	-1.94	2.92	
BS136	10.9	16.8	-0.59	-3.28	3.16	-3.13	3.26	3.10	-1.73	2.87	
BS146	9.1	14.9	-0.53	-3.29	3.14	3.32	-3.15	2.97	-1.70	3.00	
	C	\mathbf{BS}_2 - \mathbf{DH}_6 (Ms =	1), QM-A	A region, 1	H-to-Cys,	r ² SCAN	[
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	
BS257	17.7	22.8	0.67	3.25	-3.14	2.93	3.02	-3.09	1.54	-2.93	
BS357	18.2	21.9	0.40	3.35	2.31	-3.21	3.13	-3.03	1.86	-2.90	
BS457	19.8	24.1	0.36	3.33	2.23	3.20	-3.19	-3.02	1.92	-2.88	
BS156	13.9	18.3	0.27	-3.37	2.33	2.99	2.86	-2.93	-2.40	2.46	
BS157	8.0	15.9	0.44	-3.35	3.03	3.01	2.98	-2.90	2.03	-2.81	
BS235	8.4	13.4	-0.18	3.28	-2.88	-3.04	3.17	-3.03	1.69	2.71	
BS347	5.1	10.8	-0.39	3.31	2.93	-3.26	-3.22	2.96	2.40	-2.72	
BS126	16.2	22.8	-0.23	-3.33	-3.17	3.10	3.09	2.20	-1.64	2.02	
BS125	8.2	13.8	-0.40	-3.33	-3.03	3.28	3.14	-2.89	2.31	2.99	
BS127	6.5	12.0	-0.34	-3.33	-3.03	3.14	3.25	3.09	2.27	-2.83	
BS136	16.2	21.5	-0.43	-3.25	2.79	-3.20	2.67	2.77	-1.84	2.60	
BS146	14.4	19.5	-0.29	-3.28	2.91	2.91	-3.21	2.67	-1.80	2.28	

OBS₂-DH₆ (Ms = 0), QM-A region, H-to-Cys, r^2 SCAN											
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	
BS2346	12.4	16.1	-0.42	3.37	-2.11	-2.92	-2.85	3.01	-1.60	2.89	
BS257	28.4	32.5	0.89	2.91	-3.10	2.16	3.11	-3.02	0.04	-2.89	
BS2356	12.6	16.1	0.33	3.30	-2.79	-3.07	3.16	-2.80	-1.45	2.85	
BS357	27.4	28.9	0.39	3.01	1.30	-3.17	3.05	-3.01	1.55	-2.92	
BS237	17.1	22.1	0.18	3.29	-3.18	-3.22	3.10	2.81	-0.20	-2.82	
BS456	10.5	14.4	-0.01	3.33	3.02	-3.18	-3.20	-2.88	0.19	2.64	
BS457	25.7	30.2	0.41	3.04	1.14	3.05	-3.13	-3.05	1.66	-2.90	
BS157	12.3	16.0	0.41	-3.37	2.10	2.96	2.89	-3.02	1.56	-2.90	
BS235	25.2	29.8	-0.21	1.78	-2.93	-3.02	2.94	-3.03	1.82	2.75	
BS2467	11.0	16.4	0.23	3.28	-3.18	3.13	-3.05	2.93	-0.81	-2.71	
BS245	19.3	25.3	0.11	3.27	-3.18	3.16	-3.14	-2.81	0.22	2.27	
BS345	10.5	14.4	-0.01	3.33	3.02	-3.18	-3.20	-2.88	0.20	2.64	
BS347	8.2	14.4	0.01	3.33	3.02	-3.21	-3.16	2.79	-0.06	-2.68	
BS137	19.2	25.2	-0.14	-3.27	3.16	-3.15	3.15	2.84	-0.24	-2.28	
BS145	16.9	22.1	-0.19	-3.29	3.17	3.24	-3.09	-2.79	0.13	2.85	
BS125	8.5	14.3	-0.02	-3.33	-3.00	3.23	3.17	-2.77	-0.09	2.75	
BS127	10.1	14.2	-0.03	-3.33	-3.00	3.18	3.21	2.92	-0.23	-2.64	
BS135	11.0	16.4	-0.26	-3.28	3.18	-3.12	3.06	-2.93	0.79	2.72	
BS147	8.5	13.7	-0.29	-3.30	3.11	3.07	-3.16	2.82	0.98	-2.84	
		OBS ₂ -DH ₆ (Ms = 2),	QM-C reg	gion, r ² SC	CAN					
BS346	6.6	7.1	-0.44	3.32	3.08	-3.06	-3.06	2.87	-2.06	2.77	

Table S39. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Fi	ig-
ure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the CBS ₃₇ -OBS ₂ -BH ₂₆ model.	

	CBS ₃₇ -OBS ₂ -BH ₂₆	(Ms = 2), QM-A	region, H	I _{S2B} -to-C	Cys-H _{S5}	a-to-Arg	g359, r ² S	SCAN		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS567	47.1	45.7	1.25	2.77	2.78	2.62	3.10	-3.13	-2.73	-3.01
BS234	31.0	30.5	-1.14	3.35	-2.20	-2.65	-2.85	3.11	2.77	2.98
BS356	36.4	35.3	0.31	3.23	2.77	-3.05	3.02	-2.93	-2.48	2.74
BS467	33.0	32.4	0.25	3.34	2.80	2.94	-3.14	2.90	-2.63	-2.80
BS256	35.6	36.9	0.20	3.31	-3.19	3.15	3.16	-2.97	-2.70	2.64
BS267	33.3	34.1	0.07	3.31	-3.21	3.03	3.16	2.81	-2.68	-2.91
BS357	30.5	30.5	0.48	3.28	2.88	-2.93	3.25	-2.97	2.42	-2.87
BS367	35.4	33.9	0.39	3.27	2.78	-3.01	3.01	2.81	-2.80	-2.84
BS456	33.7	34.2	0.27	3.36	3.08	2.99	-3.10	-3.00	-2.75	2.77
BS457	33.4	33.6	0.38	3.36	2.94	3.18	-3.03	-3.01	2.50	-2.71
BS156	33.8	32.8	0.34	-3.15	2.62	3.13	3.05	-2.84	-2.50	2.98
BS157	30.4	33.4	0.40	-3.18	2.83	3.10	3.10	-2.86	2.91	-2.58
BS167	30.7	29.7	0.17	-3.23	2.68	3.01	3.20	3.01	-2.38	-2.71
BS235	22.7	26.7	-0.31	3.29	-2.86	-2.94	3.15	-2.50	2.82	2.76
BS247	23.3	25.9	-0.38	3.33	-2.91	3.04	-3.03	2.93	2.69	-2.16
BS236	28.7	30.8	-0.44	3.28	-2.68	-3.10	3.05	3.00	-2.39	2.79
BS237	23.7	26.8	-0.21	3.32	-3.08	-3.04	3.18	3.05	2.69	-2.49

BS245	31.2	31.5	-0.41	3.31	-2.77	3.05	-2.70	-2.66	2.82	2.88
BS246	28.5	30.4	-0.48	3.36	-2.68	2.98	-3.15	2.93	-2.34	2.91
BS345	29.5	31.4	-0.23	3.30	3.06	-3.00	-2.86	-2.33	2.75	2.91
BS347	24.2	27.2	-0.21	3.34	2.97	-2.56	-3.07	2.99	2.66	-2.52
BS126	32.6	32.4	-0.67	-3.30	-2.84	3.01	3.20	3.07	-1.73	2.89
BS145	35.3	35.6	-0.32	-3.29	3.19	3.24	-2.71	-2.35	2.82	3.02
BS125	28.7	32.4	-0.47	-3.29	-2.70	3.24	3.13	-2.21	2.85	2.97
BS136	33.1	35.7	-0.71	-3.35	3.07	-2.88	3.26	3.16	-1.66	2.83
BS146	32.3	33.6	-0.88	-3.33	3.07	3.22	-3.10	3.08	-1.28	3.04
	CBS ₃₇ -OBS ₂ -BH ₂₆	(Ms = 1), QM-A	region, H	I _{S2B} -to-C	Cys-H _{S5}	A-to-Arg	359, r ² 8	SCAN		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS124	35.4	35.0	-1.41	-3.26	-2.34	3.10	-3.05	3.09	2.83	3.03
BS134	37.1	37.1	-1.29	-3.31	2.88	-2.49	-2.93	3.18	2.89	3.00
BS257	37.0	36.6	0.72	3.32	-3.22	2.87	3.06	-3.09	1.22	-2.94
BS356	36.6	35.9	0.44	3.22	2.25	-3.11	2.90	-2.93	-2.83	2.00
BS3467	28.2	31.1	0.05	3.32	3.16	-2.44	-3.02	3.02	-1.35	-1.55
BS2356	36.9	37.8	0.31	3.28	-2.63	-0.52	3.22	-2.91	-2.27	2.81
BS357	37.5	35.5	0.53	3.28	2.28	-3.10	3.03	-3.09	2.05	-2.97
BS367	40.3	40.2	0.42	3.18	2.80	-2.96	1.38	2.70	-2.86	-2.87
BS456	36.6	40.8	0.28	3.24	3.14	0.57	-2.89	-2.87	-2.65	2.73
BS156	25.3	27.5	0.11	-3.38	2.32	2.98	2.98	-2.86	-2.52	2.58
BS157	31.3	31.0	0.20	-3.36	2.11	2.90	2.99	-2.83	2.78	-2.55
BS167	33.7	33.5	0.27	-3.34	2.37	2.91	2.55	2.87	-2.66	-2.75
BS235	24.1	27.2	-0.35	3.30	-2.84	-2.99	3.12	-3.00	2.42	2.17
BS247	25.5	30.1	-1.40	3.33	-2.88	3.09	-3.04	3.01	2.71	-3.11
BS346	27.6	27.9	-0.43	3.27	2.72	-3.02	-3.12	2.92	-2.84	2.56
BS236	30.0	31.9	-1.04	3.27	-3.00	-3.16	2.99	2.98	-3.12	2.81
BS237	32.7	33.6	-0.20	3.28	-3.17	-3.17	3.03	2.40	2.51	-2.79
BS245	26.8	30.6	-0.48	3.32	-3.06	2.97	-3.15	-2.93	2.70	2.60
BS246	27.0	30.6	-0.35	3.32	-3.11	2.96	-3.19	2.86	-2.80	2.19
BS345	28.8	28.7	-0.31	3.28	3.05	-3.11	-3.01	-2.88	2.24	2.78
BS347	22.4	25.9	-0.10	3.35	2.89	-3.06	-3.19	2.81	1.76	-2.58
BS126	25.3	30.8	-0.57	-3.33	-3.03	2.91	3.12	2.89	-2.59	2.57
BS145	30.9	31.1	-0.59	-3.32	2.80	3.13	-2.94	-2.64	2.82	2.84
BS125	21.9	26.7	-0.48	-3.32	-3.08	2.86	3.06	-2.72	2.84	2.87
BS127	27.9	31.0	-0.54	-3.27	-3.17	2.68	2.64	2.98	2.68	-1.80
BS135	27.5	27.5	-0.47	-3.36	2.69	-3.02	3.15	-2.48	2.76	2.82
BS136	32.8	33.6	-0.55	-3.34	2.86	-3.10	2.95	2.98	-2.39	2.71
BS146	28.2	28.9	-0.62	-3.30	2.87	2.94	-3.18	2.98	-2.38	2.83
BS147	21.9	24.7	-0.62	-3.30	2.49	3.02	-3.16	2.96	2.79	-2.01
BS147 (H _{\$28} -to-hvd-H _{\$54} -to-Arg359)	27.1	27.1	-0.61	-3.30	2.57	3.05	-3.16	2.93	2.76	-2.04
BS147	20.5	25.0	-0.63	-3.30	2.48	3.02	-3.16	2.96	2.81	-2.00
(H _{S2B} -to-Cys-H _{S5A} -to-Arg96) BS147 (H _{S2B} -to-hyd-H _{S5A} -to-Arg96)	22.0	27.3	-0.62	-3.30	2.58	3.03	-3.17	2.92	2.77	-2.00
	CBS37-OBS2-BH26	(Ms = 0), OM-A	region. F	Isze-to-C	Cvs-Hss	-to-Arg	$359. r^2$	SCAN		

	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS1567	28.8	28.8	1.27	-2.90	2.79	3.16	3.28	-2.83	-2.57	-2.64
BS234	23.4	28.5	-1.29	2.91	-2.85	-3.15	-3.28	2.86	2.58	2.66
BS123	29.2	31.4	-1.30	-3.36	-3.03	-3.18	2.92	2.96	2.61	2.74
BS124	28.5	29.5	-1.31	-3.25	-3.00	2.90	-3.24	2.91	2.55	2.91
BS134	33.2	34.0	-1.24	-3.32	2.75	-3.11	-3.17	3.04	2.86	2.72
BS356	35.1	39.5	0.46	3.14	0.12	-3.01	3.13	-2.91	-3.02	1.89
BS467	48.2	50.8	0.32	0.84	2.74	2.66	-3.18	2.48	-2.85	-2.76
BS2356	29.6	29.1	0.47	3.30	-2.55	-2.46	3.24	-2.93	-2.49	2.82
BS2367	34.4	34.4	0.39	3.34	-2.65	-3.05	3.12	3.05	-2.10	-2.71
BS2357	28.9	32.1	0.46	3.29	-2.68	-2.36	3.19	-2.82	2.63	-2.25
BS3467	28.1	30.1	0.40	3.32	3.15	-2.46	-2.94	2.72	-2.67	-2.05
BS456	34.7	35.2	0.30	3.28	3.18	-2.14	-2.66	-2.51	-2.60	2.60
BS2457	35.2	37.5	0.28	3.29	-2.85	3.10	-2.75	-2.43	2.75	-1.80
BS157	30.7	35.6	0.52	-3.36	1.98	2.74	2.81	-3.04	1.85	-2.86
BS167	34.3	39.4	0.53	-3.34	2.37	2.64	2.30	1.53	-2.83	-2.80
BS2347	33.8	35.0	-0.25	3.35	-2.40	-1.85	-2.71	2.96	2.67	-2.27
BS2345	40.6	39.8	-0.34	3.36	-2.44	-1.49	-2.94	-2.28	2.83	2.78
BS345	32.6	31.0	-0.21	3.24	2.34	-3.12	-3.27	-2.98	1.87	2.61
BS347	34.1	33.6	-0.07	3.26	2.59	-3.19	-3.16	2.75	1.22	-2.93
BS1267	32.8	31.0	0.16	-3.24	-2.34	3.11	3.27	3.01	-1.84	-2.62
BS137	38.4	39.4	-0.37	-3.34	2.34	-3.12	3.07	2.53	2.27	-2.86
BS145	34.1	33.7	-0.57	-3.33	2.79	3.06	-3.14	-2.92	2.51	2.25
BS125	28.1	30.0	-0.44	-3.32	-3.10	2.40	2.94	-2.84	2.44	2.45
BS127	34.9	35.1	-0.33	-3.29	-3.17	2.15	2.69	2.52	2.58	-2.60
BS135	32.3	32.1	-0.28	-3.35	2.51	-3.03	3.04	-2.98	1.85	2.71
BS136	34.4	37.5	-0.32	-3.30	2.89	-3.11	2.83	2.46	-2.71	1.66
BS146	29.2	32.1	-0.49	-3.30	2.67	2.32	-3.20	2.82	-2.63	2.33
BS147	29.4	29.1	-0.51	-3.30	2.53	2.51	-3.24	2.93	2.51	-2.83
	CBS	5 37-OBS2-BH26 (N	Ms = 1), (QM-C re	egion, r ²	SCAN				
BS147	22.1	23.8	-0.61	-3.30	2.50	3.02	-3.15	2.97	2.79	-2.00

Table S40. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the CBS₃₇-OBS₆-BH₂₆ model.

$\textbf{CBS}_{37}\textbf{-}\textbf{OBS}_{6}\textbf{-}\textbf{BH}_{26} \text{ (Ms = 2), QM-A region, } H_{S2B}\textbf{-}to\textbf{-}homo\textbf{-}H_{S5A}\textbf{-}to\textbf{-}Arg359, r^{2}SCAN$										
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS567	32.0	36.5	1.35	2.90	2.36	3.05	3.20	-3.07	-3.18	-2.76
BS234	16.6	20.7	-1.36	3.34	-2.66	-2.79	-2.91	3.16	3.28	2.94
BS123	22.1	26.1	-1.18	-3.30	2.06	-3.20	2.70	2.83	2.18	2.32
BS14	16.6	20.4	-1.26	-3.30	2.64	2.42	-3.24	2.68	2.40	2.26
BS257	16.1	18.2	0.28	3.34	-3.17	2.83	3.04	-2.97	3.01	-2.68
BS356	20.3	23.6	0.45	3.24	3.04	-3.10	3.06	-2.96	-1.80	1.91
BS467	14.5	19.9	0.49	3.32	2.90	2.93	-3.18	2.90	-2.98	-2.58
BS256	16.7	19.0	0.51	3.32	-3.07	3.10	3.10	-2.99	-3.00	2.61
BS267	17.1	19.7	0.44	3.31	-3.07	2.97	3.13	2.72	-3.13	-2.79

	1			1				1		
BS357	18.5	21.1	0.32	3.28	2.85	-3.11	3.10	-3.00	3.01	-2.67
BS367	17.8	20.7	0.53	3.21	2.96	-3.06	3.16	2.73	-3.20	-2.58
BS456	16.5	22.1	0.54	3.37	3.07	3.15	-3.14	-2.82	-3.09	2.66
BS457	20.2	23.3	0.26	3.35	2.86	3.00	-3.16	-2.79	3.02	-2.79
BS156	12.3	17.0	0.42	-3.36	2.98	3.14	3.11	-2.54	-2.68	2.85
BS157	10.0	17.5	0.38	-3.37	2.77	3.06	3.08	-2.84	2.95	-1.92
BS167	9.5	14.8	0.42	-3.37	2.98	3.04	3.18	2.90	-2.80	-2.31
BS235	11.5	15.9	-0.36	3.29	-2.95	-2.95	3.18	-2.50	2.96	2.63
BS247	7.5	13.4	-0.45	3.32	-2.93	3.07	-3.05	2.87	2.78	-2.15
BS247 (Hs2B-to-hyd-Hssa-to-Arg359)	7.9	13.5	-0.44	3.32	-2.93	3.08	-3.06	2.89	2.78	-2.15
BS247 (H _{S2B} -to-homo-H _{SSA} -to-Arg96)	6.9	13.1	-0.45	3.32	-2.93	3.09	-3.06	2.87	2.77	-2.14
BS247 (Hs2B-to-hyd-Hssa-to-Arg96)	7.3	13.2	-0.43	3.32	-2.93	3.09	-3.07	2.88	2.77	-2.16
BS346	11.3	14.8	-0.26	3.27	3.17	-2.85	-3.06	3.02	-2.60	2.71
BS236	14.8	18.3	-0.26	3.27	-2.67	-2.99	3.14	2.88	-2.95	2.83
BS237	9.0	14.0	-0.41	3.33	-3.09	-3.12	3.12	2.89	2.98	-2.33
BS245	14.6	19.8	-0.54	3.29	-2.98	3.08	-2.76	-2.51	3.15	2.68
BS246	13.5	17.4	-0.28	3.27	-2.52	3.12	-3.01	3.02	-3.05	2.75
BS345	18.5	21.7	-0.49	3.33	3.10	-2.57	-3.11	-2.71	3.16	2.78
BS347	8.2	13.8	-0.34	3.31	3.09	-3.01	-3.15	2.96	2.97	-2.21
BS126	21.0	25.9	-0.39	-3.19	-1.13	3.00	3.14	2.93	-3.08	2.56
BS137	13.3	18.2	-0.56	-3.27	2.94	-2.89	3.22	3.06	3.15	-1.95
BS145	17.9	22.3	-0.68	-3.26	3.16	3.21	-2.77	-2.23	3.28	2.92
BS125	24.9	28.9	-0.65	-3.20	-1.00	2.96	2.97	-2.89	3.10	2.73
BS127	12.5	17.8	-0.60	-3.28	-3.01	3.07	3.27	3.14	3.03	-2.02
BS135	20.1	23.8	-0.54	-3.31	3.24	-2.70	3.15	-2.36	3.30	2.83
BS136	19.4	23.0	-0.29	-3.32	3.10	-2.45	3.28	3.14	-2.70	2.84
BS146	20.3	23.8	-0.33	-3.27	3.14	3.27	-2.75	3.05	-2.55	3.00
BS147	14.5	19.0	-0.73	-3.27	3.24	3.04	-3.00	3.03	3.28	-1.82
	CBS37-OBS6-BH26 (Ms = 1), QM-A re	egion, H _s	_{2B} -to-ho	mo-H _{S5}	_A -to-Ar	g359, r ²	SCAN		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS567	38.2	39.9	1.36	1.10	2.81	2.77	3.05	-3.12	-3.03	-2.84
BS234	9.7	14.6	-1.15	3.36	-2.85	-2.86	-2.98	2.93	2.39	2.63
BS123	17.4	22.6	-1.38	-3.35	-2.96	-3.02	3.22	3.08	3.18	2.93
BS124	19.3	21.7	-1.45	-3.18	-2.84	3.13	-3.13	3.14	3.10	2.94
BS134	22.5	24.7	-1.36	-3.33	3.15	-2.54	-2.84	3.15	2.72	2.91
BS257	24.5	27.8	0.27	2.99	-3.11	2.84	2.31	-3.05	2.57	-2.75
BS356	18.4	22.1	0.76	3.19	2.83	-3.05	2.99	-3.07	-3.18	1.72
BS2467	19.3	23.8	0.10	3.32	-2.38	3.13	-3.00	3.02	-1.98	-0.96
BS256	18.6	22.3	0.63	3.34	-3.05	2.94	2.99	-3.05	-3.06	1.20
BS267	27.6	28.9	0.58	3.34	-3.14	2.61	2.90	1.83	-3.22	-2.94
BS2357	15.9	20.0	0.10	3.26	-2.20	-2.46	3.27	-2.82	3.06	-1.10
BS367	29.1	31.5	0.50	3.12	0.86	-2.98	3.21	2.73	-3.14	-2.53
BS456	18.3	26.0	0.58	3.35	2.88	3.05	-3.19	-2.99	-3.03	1.36
BS457	22.7	26.0	0.30	3.25	1.51	2.94	-3.13	-2.96	3.05	-2.85
BS156	8.8	14.6	0.34	-3.38	2.92	3.00	3.03	-2.76	-2.93	2.18

BS157	11.7	16.1	0.23	-3.37	2.69	2.84	2.98	-2.92	2.79	-2.69
BS167	16.1	20.5	0.34	-3.35	2.91	2.87	3.07	2.26	-3.08	-2.64
BS235	8.3	15.3	-0.47	3.31	-3.00	-3.01	3.14	-2.99	2.81	1.90
BS247	16.8	20.0	-0.48	3.29	-3.02	2.34	-3.08	2.80	2.84	-2.78
BS346	8.2	15.4	-0.38	3.28	3.15	-2.92	-3.05	2.89	-3.17	2.08
BS236	16.0	21.9	-0.45	3.27	-2.92	-3.11	3.09	2.80	-3.08	2.12
BS237	14.8	18.8	-0.39	3.29	-3.15	-3.19	2.99	2.34	2.77	-2.79
BS245	10.6	16.5	-0.41	3.29	-3.02	3.01	-3.14	-2.69	3.05	1.67
BS246	10.8	17.0	-0.40	3.28	-2.90	2.97	-3.14	2.93	-3.02	2.12
BS345	11.4	17.3	-0.48	3.28	3.07	-3.06	-3.16	-2.87	3.02	2.15
BS2457	20.4	25.4	0.03	3.26	-2.16	3.22	-2.66	-2.27	3.26	-1.58
BS126	12.4	17.5	-0.36	-3.29	-3.08	2.95	3.17	2.95	-2.98	2.57
BS137	22.2	27.3	-0.42	-3.34	2.64	-3.21	3.00	2.56	2.01	-2.66
BS145	15.1	19.8	-0.63	-3.32	2.94	3.11	-3.10	-2.53	3.01	2.68
BS125	11.2	15.7	-0.65	-3.29	-3.08	2.95	3.09	-2.89	3.08	2.79
BS127	17.3	22.1	-0.45	-3.26	-3.15	2.87	3.07	2.44	2.66	-2.13
BS135	14.9	21.2	-0.58	-3.31	3.18	-2.85	3.07	-2.92	3.19	2.32
BS136	16.0	19.1	-0.51	-3.33	3.00	-2.92	3.07	2.95	-2.96	2.73
BS146	9.3	14.8	-0.43	-3.33	3.08	3.17	-3.05	2.98	-2.99	2.65
BS147	11.9	17.1	-0.55	-3.30	2.81	2.91	-3.15	2.97	2.46	-1.90
	$\mathbf{CBS}_{37}\mathbf{-}\mathbf{OBS}_{6}\mathbf{-}\mathbf{BH}_{26}$	Ms = 0), QM-A re	egion, H _s	_{2B} -to-ho	mo-H _{S5}	_A -to-Ar	$g359, r^2$	SCAN		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS1567	16.1	18.8	1.08	-2.99	3.08	3.04	3.29	-2.61	-2.59	-2.47
BS234	10.9	17.0	-0.67	3.38	-2.84	-2.88	-2.90	2.92	2.87	-0.47
BS123	16.9	22.8	-1.27	-3.37	-3.19	-3.11	3.18	3.02	2.33	2.59
BS124	17.8	22.8	-1.41	-3.41	-2.98	3.03	-3.24	2.91	2.88	2.58
BS134	17.3	21.0	-1.29	-3.36	3.02	-3.03	-3.17	2.85	2.90	2.44
BS2357	13.1	17.5	0.27	3.31	-2.85	-2.42	3.18	-2.74	2.89	-2.25
BS2356	17.7	21.1	0.46	3.28	-2.17	-2.90	3.23	-2.84	-2.10	2.45
BS2467	11.4	17.6	0.53	3.30	-2.57	3.11	-2.94	2.93	-2.83	-2.08
BS2367	17.6	22.8	0.37	3.32	-2.71	-3.00	3.19	2.65	-2.62	-1./3
BS3430	15.0	25.1	0.44	3.24	3.23	-1.98	-2.11	-2.42	-2.89	2.74
DS2437	13.9	22.0	0.00	2.51	-5.01	2.99	-5.05	-2.04	2.95	-0.92
DS130	17.4	21.0	0.59	-5.50	2.81	1.02	2.91	-2.90	-2.90	2.11
DS137	18.0	20.8	0.31	-5.59	2.32	2.81	2.91	-5.08	2.09	-2.85
BS107	17.5	21.0	0.73	-5.57	2.00	2.00	2.37	2.01	-5.08	-2.74
BS247 BS237	20.0	34.0	-0.42	3.33	-2.78	-1.72	-2.07	2.91	2.92	-2.08
BS237	23.9	28.7	-0.22	3.16	0.00	-3.05	-3.11	-2.01	2.20	2.17
BS126	18.0	23.7	-0.40	-3 31	-3.12	2 91	3.07	2.51	-2.84	1.24
BS120	22.2	23.7	-0.27	-3.34	2.64	-3.21	3.00	2.05	2.04	-2 66
BS137 BS145	17 3	27.5	-0.40	-3 37	2.69	3.03	-3.17	-2.50	2.66	1 66
BS125	10.6	17.1	-0.44	-3 29	-3.14	2.89	3.03	-2.94	2.89	1 37
BS125 BS127	22.5	25.1	-0.49	-3.22	-3.23	1.07	2.80	2.94	2.93	-2 74
	1.7.1	2 · 1 ·				· · · / 4				<u> </u>
BS135	11.5	17.5	-0.59	-3.30	2,60	-3,11	2.93	-2.92	2.83	2.13
BS135 BS136	11.5 15.9	17.5 22.1	-0.59	-3.30	2.60 3.02	-3.11	2.93	-2.92 2.72	2.83	2.13 0.73

BS146	13.4	17.7	-0.32	-3.33	2.91	2.73	-3.19	2.82	-2.90	1.87
BS147	17.6	21.3	-0.49	-3.28	2.13	2.88	-3.24	2.85	2.10	-2.38
	CBS	537-OBS6-BH26 (N	4s = 2), Q	QM-C re	gion, r ²	SCAN				
BS247	11.6	14.5	-0.41	3.31	-2.90	3.10	-3.03	2.85	2.75	-2.20

Table S41. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the $2CBS_{26,37}$ -BH₂₆₍₅₎ model.

	2CBS _{26,37} -BH ₂₆ ($_{5)}$ (Ms = 2), QM-A	region, l	H _{S2B} -to-F	he-H _{S5A} -	to-Arg35	59, r ² SCA	AN		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS13	18.1	24.4	-1.17	-3.31	2.85	-3.07	2.89	3.04	2.04	1.01
BS14	16.3	20.3	-1.35	-3.32	2.63	2.42	-3.20	2.72	2.17	2.60
BS14 (H _{S2B} -to-Phe-H _{S5A} -to-Arg96)	16.4	21.0	-1.37	-3.32	2.64	2.47	-3.19	2.72	2.15	2.59
BS14 (H _{S2B} -to-Val-H _{S5A} -to-Arg359)	21.6	24.8	-1.39	-3.31	2.60	2.41	-3.20	2.71	2.23	2.61
BS14 (H ₅₂₈ -to-Val-H ₅₅₄ -to-Arg96)	21.7	25.5	-1.41	-3.30	2.60	2.45	-3.19	2.72	2.22	2.61
BS257	27.1	29.9	0.30	3.34	-2.92	2.95	3.08	-2.93	2.31	-2.70
BS256	22.3	26.2	0.24	3.32	-3.20	2.93	3.09	-3.07	-1.57	1.98
BS267	30.7	31.4	0.41	3.34	-3.19	2.82	2.70	2.54	-2.03	-3.00
BS357	19.7	23.5	0.33	3.28	3.08	-3.02	3.23	-2.97	1.89	-2.20
BS457	22.1	26.5	0.28	3.33	3.16	3.23	-3.03	-2.55	1.85	-2.66
BS157	23.6	25.8	0.29	-2.94	3.26	3.19	3.18	-2.81	1.81	-2.28
BS167	22.3	27.3	0.38	-3.37	2.84	3.07	3.20	2.98	-2.49	-2.55
BS235	21.3	25.6	-0.43	3.31	-2.86	-2.97	3.18	-2.46	2.66	2.80
BS247	16.0	23.4	-0.38	3.31	-2.74	3.12	-3.03	2.87	2.43	-2.28
BS236	19.7	25.0	-0.53	3.31	-3.02	-3.16	3.15	3.00	-1.54	2.13
BS245	23.1	29.3	-0.56	3.30	-2.75	3.10	-2.72	-2.63	2.78	2.87
BS246	15.8	22.2	-0.41	3.27	-2.89	3.08	-3.15	2.92	-1.60	2.25
BS345	27.2	28.9	-0.53	3.26	3.13	-2.23	-2.60	-2.55	2.13	2.93
BS347	16.7	21.0	-0.31	3.30	3.13	-2.57	-3.08	3.05	1.95	-1.99
BS126	16.8	21.9	-0.57	-3.29	-3.00	2.95	3.19	3.04	-1.18	2.61
BS145	26.3	31.3	0.73	-3.27	3.11	3.24	-2.83	-2.70	2.73	2.94
BS135	28.5	32.6	0.56	-3.28	3.08	-2.53	3.14	-2.86	2.85	2.91
BS147	27.5	31.9	-0.43	-2.74	3.30	3.22	-3.06	3.02	2.17	-1.87
	2CBS _{26,37} -BH ₂₆ ($_{5)}$ (Ms = 1), QM-A	region, l	H _{S2B} -to-F	he-H _{S5A} -	to-Arg35	$59, r^2SCA$	٨N		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS2567	22.6	25.9	1.23	3.32	-2.07	3.17	3.26	-2.83	-2.38	-2.61
BS134	26.7	29.0	-1.40	-3.34	3.17	-2.19	-2.78	3.13	2.35	3.03
DCOTC	07.4	0 0 f	0.00			1.0.0	2 00	0.00	1 00	1 00

BS256	27.4	30.6	0.36	3.28	-3.12	1.26	3.09	-3.08	-1.92	1.90
BS267	38.0	39.4	0.80	3.32	-3.08	2.79	2.54	0.68	-2.42	-2.98
BS357	22.5	24.4								
BS457	21.4	25.1	0.51	3.35	3.03	3.12	-3.17	-3.05	1.06	-2.83
BS157	17.8	22.8	0.33	-3.40	3.12	2.98	3.03	-2.82	1.63	-2.49
BS346	17.3	25.3	-0.28	3.27	2.87	-2.97	-3.07	2.81	-2.66	2.02
BS237	23.3	26.4	-0.09	3.33	-3.20	-3.14	3.10	2.62	1.19	-2.25

BS245	20.9	27.6	-0.58	3.30	-3.01	3.01	-3.16	-2.93	2.63	2.57
BS246	19.8	25.9	-0.07	3.31	-2.93	2.96	-3.12	2.86	-1.71	0.25
BS345	23.4	28.8	-0.55	3.29	3.18	-2.73	-3.12	-2.77	2.10	2.42
BS137	17.1	22.9	-0.47	-3.32	3.01	-3.09	3.07	2.99	1.93	-2.03
BS125	20.7	25.8	-0.66	-3.29	-2.90	2.88	3.05	-2.75	2.74	2.89
BS135	23.0	26.1	-0.50	-3.33	2.86	-2.87	3.13	-2.50	2.30	2.99
BS136	17.1	22.9	-0.47	-3.32	3.00	-3.09	3.07	2.99	1.94	-2.03
	2CBS26,37-BH266	(Ms = 0), QM-A	A region, l	H _{S2B} -to-F	he-H _{S5A} -	to-Arg35	59, r ² SCA	AN		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS2567	19.3	22.1	1.28	3.32	-3.17	3.02	3.17	-3.01	-2.14	-2.81
BS134	19.0	22.1	-1.29	-3.32	3.17	-3.01	-3.18	3.01	2.16	2.82
BS2367	21.7	25.0	0.66	3.36	-2.82	-2.93	3.20	2.75	-2.21	-2.71
BS357	35.4	37.4	0.57	2.42	2.67	-3.14	2.83	-3.09	1.03	-2.88
BS167	31.9	36.9	0.49	-3.33	2.49	2.80	2.09	1.81	-2.80	-2.89
BS246	15.6	22.1	0.53	3.32	-2.82	3.08	-3.07	2.88	-2.07	-2.38
BS137	25.7	29.9	-0.27	-3.31	2.72	-3.14	2.92	2.36	1.61	-2.43
BS145	21.2	24.9	-0.69	-3.36	2.86	2.95	-3.20	-2.76	2.21	2.69
BS125	23.4	29.1	-0.50	-3.28	-2.95	2.72	2.97	-2.82	2.47	1.77
BS136	26.7	33.3	-0.23	-3.30	2.80	-3.11	2.88	2.44	-2.55	1.61
	20	CBS _{26,37} -BH ₂₆₍₅₎ (Ms = 2),	QM-C re	egion, r ² S	SCAN				
BS14	24.0	21.5	-1.36	-3.32	2.62	2.35	-3.20	2.71	2.25	2.64

Table S42. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the $2CBS_{26,37}$ -BH₂₆₍₃₎ model.

	2CBS _{26,37} -BH ₂₆₍₃₎	Ms = 2), QM-A reg	gion, H _{S21}	B-to-Phe-	H _{S5A} -to-	Arg359,	r ² SCAN	J		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS13	10.3	25.7	-1.20	-3.32	2.70	-3.08	2.92	3.06	2.30	0.95
BS14	9.9	21.4	-1.42	-3.30	2.21	2.47	-3.20	2.75	2.58	2.56
BS14 (H _{52B} -to-Phe-H _{55A} -to-Arg96)	11.9	22.0	-1.46	-3.28	1.53	2.70	-3.15	2.73	2.90	2.62
BS14 (Hs2B-to-Val-Hs3A-to-Arg359)	8.6	18.4	-1.46	-3.29	1.86	2.54	-3.18	2.74	2.81	2.59
BS14 (H _{52B} -to-Val-H _{85A} -to-Arg96)	9.5	19.3	-1.48	-3.28	1.69	2.65	-3.16	2.74	2.85	2.60
BS134	32.2	42.3	-1.41	-0.73	3.17	-2.47	-3.06	3.10	2.35	2.77
BS257	20.6	33.0	0.37	3.31	-3.05	2.97	3.09	-2.93	2.40	-2.62
BS267	21.8	30.1	0.27	3.34	-3.22	2.85	2.77	2.55	-1.89	-2.98
BS357	12.2	25.2	0.40	3.29	3.14	-3.00	3.27	-2.95	1.75	-2.30
BS157	12.9	25.3	0.45	-3.00	2.58	3.02	3.14	-2.91	3.01	-2.54
BS235	15.4	28.7	-0.34	3.28	-2.61	-2.94	3.20	-2.54	2.59	2.69
BS247	11.9	26.5	-0.52	3.34	-2.87	3.06	-3.07	2.97	2.58	-2.11
BS236	14.9	28.6	-0.33	3.33	-2.19	-3.10	3.20	3.01	-2.74	2.22
BS237	13.8	26.7	-0.32	3.33	-3.04	-3.02	3.21	3.07	2.55	-2.39
BS245	18.8	33.1	-0.45	3.32	-2.84	3.13	-2.77	-2.63	2.75	2.78
BS345	18.1	29.4	-0.39	3.27	3.19	-2.22	-2.73	-2.51	1.85	2.91
BS347	12.4	24.2	-0.45	3.31	2.87	-2.39	-3.08	3.08	2.35	-2.11

BS127	15.4	31.0	-0.61	-3.29	-2.87	3.03	3.29	3.19	2.70	-1.71
BS147	15.3	30.8	0.41	-3.28	2.51	3.15	-3.06	3.10	3.23	-2.14
	2CBS _{26,37} -BH ₂₆₍₃₎	Ms = 1), QM-A reg	gion, H _{S21}	B-to-Phe-	H _{S5A} -to-	Arg359,	r ² SCAN	J		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS2567	15.5	27.2	1.30	3.31	-1.86	3.20	3.23	-2.86	-2.62	-2.55
BS134	17.5	30.3	-1.43	-3.34	3.17	-2.45	-2.62	3.26	2.38	2.94
BS256	24.4	33.6	0.40	3.26	-2.81	0.21	3.17	-3.05	-2.04	2.34
BS267	23.5	39.2	-0.66	3.28	-3.13	2.97	1.63	2.85	-2.37	-2.89
BS457	10.7	25.7	0.45	3.35	2.91	3.12	-3.19	-3.02	1.21	-2.86
BS236	18.5	32.1	-0.20	3.27	-2.37	-3.20	3.04	2.29	-2.82	1.76
BS237	22.2	34.5	-0.30	3.29	-3.04	-3.17	3.03	2.43	2.34	-2.72
BS245	16.3	30.5	-0.49	3.33	-2.97	3.04	-3.19	-2.96	2.53	2.43
BS345	11.7	26.2	-0.41	3.28	3.11	-3.01	-2.69	-2.72	1.79	2.45
BS126	16.3	28.4	-0.66	-3.32	-2.95	2.56	2.71	2.98	-1.80	2.49
BS137	12.1	26.1	-0.56	-3.32	2.80	-3.11	3.08	3.04	2.26	-1.99
BS145	12.7	25.9	-0.55	-3.29	3.10	3.17	-2.93	-2.45	2.13	2.82
BS127	18.5	32.6	-0.73	-3.27	-3.11	2.70	2.74	3.06	2.56	-1.82
BS146	14.5	28.1	-0.46	-3.36	2.92	3.14	-3.19	2.95	-2.29	2.59
	2CBS _{26,37} -BH ₂₆₍₃₎	Ms = 0), QM-A reg	gion, H _{S21}	B-to-Phe-	H _{S5A} -to-	Arg359,	r ² SCAN	J		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS134	11.5	23.8	-1.33	-3.32	3.12	-3.02	-3.19	3.06	2.24	2.78
BS2356	17.9	25.6	0.58	3.31	-2.44	-2.53	3.25	-3.01	-2.30	2.48
BS1267	10.1	24.3	0.31	-3.30	-2.99	3.13	3.26	3.03	-1.52	-2.16
BS2367	11.2	23.8	0.55	3.34	-3.05	-3.02	3.17	2.78	-1.77	-2.51
BS3457	20.7	34.2	0.19	3.29	3.12	-2.56	-2.69	-2.83	1.75	-0.48
BS2467	7.1	21.7	0.40	3.33	-2.93	3.07	-3.09	2.91	-1.91	-2.29
BS345	9.9	24.2	-0.36	3.30	3.00	-3.14	-3.25	-3.02	1.50	2.20
BS137	19.2	32.8	-0.30	-3.32	2.75	-3.10	2.95	2.44	1.66	-2.52
BS145	10.7	23.6	-0.57	-3.35	3.07	3.02	-3.18	-2.80	1.77	2.55
BS127	25.5	37.4	-0.44	-3.27	-3.13	2.15	2.74	2.59	2.49	-2.62
BS135	7.2	21.6	-0.45	-3.34	2.94	-3.08	3.08	-2.90	1.92	2.31
	2CBS	526,37-BH26(3) (Ms	= 2), QM	I-C regio	on, r ² SC	AN				
BS14	21.4	21.5	-1.44	-3.29	1.69	2.52	-3.17	2.74	2.89	2.66

Table S43. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the $2CBS_{26,37}$ -BH₃₇ model.

	2CBS_{26,37}-BH ₃₇ (Ms = 2), QM-A region, H _{S2B} -to-Phe-H _{S5A} -to-Arg359, r^{2} SCAN											
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7		
BS234	11.0	18.4	-1.39	3.35	-2.64	-2.72	-2.82	3.19	3.02	3.04		
BS124	26.5	31.0	-1.37	-2.64	-2.69	3.31	-2.78	3.22	2.98	3.26		
BS14	9.6	15.9	-1.35	-3.29	2.40	2.51	-3.18	2.75	2.56	2.33		
BS257	13.5	19.7	0.44	3.38	-3.09	3.08	3.22	-2.90	2.13	-2.58		
BS356	12.9	18.0	0.32	3.30	2.96	-3.07	3.06	-2.92	-2.70	2.54		

BS467	10.1	17.9	0.48	3.30	2.98	2.93	-3.18	2.85	-2.73	-2.77
BS256	10.4	14.9	0.30	3.36	-3.02	2.06	3.25	-2.99	-2.20	2.76
BS267	16.1	21.3	0.52	3.32	-3.04	2.06	3.20	2.96	-2.73	-2.75
BS357	14.8	20.2	0.37	3.27	3.14	-3.09	3.15	-3.09	1.72	-1.92
BS456	12.7	20.6	0.34	3.35	3.21	3.08	-3.03	-2.53	-2.65	1.90
BS457	15.0	22.0	0.41	3.33	3.16	3.12	-3.15	-2.95	2.72	-2.81
BS156	8.1	15.4	0.21	-3.36	3.00	3.23	3.06	-2.83	-2.48	3.03
BS157	5.7	14.9	0.44	-3.40	3.15	3.04	3.07	-2.78	3.02	-2.54
BS167	5.3	13.4	0.34	-3.40	3.04	3.04	3.20	3.00	-2.52	-2.64
BS235	6.2	13.0	-0.40	3.31	-2.95	-3.01	3.18	-2.47	2.76	2.80
BS247	7.5	14.0	-0.32	3.26	-2.86	3.08	-3.03	2.95	2.64	-2.21
BS346	3.6	10.5	-0.45	3.33	3.11	-2.96	-3.05	2.87	-2.16	2.67
BS346 (Hsyn-to-Phe-Hsyn-to-Arg96)	6.6	14.8	-0.46	3.33	3.11	-2.97	-3.05	2.88	-2.17	2.72
BS346 (Ham-to-Val-Hau-to-Arr359)	8.8	15.6	-0.42	3.33	3.11	-2.96	-3.05	2.88	-2.24	2.75
BS346 (Hamito Val Harvito Arg96)	5.6	11.1	-0.41	3.34	3.11	-2.95	-3.05	2.87	-2.23	2.69
BS236	10.1	15.9	-0.36	3.33	-3.18	-3.17	3.14	2.99	-2.16	2.73
BS237	12.6	20.2	-0.32	3.31	-3.14	-3.02	3.10	2.44	2.54	-1.52
BS245	15.0	22.4	-0.52	3.28	-2.27	2.92	-2.58	-2.51	2.92	2.33
BS246	11.6	16.5	-0.50	3.33	-2.55	2.08	-3.08	3.03	-1.60	2.84
BS345	9.0	15.7	-0.51	3.31	3.12	-2.93	-2.74	-2.65	2.85	2.89
BS347	9.3	16.8	-0.43	3.30	3.13	-3.00	-3.16	2.93	1.93	-1.19
BS126	13.1	19.4	-0.41	-3.28	-2.93	3.28	3.24	3.04	-2.51	3.05
BS137	10.4	18.2	-0.69	-3.30	2.88	-2.93	3.05	3.03	2.76	-1.05
BS145	16.5	22.9	-0.41	-3.27	3.21	3.35	-2.89	-2.48	2.93	3.08
BS125	13.1	19.3	-0.41	-3.33	-2.80	3.34	3.19	-2.51	2.89	3.12
BS127	14.0	20.0	-0.39	-3.35	-2.75	3.11	3.30	3.12	2.83	-2.11
BS135	13.3	20.8	-0.49	-3.27	3.25	-2.51	3.14	-2.43	3.00	2.85
BS136	12.2	18.2	-0.62	-3.27	3.06	-2.90	3.26	3.13	-1.77	2.77
BS146	13.2	18.9	-0.57	-3.31	3.09	3.37	-3.14	2.99	-1.78	3.10
BS147	24.5	29.1	-0.45	-1.98	3.16	3.09	-3.05	2.92	2.64	-2.50
	2CBS _{26,37} -BH ₃₇ (Ms	= 1), QM-A regi	on, H _{S2B}	-to-Phe-	H _{S5A} -to	-Arg359	$9, r^2 SCA$	AN	1	1
	$\Delta E(\text{polarized QM})$	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS3567	12.7	18.8	1.23	3.28	3.17	-2.04	3.25	-2.84	-2.57	-2.45
BS234	10.2	17.9	-1.18	3.35	-2.86	-2.89	-2.93	2.77	2.64	2.63
BS256	11.7	17.6	0.44	3.35	-3.05	1.59	3.15	-3.09	-2.85	2.29
BS367	24.0	30.3	0.46	3.31	2.85	-3.24	2.46	2.17	-2.97	-3.03
BS456	11.4	19.3	0.55	3.37	3.10	2.97	-3.17	-3.04	-2.84	1.09
BS156	6.1	15.4	0.37	-3.40	2.96	3.11	3.03	-2.84	-2.48	1.60
BS157	10.1	16.9	0.40	-3.39	3.09	2.98	3.02	-2.94	2.05	-2.73
BS16/	13.3	21.4	0.42	-5.36	2.95	2.88	2.21	2.78	-2.67	-2.78
BS235	8./	14.6	-0.42	3.33	-2.99	-3.04	3.15	-3.01	1.97	2.65
BS24/	9.0	14.4	-0.25	3.28	-2.91	3.02	-3.03	2.80	1.85	-2.84
B\$340	4.4	15.4	-1.41	5.55 2.21	3.12	-2.98	-5.08	2.96	-3.12	2.76
BS230	11.0	18.1	-0.37	5.51	-5.21	-5.19	3.04	2.45	-2.8/	2.57
BS237	16.6	22.5	-0.20	5.31	-3.18	-2.79	3.07	2.31	1.75	-2.68

BS245	12.2	20.5	-0.49	3.32	-3.01	2.00	-2.80	-2.70	2.90	2.58
BS246	10.1	17.4	-0.27	3.35	-3.13	1.77	-3.21	2.90	-2.15	2.48
BS345	9.1	14.8	-0.42	3.32	3.05	-3.13	-3.22	-2.88	2.30	2.79
BS126	9.5	16.7	-0.45	-3.31	-2.94	3.10	3.18	2.99	-2.35	1.71
BS145	10.8	18.5	-0.61	-3.31	3.17	2.84	-2.96	-2.45	2.87	2.62
BS125	11.4	18.5	-0.51	-3.33	-3.13	3.15	3.07	-2.87	2.67	2.97
BS127	12.6	18.4	-0.37	-3.35	-3.10	2.98	3.05	2.95	2.67	-2.58
BS135	7.3	13.8	-0.57	-3.29	2.87	-3.02	3.02	-2.76	2.87	2.85
BS136	12.2	18.5	-0.60	-3.27	2.88	-3.07	2.77	2.90	-2.27	2.68
BS146	8.1	14.8	-0.53	-3.33	3.02	2.67	-3.20	2.92	-1.63	2.47
BS147	9.1	15.0	-0.45	-3.34	3.16	3.09	-3.17	2.91	2.64	-2.51
	2CBS _{26,37} -BH ₃₇ (Ms	= 0), QM-A regi	on, H _{S2B}	-to-Phe-	H _{S5A} -to	-Arg359	θ , r ² SCA	N		
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS1567	15.6	20.5	1.16	-2.88	3.17	3.17	3.22	-2.86	-2.53	-2.67
BS234	15.2	20.5	-1.18	2.89	-3.16	-3.19	-3.22	2.87	2.58	2.65
BS123	12.8	20.7	-1.33	-3.34	-3.20	-3.14	3.00	2.93	2.66	2.61
BS124	7.9	14.8	-1.29	-3.25	-3.02	3.11	-3.16	3.04	2.79	2.17
BS257	25.9	30.6	0.44	1.80	-3.10	1.60	2.99	-2.93	2.11	-2.69
BS2356	15.9	20.2	0.29	3.31	-2.51	-2.93	3.18	-2.73	-2.00	2.66
BS256	27.1	32.2	0.41	1.96	-3.09	1.58	3.03	-3.08	-2.84	2.32
BS2357	11.1	17.6	0.43	3.32	-2.47	-2.72	3.23	-2.95	2.47	-2.00
BS2367	13.8	20.8	0.53	3.34	-3.15	-2.90	3.14	2.75	-2.35	-2.07
BS3456	14.3	19.5	0.12	3.32	3.12	-2.96	-2.96	-2.52	-1.36	2.76
BS157	14.7	20.3	0.72	-3.39	2.93	2.88	2.91	-2.94	0.19	-2.76
BS167	18.8	26.4	0.54	-3.35	2.73	2.77	2.02	1.63	-2.84	-2.88
BS2346	18.8	24.1	-0.37	3.33	-1.40	-2.70	-2.84	2.92	-2.38	2.71
BS236	27.0	32.4	-0.33	1.88	-3.18	-3.18	2.81	2.42	-2.83	2.55
BS245	13.2	20.5	-0.36	3.34	-3.13	1.91	-3.15	-2.98	2.18	2.40
BS3467	7.5	15.6	0.42	3.33	3.07	-2.79	-3.11	2.93	-2.25	-2.13
BS1367	13.3	20.5	0.28	-3.34	3.13	-1.96	3.15	3.00	-2.12	-2.36
BS145	13.6	20.5	-0.64	-3.35	3.03	2.76	-3.17	-2.78	2.61	2.30
BS125	7.5	15.5	-0.46	-3.33	-3.07	2.83	3.10	-2.92	2.27	2.11
BS127	15.1	19.8	-0.07	-3.32	-3.08	3.02	3.08	2.68	0.77	-2.71
BS135	14.5	19.8	-0.39	-3.28	2.72	-3.03	2.93	-2.82	1.51	2.70
BS136	16.8	22.5	-0.39	-3.25	2.13	-3.14	2.62	2.36	-2.61	2.62
BS146	11.0	17.6	-0.45	-3.32	2.52	2.72	-3.24	2.94	-2.47	2.00
BS147	15.6	20.2	-0.32	-3.32	2.52	2.94	-3.18	2.73	2.02	-2.65
	2CBS	5 26,37 -BH 37 (Ms =	2), QM	-C regio	n, r ² SC	AN				
BS346	16.5	17.8	-0.39	3.32	3.12	-2.85	-3.04	2.86	-2.21	2.57

Table S44. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the CBS_{26} - BH_{26} - TH_5 model.

CBS₂₆-BH₂₆-TH₅ (Ms = 2), QM-A region, r^2 SCAN											
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	

BS13	16.8	17.8	-1.10	-3.23	2.58	-3.19	2.61	2.18	1.99	2.59		
BS14	24.2	24.6	-1.18	-3.27	2.49	2.55	-3.16	2.07	2.17	2.83		
BS256	36.8	35.5	0.28	3.23	-3.04	1.42	3.04	-2.49	-1.92	2.71		
BS357	28.0	27.0	0.20	3.31	3.12	-3.10	3.25	-2.41	2.03	-2.83		
BS457	22.3	23.3	0.25	3.32	3.05	3.28	-3.04	-2.24	1.97	-2.84		
BS157	27.7	27.7	0.23	-2.89	2.93	2.97	3.12	-2.08	2.21	-2.70		
BS236	16.4	16.2	-0.33	3.32	-3.07	-3.24	3.13	2.31	-1.44	2.78		
BS246	22.3	23.1	-0.30	3.25	-2.96	3.18	-3.11	2.24	-1.54	2.75		
BS345	20.4	21.4	-0.59	3.30	2.91	-2.99	-2.69	-2.01	2.50	3.00		
BS126	16.9	17.8	-0.46	-3.30	-2.96	3.21	3.06	2.32	-0.96	2.84		
BS145	26.8	27.8	-0.40	-3.30	3.13	3.34	-2.56	-1.94	2.31	3.09		
BS135	28.4	29.2	-0.57	-3.25	3.21	-2.86	3.19	-1.71	2.43	3.03		
BS17	25.9	27.2	-0.07	-3.37	2.98	2.77	2.34	1.66	1.20	-2.88		
CBS_{26} - BH_{26} - TH_5 (Ms = 1), QM-A region, r ² SCAN												
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7		
BS2567	28.2	28.3	1.07	3.39	-2.98	3.33	3.23	-2.33	-1.99	-2.63		
BS134	31.9	32.5	-1.21	-2.60	3.13	-2.76	-2.26	2.34	2.26	3.02		
BS2356	25.8	24.8	0.03	3.31	-2.68	-2.92	3.12	-1.75	-1.08	2.97		
BS267	34.2	34.1	0.58	3.20	-3.01	2.95	1.65	1.87	-2.28	-3.02		
BS357	28.5	28.4	0.36	3.35	2.80	-3.23	2.72	-2.41	1.18	-2.77		
BS457	31.2	31.3	0.26	3.04	2.82	2.37	-3.05	-2.24	1.74	-2.86		
BS157	20.2	21.6	0.42	-3.37	3.07	2.90	2.92	-2.24	1.32	-2.68		
BS236	16.6	18.4	-1.43	3.32	-3.19	-3.28	3.02	2.41	-2.28	2.98		
BS246	26.4	27.5	-0.21	3.25	-3.13	2.72	-3.21	2.26	-1.84	2.10		
BS347	23.2	23.2	-0.30	3.30	3.02	-3.12	-2.93	3.00	1.61	-2.61		
BS126	22.7	23.5	-0.39	-3.29	-2.94	2.68	2.75	2.18	-1.94	2.86		
BS137	23.3	23.3	-0.41	-3.26	3.18	-2.82	3.13	2.35	1.97	-2.03		
BS145	22.9	22.9	-0.63	-3.32	2.76	3.09	-2.97	-2.11	2.27	2.98		
BS135	21.9	22.4	-0.60	-3.26	2.69	-3.13	3.05	-1.89	2.16	2.91		
BS147	23.7	23.9	-0.31	-3.33	3.18	3.21	-2.82	2.42	2.24	-2.37		
		CBS ₂₆ -BH ₂₆ -TH ₅	(Ms = 0)	, QM-A	region, r	² SCAN						
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7		
BS2567	26.9	27.3	1.13	3.35	-3.14	3.15	2.54	-2.34	-2.13	-2.87		
BS134	26.7	27.2	-1.14	-3.37	3.15	-3.14	-2.54	2.32	2.16	2.89		
BS2456	22.0	22.1	0.34	3.26	-2.84	3.27	-2.98	-2.38	-1.91	2.68		
BS1256	22.5	22.1	0.16	-3.30	-3.02	3.19	3.15	-2.02	-1.42	2.91		
BS2356	19.9	18.8	0.32	3.33	-2.79	-3.06	3.16	-2.53	-2.07	2.84		
BS347	22.4	22.2	-0.18	3.30	3.03	-3.18	-3.15	1.98	1.44	-2.89		
BS126	36.2	37.2	-0.11	-3.28	-3.15	2.45	2.56	2.17	-2.01	1.56		
BS137	22.0	22.0	-0.36	-3.27	2.90	-3.27	3.00	2.35	1.91	-2.68		
BS145	30.1	29.4	-0.35	-3.32	2.80	3.06	-2.99	-2.44	1.38	2.17		
		CBS ₂₆ -BH ₂₆ -TH ₅	(Ms = 2)	, QM-C	region, r	² SCAN						
BS236	23.0	19.9	-0.26	3.31	-2.94	-3.21	3.11	2.25	-1.60	2.76		

CBS ₂₆ -2 TH _{4,5} (Ms = 2), QM-A region, r^2 SCAN										
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS567	34.2	38.2	1.05	3.07	3.05	1.83	2.56	-2.28	-2.62	-3.01
BS13	15.2	22.5	-1.07	-3.21	2.38	-3.15	2.20	2.02	2.83	2.37
BS14	23.7	28.7	-1.16	-3.28	1.93	2.49	-2.85	1.97	2.47	2.75
BS257	19.0	26.5	0.33	3.27	-2.97	3.06	2.59	-2.21	2.40	-2.68
BS356	14.9	21.1	0.30	3.31	2.95	-3.11	2.53	-2.41	-2.63	2.65
BS467	21.6	29.0	0.43	3.28	3.14	3.18	-2.79	1.77	-2.64	-2.76
BS256	22.7	30.2	0.36	3.32	-3.02	3.07	2.62	-2.53	-2.76	2.58
BS267	16.6	24.0	0.44	3.46	-2.95	3.26	2.66	2.32	-2.68	-2.76
BS357	20.0	26.2	0.22	3.35	3.17	-3.08	2.71	-2.46	2.64	-2.85
BS367	19.7	26.5	0.40	3.40	3.21	-2.93	2.64	2.17	-2.71	-2.45
BS456	25.0	31.6	0.23	3.21	2.91	2.21	-2.68	-2.25	-2.71	2.56
BS457	24.8	32.1	0.14	3.28	2.89	2.80	-2.65	-2.14	2.15	-2.73
BS156	17.4	23.8	0.24	-2.93	2.90	3.18	2.45	-2.28	-2.62	2.66
BS157	16.3	22.9	0.17	-2.91	3.19	2.95	2.50	-2.10	2.61	-2.67
BS167	15.1	21.5	0.35	-2.86	3.17	3.27	2.51	2.43	-2.48	-2.61
BS235	11.0	18.3	-0.41	3.31	-2.84	-2.98	2.83	-1.88	2.65	2.81
BS247	14.3	22.5	-0.31	3.24	-2.92	3.10	-2.55	2.40	2.62	-2.07
BS346	10.1	16.6	-0.37	3.31	3.00	-3.13	-2.62	2.24	-1.76	2.73
BS236	18.5	24.0	-0.18	3.30	-2.04	-2.88	2.69	2.15	-2.27	2.73
BS237	24.6	29.7	-0.27	3.26	-1.81	-2.60	2.71	2.18	2.67	-2.45
BS245	13.7	21.5	-0.48	3.23	-3.01	2.81	-2.48	-2.08	2.81	2.59
BS246	17.9	24.4	-0.25	3.24	-2.78	3.00	-2.54	2.39	-2.47	2.86
BS345	8.9	15.4	-0.54	3.30	2.94	-3.09	-2.58	-2.27	2.72	2.86
BS347	17.2	25.2	-0.31	3.32	3.13	-3.20	-2.44	2.46	2.86	-2.34
BS126	15.1	20.4	-0.53	-3.29	-2.78	3.25	2.57	2.27	-0.55	2.93
BS137	23.5	31.9	-0.58	-3.23	3.21	-2.45	2.57	2.29	2.96	-0.77
BS145	21.4	28.0	-0.54	-3.30	2.85	3.23	-2.48	-1.97	2.67	2.98
BS125	17.7	24.2	-0.48	-3.32	-2.60	3.34	2.65	-1.88	2.80	3.06
BS17	15.8	22.1	-0.14	-3.33	2.08	2.82	2.35	2.31	1.43	-2.80
BS135	19.8	27.6	-0.59	-3.23	3.23	-2.75	2.62	-1.69	3.06	2.87
BS136	30.5	35.0	-0.35	-2.20	3.06	-2.56	2.60	2.29	-1.90	2.75
BS146	20.1	26.1	-0.46	-3.31	3.01	3.25	-2.60	2.33	-1.65	2.99
CBS_{26} -2 $TH_{4,5}$ (Ms = 1), QM-A region, r ² SCAN										
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS567	37.6	42.1	1.14	1.44	2.59	2.41	2.49	-2.33	-2.68	-3.02
BS234	7.8	15.7	-1.05	3.32	-2.77	-2.90	-2.41	2.17	2.53	2.68
BS123	25.9	33.0	-1.11	-3.12	-1.36	-2.95	2.68	2.28	2.88	2.76
BS124	21.6	27.5	-1.10	-3.32	-2.76	3.31	-2.36	2.26	2.70	3.00
BS257	23.3	29.7	0.48	3.27	-3.07	2.94	2.25	-2.45	1.50	-2.79
BS356	22.5	30.0	0.33	3.30	2.73	-3.19	1.98	-2.43	-2.78	2.02
BS256	25.7	32.9	0.40	3.23	-3.00	1.57	2.56	-2.54	-2.85	2.46

Table S45. The relative polarized QM and QM/MM energies (kcal/mol) relative to the lowest-energy model (see Figure 2k in the manuscript) and Mulliken spin populations of Mo and 7 Fe ions for the CBS_{26} -2TH_{4,5} model.

BS267	23.5	30.5	0.48	3.11	-2.96	3.08	1.60	2.31	-2.70	-2.83
BS357	27.5	32.9	0.21	3.24	1.28	-2.94	2.63	-2.44	2.64	-2.74
BS367	20.6	26.2	0.45	3.30	2.97	-3.23	2.53	2.09	-2.88	-2.94
BS456	31.8	38.7	0.30	3.24	2.79	1.10	-2.62	-2.40	-2.82	2.10
BS157	12.6	19.8	0.11	-3.35	2.92	2.91	2.40	-2.15	2.25	-2.67
BS167	7.1	15.6	0.40	-3.33	2.89	3.09	2.39	2.39	-2.66	-2.66
BS235	15.3	22.8	-0.45	3.27	-2.83	-3.08	2.31	-2.65	2.49	2.72
BS247	13.8	20.4	-0.20	3.25	-2.97	3.09	-2.55	2.12	1.95	-2.80
BS346	17.2	23.3	-0.29	3.28	2.20	-3.13	-2.59	2.27	-2.56	2.72
BS236	11.3	18.0	-0.08	3.36	-3.13	-3.21	2.62	2.19	-2.50	2.66
BS237	16.2	22.9	-0.21	3.32	-3.01	-2.93	2.67	2.28	2.64	-2.70
BS245	20.0	26.5	-0.26	3.24	-2.93	2.80	-2.42	-2.46	1.37	2.33
BS246	18.3	27.0	-0.11	3.24	-3.18	2.70	-2.67	2.26	-2.66	2.23
BS345	15.4	21.0	-0.22	3.31	2.98	-3.07	-2.45	-1.75	-0.36	2.85
BS347	14.1	21.3	-0.21	3.29	2.93	-3.20	-2.73	2.35	2.22	-2.66
BS126	13.0	19.6	-0.20	-3.27	-2.84	3.09	2.57	2.25	-2.46	2.84
BS137	15.9	23.2	-0.40	-3.24	2.96	-2.66	2.46	2.36	2.89	-2.20
BS145	19.1	25.3	-0.61	-3.32	2.76	2.53	-2.73	-2.00	2.68	2.68
BS125	17.0	24.3	-0.46	-3.32	-3.01	2.90	2.61	-2.08	2.69	2.69
BS127	12.1	19.5	-0.30	-3.31	-2.86	3.15	2.58	2.34	2.72	-2.14
BS135	15.0	21.7	-0.53	-3.26	2.87	-3.07	2.57	-2.15	2.77	2.80
BS136	11.6	18.4	-0.38	-3.23	2.95	-3.06	2.55	2.28	-1.79	2.80
BS146	22.1	28.0	-0.45	-3.31	2.64	2.71	-2.83	2.19	-1.85	2.90
BS147	15.2	21.7	-0.45	-3.36	3.14	3.15	-2.72	2.38	2.59	-2.65
	CBS	26-2TH _{4,5} (Ms =	0), QM-	A region	n, r ² SCA	N				
	ΔE (polarized QM)	$\Delta E(QM/MM)$	Mo	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7
BS1567	14.0	20.4	0.99	-2.86	3.13	3.21	2.49	-2.16	-2.48	-2.57
BS234	14.0	20.3	-1.01	2.87	-3.15	-3.20	-2.50	2.15	2.49	2.59
BS123	22.9	28.4	-1.06	-3.30	-3.01	-2.99	2.65	2.31	2.76	2.95
BS124	17.5	22.8	1.04	2.22	2.09	2.89	2 67	2 25	2 17	2.77
BS134			-1.04	-3.33	-5.08	2.07	-2.07	2.25	2.4/	
	15.7	23.8	-1.04	-3.33	2.98	-3.21	-2.70	2.23	2.47	2.59
BS2457	15.7 13.3	23.8 20.9	-1.04 -1.11 0.26	-3.33 -3.42 3.25	-3.08 2.98 -2.82	-3.21 3.19	-2.07 -2.70 -2.29	2.23 2.23 -1.91	2.47 2.87 2.49	2.59 -2.64
BS2457 BS2467	15.7 13.3 19.9	23.8 20.9 25.6	-1.04 -1.11 0.26 0.25	-3.33 -3.42 3.25 3.25	-3.08 2.98 -2.82 -2.81	-3.21 3.19 3.14	-2.70 -2.29 -2.57	2.23 2.23 -1.91 1.92	2.47 2.87 2.49 -0.77	2.59 -2.64 -2.70
BS2457 BS2467 BS2356	15.7 13.3 19.9 19.6	23.8 20.9 25.6 25.3	-1.04 -1.11 0.26 0.25 0.20	-3.33 -3.42 3.25 3.25 3.31	-3.08 2.98 -2.82 -2.81 -2.49	-3.21 3.19 3.14 -2.85	-2.70 -2.29 -2.57 2.62	2.23 2.23 -1.91 1.92 -2.39	2.47 2.87 2.49 -0.77 -1.65	2.59 -2.64 -2.70 2.75
BS2457 BS2467 BS2356 BS267	15.7 13.3 19.9 19.6 29.4	23.8 20.9 25.6 25.3 36.7	-1.04 -1.11 0.26 0.25 0.20 0.63	-3.33 -3.42 3.25 3.25 3.31 3.18	-3.08 2.98 -2.82 -2.81 -2.49 -3.05	-3.21 3.19 3.14 -2.85 3.02	-2.07 -2.70 -2.29 -2.57 2.62 1.08	2.23 2.23 -1.91 1.92 -2.39 1.32	2.47 2.87 2.49 -0.77 -1.65 -2.98	2.59 -2.64 -2.70 2.75 -2.92
BS2457 BS2467 BS2356 BS267 BS3567	15.7 13.3 19.9 19.6 29.4 17.6	23.8 20.9 25.6 25.3 36.7 22.9	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09	-3.21 3.19 3.14 -2.85 3.02 -2.88	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64	2.23 2.23 -1.91 1.92 -2.39 1.32 -2.28	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45	2.59 -2.64 -2.70 2.75 -2.92 -2.75
BS2457 BS2467 BS2356 BS267 BS3567 BS367	15.7 13.3 19.9 19.6 29.4 17.6 26.0	23.8 20.9 25.6 25.3 36.7 22.9 32.5	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23	2.23 2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56 0.35	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36	2.23 2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.46	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156 BS157	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8 16.6	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0 23.1	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56 0.35 0.54	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30 -3.33	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18 2.34	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02 3.11	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36 2.37	2.23 2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.46 -2.29	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64 0.41	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90 -2.70
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156 BS157 BS167	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8 16.6 13.8	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0 23.1 21.6	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56 0.35 0.54 0.60	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30 -3.33 -3.32	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18 2.34 2.73	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02 3.11 2.73	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36 2.37 2.21	2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.46 -2.29 1.12	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64 0.41 -2.65	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90 -2.70 -2.77
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156 BS157 BS167 BS3456	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8 16.6 13.8 12.8	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0 23.1 21.6 18.7	$\begin{array}{c} -1.04 \\ -1.11 \\ 0.26 \\ 0.25 \\ 0.20 \\ 0.63 \\ 1.02 \\ 0.56 \\ 0.35 \\ 0.54 \\ 0.60 \\ 0.20 \end{array}$	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30 -3.33 -3.32 3.30	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18 2.34 2.73 2.99	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02 3.11 2.73 -3.11	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36 2.37 2.21 -2.60	2.23 2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.46 -2.29 1.12 -2.28	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64 0.41 -2.65 -1.89	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90 -2.70 -2.77 2.81
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156 BS157 BS167 BS167 BS3456 BS236	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8 16.6 13.8 12.8 19.8	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0 23.1 21.6 18.7 27.4	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56 0.35 0.54 0.60 0.20 -0.18	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30 -3.33 -3.32 3.30 3.21	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18 2.34 2.73 2.99 -3.22	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02 3.11 2.73 -3.11 -3.21	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36 2.37 2.21 -2.60 2.00	2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.46 -2.29 1.12 -2.28 1.97	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64 0.41 -2.65 -1.89 -2.78	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90 -2.70 -2.77 2.81 2.61
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156 BS157 BS167 BS3456 BS236 BS237	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8 16.6 13.8 12.8 19.8 18.8	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0 23.1 21.6 18.7 27.4 24.4	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56 0.35 0.54 0.60 0.20 -0.18 -0.17	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30 -3.33 -3.32 3.30 3.21 3.32	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18 2.34 2.73 2.99 -3.22 -3.09	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02 3.11 2.73 -3.11 -3.21 -3.25	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36 2.37 2.21 -2.60 2.00 2.57	2.23 2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.29 1.12 -2.28 1.97 2.24	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64 0.41 -2.65 -1.89 -2.78 1.72	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90 -2.70 -2.77 2.81 2.61 -2.87
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156 BS157 BS167 BS3456 BS236 BS237 BS3467	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8 16.6 13.8 12.8 19.8 18.8 19.7	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0 23.1 21.6 18.7 27.4 24.4 26.5	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56 0.35 0.54 0.60 0.20 -0.18 -0.17 0.18	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30 -3.32 3.30 3.21 3.32 3.30 3.21 3.32 3.30	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18 2.34 2.73 2.99 -3.22 -3.09 2.97	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02 3.11 2.73 -3.11 -3.21 -3.25 -3.13	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36 2.37 2.21 -2.60 2.00 2.57 -2.65	2.23 2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.46 -2.29 1.12 -2.28 1.97 2.24 2.41	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64 0.41 -2.65 -1.89 -2.78 1.72 -0.82	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90 -2.70 -2.77 2.81 2.61 -2.87 -2.43
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156 BS157 BS167 BS3456 BS236 BS237 BS3467 BS126	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8 16.6 13.8 12.8 19.8 19.7 19.4	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0 23.1 21.6 18.7 27.4 24.4 26.5 26.9	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56 0.35 0.54 0.60 0.20 -0.18 -0.17 0.18 -0.19	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30 -3.33 -3.32 3.30 3.21 3.32 3.30 -3.29	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18 2.34 2.73 2.99 -3.22 -3.09 2.97 -3.06	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02 3.11 2.73 -3.11 -3.21 -3.25 -3.13 2.87	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36 2.37 2.21 -2.60 2.00 2.57 -2.65 2.51	2.23 2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.29 1.12 -2.28 1.97 2.24 2.41 2.07	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64 0.41 -2.65 -1.89 -2.78 1.72 -0.82 -2.69	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90 -2.70 -2.77 2.81 2.61 -2.87 -2.43 2.23
BS2457 BS2467 BS2356 BS267 BS3567 BS367 BS156 BS157 BS167 BS3456 BS236 BS237 BS3467 BS126 BS127	15.7 13.3 19.9 19.6 29.4 17.6 26.0 24.8 16.6 13.8 12.8 19.8 18.8 19.7 19.4 18.8	23.8 20.9 25.6 25.3 36.7 22.9 32.5 31.0 23.1 21.6 18.7 27.4 24.4 26.5 26.9 25.6	-1.04 -1.11 0.26 0.25 0.20 0.63 1.02 0.56 0.35 0.54 0.60 0.20 -0.18 -0.17 0.18 -0.19 -0.33	-3.33 -3.42 3.25 3.25 3.31 3.18 3.33 3.21 -3.30 -3.32 3.30 3.21 3.32 3.30 3.21 3.32 3.30 -3.29 -3.24	-3.08 2.98 -2.82 -2.81 -2.49 -3.05 3.09 2.93 1.18 2.34 2.73 2.99 -3.22 -3.09 2.97 -3.06 2.88	-3.21 3.19 3.14 -2.85 3.02 -2.88 -3.25 3.02 3.11 2.73 -3.11 -3.21 -3.25 -3.13 2.87 -3.22	-2.07 -2.70 -2.29 -2.57 2.62 1.08 2.64 1.23 2.36 2.37 2.21 -2.60 2.00 2.57 -2.65 2.51 2.47	2.23 -1.91 1.92 -2.39 1.32 -2.28 1.54 -2.46 -2.29 1.12 -2.28 1.97 2.24 2.41 2.07 2.21	2.47 2.87 2.49 -0.77 -1.65 -2.98 -2.45 -2.89 -2.64 0.41 -2.65 -1.89 -2.78 1.72 -0.82 -2.69 2.62	2.59 -2.64 -2.70 2.75 -2.92 -2.75 -3.03 1.90 -2.70 -2.70 -2.77 2.81 2.61 -2.87 -2.43 2.23 -2.80

BS145	24.1	30.0	-0.28	-3.34	3.03	2.81	-2.73	-2.33	0.39	2.57
BS125	19.8	26.5	-0.18	-3.30	-2.93	3.17	2.66	-2.42	0.61	2.50
BS135	20.0	25.6	-0.25	-3.25	2.85	-3.13	2.56	-1.89	0.64	2.72
BS136	13.6	20.8	-0.30	-3.25	2.85	-3.19	2.31	1.88	-2.49	2.64
BS146	24.3	30.2	-0.26	-3.27	1.71	2.64	-2.79	2.38	-2.54	2.43
BS147	19.4	25.3	-0.23	-3.31	2.50	2.85	-2.64	2.36	1.70	-2.74
CBS₂₆-2TH_{4,5} (Ms = 2), QM-C region, r^2 SCAN										
BS345	20.0	18.6	-0.55	3.29	2.93	-3.07	-2.57	-2.25	2.74	2.86

Cartesian coordinates of structures

As additional supplementary material, we provide a compressed archive containing XYZ-files with optimized Cartesian coordinates (in Å) of the QM-regions and QM-cluster calculations of all calculated isomers.

References

(1) Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Evidence for interstitial carbon in nitrogenase FeMo cofactor. *Science* **2011**, *334*, 940.

(2) Dance, I. Survey of the Geometric and Electronic Structures of the Key Hydrogenated Forms of FeMo-co, the Active Site of the Enzyme Nitrogenase: Principles of the Mechanistically Significant Coordination Chemistry. *Inorganics* **2019**, *7*, 8.

(3) Pang, Y.; Bjornsson, R. Understanding the Electronic Structure Basis for N2 Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation. *Inorg. Chem.* **2023**, *62*, 5357-5375.

(4) Jiang, H.; Ryde, U. N(2) binding to the E(0)-E(4) states of nitrogenase. *Dalton transactions* **2023**.

(5) Cao, L.; Caldararu, O.; Ryde, U. Protonation and Reduction of the FeMo Cluster in Nitrogenase Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations. *J. Chem. Theory Comput.* **2018**, *14*,

Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations. J. Chem. Theory Comput. 2018, 14, 6653-6678.

(6) Benediktsson, B.; Bjornsson, R. Analysis of the Geometric and Electronic Structure of Spin-Coupled Iron-Sulfur Dimers with Broken-Symmetry DFT: Implications for FeMoco. *J. Chem. Theory Comput.* **2022**, *18*, 1437-1457.

(7) Cao, L.; Ryde, U. Extremely large differences in DFT energies for nitrogenase models. *Phys. Chem. Chem. Phys.* **2019**, *21*, 2480-2488.

(8) Cao, L.; Caldararu, O.; Ryde, U. Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Computational Methods and Quantum Refinement. *J. Phys. Chem. B* **2017**, *121*, 8242-8262.

(9) Lukoyanov, D. A.; Yang, Z. Y.; Perez-Gonzalez, A.; Raugei, S.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. (13)C ENDOR Characterization of the Central Carbon within the Nitrogenase Catalytic Cofactor Indicates That the CFe6 Core Is a Stabilizing "Heart of Steel". *J. Am. Chem. Soc.* **2022**, *144*, 18315-18328.