Supporting Information

for

Exploring the catalytic activity of graphene-based TM-N_xC_{4-x} single

atom catalysts for oxygen reduction reaction via density functional

theory calculation

Zhengwei Du¹, Kaiming Deng^{1,2}, Erjun Kan^{1,2}, Cheng Zhan^{1,2*}.

¹Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China ²MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing

			-,,		· -/	
	$E_{\rm b}({\rm eV})$	n (V)	ΔG_{*OOH}	ΔG_{*0}	$\Delta G_{* m OH}$	$U_{\rm r}$ (V)
		η(•)	(eV)	(eV)	(eV)	
VN_4	-3.28	1.62	2.85	0.64	-0.39	-0.39 (U _{L4})
VN ₃ C	-3.02	2.92	1.54	-1.31	-1.69	-1.69 (U _{L4})
VN_2C_2	-2.14	3.09	1.43	-1.24	-1.86	-1.86 (U _{L4})
VNC ₃	-2.22	3.03	1.75	-1.43	-1.80	-1.8 (U _{L4})
VC_4	-2.15	3.44	1.16	-1.44	-2.22	-2.22 (U _{L4})
CrN ₄	-4.39	0.45	3.98	2.03	0.78	0.78 (U _{L4})
CrN ₃ C	-2.41	2.4	2.61	-0.66	-1.17	-1.17 (U _{L4})
CrN_2C_2	-3.12	1.61	3.42	-0.14	-0.38	-0.38 (U _{L4})
CrNC ₃	-4.75	1.28	3.17	0.52	-0.05	-0.05 (U _{L4})
CrC_4	-1.22	2.39	2.24	-0.62	-1.16	-1.16 (U _{L4})
MnN_4	-5.34	1.06	4.75	2.44	1.39	0.17 (U _{L1})
MnN ₃ C	-5.91	1.01	3.45	2.15	0.22	0.22 (U _{L4})
MnN_2C_2	-5.39	0.86	3.55	1.87	1.50	$0.37 (U_{L3})$
MnNC ₃	-5.48	0.7	3.58	1.73	1.20	$0.53 (U_{L3})$
MnC_4	-3.64	1.35	3.19	0.73	-0.12	-0.12 (U _{L4})
FeN ₄	-2.66	0.47	4.16	1.97	1.06	0.76 (U _{L1})
FeN ₃ C	-2.88	0.86	3.65	1.84	0.37	0.37 (U _{L4})
FeN ₂ C ₂	-2.47	0.75	3.83	1.98	0.48	0.48 (U _{L4})
FeNC ₃	-2.63	0.68	4.08	1.68	0.55	0.55 (U _{L4})
FeC ₄	-0.84	1.35	3.18	1.39	-0.12	-0.12 (U _{L4})
CoN_4	-2.92	0.57	4.25	3.59	0.85	$0.66 (U_{L2})$
CoN ₃ C	-3.30	0.4	4.09	2.37	1.02	0.83 (U _{L1})
CoN_2C_2	-2.63	0.48	3.85	2.04	0.75	0.75 (U _{L4})
CoNC ₃	-2.80	0.43	4.12	2.02	0.86	$0.80 (U_{L1})$
CoC_4	-1.03	0.87	3.51	1.56	0.36	0.36 (U _{L4})
NiN_4	-2.93	1.63	5.32	4.95	2.46	-0.40 (U _{L1})
NiN ₃ C	-3.51	0.98	4.67	3.81	1.64	0.25 (U _{L1})
NiN_2C_2	-3.03	1.81	5.50	4.11	2.46	-0.58 (U _{L1})
NiNC ₃	-2.87	0.81	4.50	3.15	1.48	0.42 (U _{L1})
NiC_4	-1.19	0.41	4.10	2.60	1.06	$0.82 (U_{L1})$
CuN ₄	-1.62	1.6	5.29	4.64	2.48	-0.37 (U _{L1})
CuN ₃ C	-2.04	1.79	4.66	1.15	1.71	<u>-0.56</u> (U _{L3})
CuN_2C_2	-2.21	1.08	4.77	4.10	1.77	0.15 (U _{L1})
CuNC ₃	-2.61	2.23	4.98	1.23	2.23	<u>-1.00</u> (U _{L3})
CuC_4	-1.12	1.31	5.00	4.2	2.12	-0.08 (U _{L1})
ZnN_4	-2.65	0.98	4.67	3.90	1.40	0.25 (U _{L1})
ZnN ₃ C	-2.55	0.46	4.09	3.22	0.77	0.77 (U _{L4})
ZnN_2C_2	-1.72	0.5	3.97	3.24	0.78	$\underline{0.73}(U_{L2})$
ZnNC ₃	-2.07	0.49	4.18	3.39	0.95	$0.74 (U_{L1})$
ZnC_4	-1.36	0.95	4.64	3.98	1.67	$0.28 (U_{L1})$

Table S1. The binding energy (E_b) of transition metals. The theoretical overpotential (η), Gibbs free energy change of the oxygenated intermediates (ΔG_{*OCH} , ΔG_{*OL} , ΔG_{*OH}), and limiting potential (U_L) on TM-N_xC_y.

Table S2. The binding energy (E_b/eV) of transition metals on three different structures of the TMN₂C₂.

	0 0/	(57 7						
	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
$N_2C_2(1)$	-2.15	-3.12	-5.39	-2.47	-2.63	-3.03	-2.21	-1.72
$N_2C_2(2)$	-2.11	-2.95	-5.23	-2.24	-2.32	-2.67	-1.88	-1.47
$N_2C_2(3)$	-2.04	-2.88	-5.10	-2.07	-2.19	-2.49	-1.60	-1.46

Figure S1. Three different structures of TMN₂C₂

Figure S2. ORR reaction profiles of (a) V-N_xC_y, (b) Cr-N_xC_y, (c) Mn-N_xC_y, (d) Fe-N_xC_y, (e) Ni-N_xC_y, and (f) Cu-N_xC_y.

Figure S3. Scaling relationships for adsorption free energy of *OH vs *O.

Figure S4. Linear scaling relation of (a) ΔG^*O vs. ΔG^*OH , ΔG^*OOH vs. ΔG^*OH ; (b) ΔG^*OH vs. ΔG^*O , ΔG^*OOH vs. ΔG^*O .

Figure S5. Linear scaling relation of (a) $\Delta G^*OOH-\Delta G^*O$ vs. ΔG^*OH ; (b) $\Delta G^*O-\Delta G^*OH$ vs. ΔG^*OH

Figure S6. Variations of energy versus the AIMD simulation time for (a) FeN4, (b) CoN4, (c)

 $CoN_3C, (d)\ CoN_2C_2, (e)\ CoNC_3, (f)\ ZnN_3C, (g)\ ZnN_2C_2, and (h)\ ZnNC_3.$