Supplementary Material

Stability, electronic, and optical properties of two-dimensional

iridium trihalides with promising applications in photocatalytic

water splitting

Ying-Xue Feng, a Qing-Yan Rong, Zhang-Lin Fang, Wen-Zhi Xiao a*

^a School of Science, Hunan Institute of Engineering, Xiangtan 411104,China ^b School of Physics and Electronics, Hunan University, Changsha 410082, China

Contents:

Figure S1:

Figure S1 (a) Top and (b) side views of the crystal structure of the bulk phase of α -IrX₃ (X = Cl, Br, I) in the representation of the conventional cell. (c) High symmetry *k*-points of the Brillouin zone for α -IrX₃ and the path along which the band structure is evaluated.

^{**}Corresponding author: xiaowenzhi@hnie.edu.cn

Figure S2:

Figure S2. The change of strain energy and the created stress in the IrX₃ monolayers under applied biaxial strain. Because a vacuum space is left along the *z* direction in the unit cell, the calculated in-plane stress components must be rescaled ^[1,2] based on the effective layer thickness d_0 of IrX₃ monolayers. We chose the lattice constant *c* of bulk IrX₃ as the d_0 , as list in Table S1, and rescale the in-plane stress components by h/d_0 , where *h* is the length of the cell along *z* axis.

Structure	a	b	с	<i>E</i> with different methods			
				DDE DDE SOC USE06 avagriment			
				FDL	FBE-SUC	HSE00	experiment
IrCl ₃	6.092	10.558	5.629	1.846	1.750	3.264	
IrCl ₃ ^[3]	5.99 ± 0.01	10.37 ± 0.02	5.99±0.01				
IrBr ₃	6.408	11.116	5.984	1.432	1.380	2.704	
IrBr ₃ * [4]	6.30	10.98	6.34				
IrI ₃	6.867	11.901	6.490	1.175	1.123	2.217	
IrI ₃ ^[5]	6.802	11.791	6.864	1.0			1.49
IrI ₃ *[11]	6.74	11.75	6.80				

Table S1. Calculated lattice constant (in Å) at PBE level, and band-gap E_g (in eV) of α -IrX₃ bulk at different levels. The asterisk (*) means the experimental results.

Figure S3:

Figure S3. Electronic structure of bulk IrX_3 obtained from HSE functional with 10% of the exact exchange.

Figure S4:

Figure S4. Electronic structure of monolayer IrX_3 obtained from (left panel) PBE and (right panel) PBE + SOC methods.

Figure S5. Electronic structure of monolayer IrX_3 obtained from (left panel) HSE06 and (right panel) HSE06 + SOC methods.

Figure S6. Electronic structure of monolayers (a) $IrCl_3$, (b) $IrBr_3$, (c) IrI_3 , and their heterojunctions (d) $IrCl_3$:IrBr₃ and (e) $IrBr_3$:IrI₃ obtained from G_0W_0 method. (f) The band structures of IrI_3 near the valence band maximum.

Figure S7. Total and projected DOS of monolayers (a) $IrCl_3$, (b) $IrBr_3$, (c) IrI_3 obtained at PBE+SOC level.

Figure S8. Top and lateral views of IrCl₃:IrBr₃ and IrBr₃:IrI₃ van der Waals heterostructures.

References

- [1] F. Liu, P. Ming and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, *Phys. Rev. B*, 2007, 76(6), 064120.
- [2] T. Li, Ideal strength and phonon instability in single-layer MoS₂, *Phys. Rev. B*, 2012, 85(23), 235407.
- [3] K. Brodersen, F. Moers and H. Schnering, Zur Struktur des Iridium (III)-und des Ruthenium (III)-chlorids, *Sci. Nat.*, 1965, 52(9), 205-206.
- [4] K. Brodersen, Structure of β -RuCl₃, RuI₃, IrBr₃, and IrI₃, *Angew. Chem. Int. Ed. in English*, 1968, 7(2), 148-148.
- [5] D. Ni, K. P. Devlin, G. Cheng, X. Gui, W. Xie, N. Yao and R. J. Cava, The honeycomb and hyperhoneycomb polymorphs of IrI₃, *J. Solid State Chem.*, 2022, 312, 123240.

³ K. Brodersen, F. Moers and H. Schnering, Zur Struktur des Iridium (III)-und des Ruthenium

(III)-chlorids, Sci. Nat., 1965, 52(9), 205-206.

⁴ K. Brodersen, Structure of β-RuCl₃, RuI₃, IrBr₃, and IrI₃, *Angew. Chem. Int. Ed. in English*, 1968, 7(2), 148-148.

⁵ D. Ni, K. P. Devlin, G. Cheng, X. Gui, W. Xie, N. Yao and R. J. Cava, The honeycomb and hyperhoneycomb polymorphs of IrI₃, *J. Solid State Chem.*, 2022, 312, 123240.

¹ F. Liu, P. Ming and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, *Phys. Rev. B*, 2007, 76(6), 064120.

² T. Li, Ideal strength and phonon instability in single-layer MoS₂, *Phys. Rev. B*, 2012, 85(23), 235407.