Supplementary Information for

Understanding xenon and vacancy behaviors in UO₂, UN and U₃Si₂: A comparative DFT+*U* study

Jiajun Zhao¹, Dan Sun², Liu Xi¹, Ping Chen², Jijun Zhao^{1,3}, Yuanyuan Wang^{1,3*}

¹ Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian, Liaoning, China

² Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan, China

³ State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Table S1 Effect of supercell size on the formation energies of $V_{\rm U}$ in both UO₂ and UN as well as $V_{\rm U-2}$ in U₃Si₂. The cutoff energy of 500 eV with the *k*-point grid spacing of 0.04 Å⁻¹, 0.02 Å⁻¹ and 0.03 Å⁻¹ is used for UO₂, UN and U₃Si₂, respectively. The supercell sizes highlighted in bold are employed in current work.

UO ₂		UN		U_3Si_2	
Supercell size	$E_f(eV)$	Supercell size	$E_f(eV)$	Supercell size	$E_f(eV)$
$1 \times 2 \times 2$	12.75	$1 \times 2 \times 2$	6.05	$2 \times 2 \times 2$	1.65
$2 \times 2 \times 2$	11.60	$2 \times 2 \times 2$	5.35	$2 \times 2 \times 3$	1.49
$2 \times 2 \times 3$	11.28	$2 \times 2 \times 3$	5.72	$2 \times 2 \times 4$	1.51
				$2 \times 2 \times 5$	1.76

^{*} Corresponding author's e-mail: yuanyuanwang@dlut.edu.cn (Y.Y. Wang)

		Standard reference	U-rich state	X-rich (X = O, N, Si) state
UO ₂	Vu	10.51	10.51	2.84
	Ref.	6.0 ¹	4.48 ²	-6.50 ²
	Vo	4.71	-0.91	2.93
	Ref.	5.6 ¹	-0.43 ²	5.06 ²
	Ui	2.59	2.59	10.26
	Ref.	8.2 1	2.50 ²	13.48 ²
	Oi	-0.34	5.28	1.44
	Ref.	-1.6 ¹	3.05 ²	-2.44 ²
UN	Vu	5.35	5.35	3.88
	Ref.	3.74 ³ ; 6.90 ⁴	3.66 5	2.09 5
	Vn	3.33	0.35	1.82
	Ref.	4.24 ³ ; 7.91 ⁴	0.62 5	1.42 5
	Ui	4.28	4.28	5.75
	Ref.	12.62 4	6.20 ⁵	7.77 ⁵
	Ni	0.39	3.37	1.90
	Ref.	4.54 4	3.82 5	3.01 ⁵
U ₃ Si ₂	VU-1	2.68	2.55	3.50
	Ref.	2.65 ⁶ ; 3.00 ⁷	3.00 7	2.96 7
	VU-2	1.51	1.38	1.36
	Ref.	1.64 ⁶ ; 1.69 ⁷	1.69 ⁷	1.65 7
	$V_{\rm Si}$	1.56	0.89	0.92
	Ref.	2.48 ⁶ ; 1.79 ⁷	1.77 7	1.84 7
	Ui	2.30	2.43	2.45
	Ref.	1.66 ⁶ ; 0.65 ⁶ , 1.17 ⁶ ; 0.87 ⁷	0.86 7	0.91 7
	Sii	0.14	0.80	0.77
	Ref.	0.10 ⁶ ; 0.85 ⁶ , -0.20 ⁶ ; 0.55 ⁷	0.57 7	0.50 7

Table S2 Predicted formation energies (E_f) of different types of mono-atomic vacancies and mono-atomic interstitials in UO₂, UN and U₃Si₂ by comparing with the existing data.

		Our work	Ref.
UO ₂	IS	9.45	11.11 ⁸ ; 9.48 ⁹
	Vu	2.85	2.5 ⁸ ; 3.84 ⁹ ; 5.18 ²
	Vo	8.80	9.5 ⁸ ; 6.89 ⁹ ; 9.01 ²
	{ <i>V</i> U: <i>V</i> O}	1.89	2.45 ⁸
	{ <i>V</i> U:2 <i>V</i> O}	1.09	1.38 ⁸ ; 1.18 ⁹ ; 2.90 ²
UN	IS	14.64	14.62 ¹⁰ ; 14.64 ¹¹
	Vu	4.03	3.59 10; 4.50 12; 3.74 11
	Vn	8.87	8.6 10; 8.28 12; 8.45 11
	$\{V_{\mathrm{U}}:V_{\mathrm{N}}\}$	2.72 (in [100] direction), 4.08 (in [111] direction)	2.79 ¹¹ ; 3.37 (in [100] direction) ¹² ; 4.90 (in [111] direction) ¹²
U ₃ Si ₂	IS	3.86	6.07 ⁶ ; 5.36 ⁷
	<i>V</i> U-1	0.17	3.39 ⁶ ; 3.14 ⁷
	<i>V</i> U-2	0.01	3.15 ⁶ ; 3.24 ⁷
	$V_{ m Si}$	0.27	3.39 ⁶ ; 3.26 ⁷

Table S3 Incorporation energies (E_i) between Xe atom and the typical trap sites in UO₂, UN and U₃Si₂ by comparing with other DFT-calculated results.

Supplementary Note 1: Chemical potential range

With the experimental formation enthalpy of UO₂ (-11.25 eV ^{13, 14}), the chemical potential variation of U and O is restricted in a range of -11.25 eV $< \Delta \mu_U^{UO_2} < 0$ eV and -5.63 eV $< \Delta \mu_O^{UO_2} < 0$ eV, respectively. Further, more experimental formation enthalpies of binary U-O phase ¹⁴, including UO₂, U₄O₉, U₃O₈ and UO₃, are involved to assess the variation range of $\Delta \mu_U^{UO_2}$ and $\Delta \mu_O^{UO_2}$, which can be expressed as

$$-7.67 \text{ eV} \le \Delta \mu_{\mathrm{U}}^{\mathrm{UO2}} \quad 0 \tag{s1}$$

$$-5.62 \text{ eV} \le \Delta \mu_0^{\text{UO}_2} -1.78 \text{ eV}$$
 (s2)

It should be pointed out that the chemical potential values of -1.78 eV and -7.67 eV are related to the critical points of intersection between UO₂ and U₄O₉ (i.e., UO_{2.25}) lines as shown in the $\Delta \mu_{\rm U}^{\rm UO_2} - \Delta \mu_{\rm O}^{\rm UO_2}$ diagram (see Fig. S1(a)).

However, there is no available experimental data for the formation enthalpies of hyper-stoichiometric phases in binary U-O, U-N and U-Si phase diagram. The DFT-calculated total energies of uranium compounds are subsequently considered to obtain the U-rich boundary of chemical potentials ¹⁵. All the used U-O and U-N phases in the first-principles calculations are performed using the same value of U_{eff} for the stoichiometric UO₂ and UN. The DFT-calculated μ_O as a function of μ_U in the U-O system are displayed in Fig. S1(b). It is found that the phase transition from UO₃ to U₂O₅, UO₂ and UO can occur by adding more U atoms. The DFT-calculated chemical potentials are shown as follows:

$$-9.77 \text{ eV} \le \Delta \mu_{\mathrm{U}}^{\mathrm{UO}_2} -1.19 \text{ eV}$$
 (s3)

$$-5.54 \text{ eV} \le \Delta \mu_0^{002} -1.25 \text{ eV}$$
 (s4)

which can be fitted as $\Delta H_{UO_k}^{GGA+U} - \Delta H_{UO_k}^{Exp.} = -0.002k - 0.024$ according to the dispersed points in Fig. S2(a). The corrected range of chemical potential of UO₂ is limited by the critical points of intersection among the chemical potential lines of UO₂, U₂O₅ and UO in Fig. S1(c), which can be expressed as

$$-11.07 \text{ eV} \le \Delta \mu_{\mathrm{U}}^{\mathrm{UO2}} - 0.90 \text{ eV}$$
 (s5)

$$-5.80 \text{ eV} \le \Delta \mu_0^{\text{UO}_2} - 0.71 \text{ eV}$$
 (s6)

From a comparison of chemical potential ranges, the difference assessed by experimental μ_U and μ_O values in Fig. S1(a) is smaller than that by the corrected

ones in Fig. S1(c). Additionally, a large deviation between the dispersed points and the fitting line is presented in Fig. S2(a). As a result, the experimental formation energy derived chemical potential is used as a consequence for UO₂, and the variation ranges of $\mu_{\rm U}^{\rm UO_2}$ and $\mu_{\rm O}^{\rm UO_2}$ are separately determined as follows:

$$-14.54 \text{ eV} < \mu_{\text{U}}^{\text{EO}_2} - 6.87 \text{ eV}$$
 (s7)

$$-10.55 \text{ eV} \le \mu_0^{UO_2} - 6.71 \text{ eV}$$
 (s8)

Here, the values of $\mu_U^{UO_2}$ and $\mu_O^{UO_2}$ in U-rich UO₂ are equal to -6.87 eV and -10.55 eV, respectively. While for the O-rich condition, the values of $\mu_U^{UO_2}$ and $\mu_O^{UO_2}$ are calculated as -14.54 eV and -6.71 eV, respectively. The same approach in estimating chemical potential using experimental formation enthalpies ¹⁶⁻¹⁸ is applied for UN to assess the variation range of μ_U^{UN} and μ_N^{UN} as follows:

$$-8.34 \text{ eV} \le \mu_{\text{U}}^{\text{UN}} - 6.87 \text{ eV}$$
(s9)

$$-11.28 \text{ eV} \le \beta_{N}^{UN} - 9.81 \text{ eV}$$
 (s10)

It is worthy to note that the values of μ_U^{UN} and μ_N^{UN} for U-rich UN are -6.87 eV and -11.28 eV, respectively, and in the case of N-rich UN, the values of μ_U^{UN} and μ_N^{UN} equal to be -8.34 eV and -9.81 eV, respectively. A comparison of experimentally measured, DFT-calculated and corrected chemical potentials of UN shown in Figs. S2(d)-(f) indicates that the ranges of corrected μ_U^{UN} and μ_N^{UN} are much close to those of the experimentally measured ones. Therefore, the experimentally measured chemical potentials of U and N are employed in current work.

As for the chemical potential of hyper-stoichiometric U_3Si_2 , the U-rich U_3Si_2 in equilibrium with γ -U₃Si and the Si-rich U_3Si_2 in equilibrium with U_3Si_5 are taken into account. By referring to the experimental formation enthalpies of U_xSi_y ¹⁵, the ferromagnetism property and $U_{eff} = 1.0$ eV are used in the formation enthalpy calculation of U_xSi_y . The variation ranges of corrected chemical potentials $\mu_U^{U_3Si_2}$ and $\mu_{Si}^{U_3Si_2}$ are predicted as follows:

$$-7.02 \text{ eV} < \mu_{\text{U}}^{\text{U}_{3}\text{Si2}} -7.00 \text{ eV}$$
(s11)

$$-6.08 \text{ eV} < \beta_{\text{Si}}^{U_3 \text{Si}_2} - 6.05 \text{ eV}$$
(s12)

In the case of U-rich U₃Si₂, $\mu_U^{U_3Si_2} = -7.00$ eV and $\mu_{Si}^{U_3Si_2} = -6.08$ eV are separately obtained, and for Si-rich U₃Si₂, $\mu_U^{U_3Si_2} = -7.02$ eV and $\mu_{Si}^{U_3Si_2} = -6.05$ eV are identified, respectively. In Figs. 2(g)-(i), it is obviously found that the variation in $\mu_U^{U_3Si_2}$ and $\mu_{Si}^{U_3Si_2}$ are nearly the same as those of the DFT-calculated ones. The corrected GGA+*U* approximation could evidently reduce the range of chemical potential in U₃Si₂. Hence the corrected chemical potentials of U and Si are applied. As is known, the phases in binary U-Si phase diagram are really complex for DFT calculations, and more formation enthalpies of U_xSi_y species should be experimentally measured in the future.

Fig. S1 (a)-(c) $\Delta\mu_0$ of the U-O phases, (d)-(f) $\Delta\mu_N$ of the U-N phases and (g)-(i) $\Delta\mu_{Si}$ of the U-Si phases as a function of $\Delta\mu_U$. The formation enthalpies are evaluated using (a)(d)(g) the experimental data, (b)(e)(h) the DFT-calculated data and (c)(f)(i) the data corrected from the Jain's approach. The superscript ^{a, b, c} respectively indicate the results from the work of Katsura and Serizawa ¹⁶, Katsura and Sano ¹⁷, and Hiroaki ¹⁸.

Fig. S2 Difference between the calculated and experimental formation enthalpies as a function of the ratio of X (X = O, N, Si) to U in (a) UO_2 , (b) UN and (c) U_3Si_2 . The red lines are fitted via least-squares to the binary U-O, U-N and U-Si systems, respectively. *k* represents the ratio of X atom number to U atom number.

Supplementary Note 2: Verification of formation energies

Most of the formation energy values of point defects in UO₂, UN and U₃Si₂ agree well with the reference ones. In the standard reference, the formation energy values of defects in UO₂ are ordered as: $V_U > V_O > U_i > O_i$, while Gupta et al. ¹ found that the formation energy of mono-interstitial U is the highest one among the investigated point defects (i.e., $U_i > V_U > V_O > O_i$). In the U-rich environment of UO₂, the predicted and other DFT-calculated values of formation energy decrease in the order of $V_U > O_i > U_i > V_0^2$, and our energetic trend of $U_i > V_U > O_i > V_0$ in O-rich UO₂ confirms well with that in Ref. ².

As for UN in the standard reference, the order of current formation energies of $V_{\rm U}$, $V_{\rm N}$, U_i and N_i change to $V_{\rm U} > U_i > V_{\rm N} > N_i$, which substantially differs from those of $U_i > V_{\rm N} > V_{\rm U} > N_i$ ⁴. Such different orders of $V_{\rm U}$ and U_i in not only UO₂ but also UN come from different choice of $U_{\rm eff}$ for α -U. A slight difference in the E_f order of U-rich UN between our result (i.e., $V_{\rm U} > U_i > N_i > V_{\rm N}$) and other DFT-calculated data (i.e., $U_i > V_{\rm U} > N_i > V_{\rm N}$ ⁵) originates from the fact that our experimental data corrected chemical potentials shown in Fig. S1(i) are lower than the DFT derived ones used in Ref. ⁵. Meanwhile, the values of E_f in the N-rich case are in the order of $U_i > V_U > N_i > V_N$, in accordance with the overall trend predicted by Kocevski et al. ⁵.

Comparing the results of U_3Si_2 under the standard reference with those in Refs. ⁶ and ⁷, the evolution trend matches well with each other in the E_f^V order of VU-1 > VSi > VU-2 and the E_f^i order of $U_i > Si_i$. It should note that our interstitial U (U_i) inserted at the U octahedron site (i.e., 2b site ^{19, 20}) remains in the octahedral site after relaxation. The formation energies of mono-vacancy and mono-interstitial U and Si are ordered as VU-1 > VU-2 > VSi and $U_i > Si_i$, respectively, in not only U-rich but also Si-rich U_3Si_2 samples, which slightly deviate from the prediction ⁷. It can be explained by different magnetic considerations in these work.

Reference

^{1.} F. Gupta, G. Brillant and A. Pasturel, Philos. Mag., 2007, 87, 2561-2569.

^{2.} J. Yu, R. Devanathan and W. J. Weber, J. Phys-Condens. Mat., 2009, 21, 435401.

^{3.} M. Klipfel and P. Van Uffelen, J. Nucl. Mater., 2012, 422, 137-142.

^{4.} J. H. Lan, Z. C. Zhao, Q. Wu and Y. L. Zhao, J. Appl. Phys., 2013, 114, 202.

^{5.} V. Kocevski, D. A. Rehn, M. W. D. Cooper and D. A. Andersson, J. Nucl. Mater., 2021, 22, 153401.

6. A. D. Andersson, *Density functional theory calculations of defect and fission gas properties in U-Si fuels*, United States, 2016.

7. D. A. Andersson, X. Y. Liu, B. Beeler, S. C. Middleburgh, A. Claisse and C. R. Stanek, J. Nucl. Mater., 2019, 515, 312-325.

8. P. V. Nerikar, X. Y. Liu, B. P. Uberuaga, C. R. Stanek and S. B. Sinnott, *J. Phys-Condens. Mat.*, 2009, **21**, 435602.

9. P. Garcia, G. Martin, C. Sabathier, G. Carlot, A. Michel, P. Martin, B. Dorado, M. Freyss, M. Bertolus and R. Skorek, *Nucl. Instrum. Meth.*, 2012, **277**, 98-108.

10. A. Claisse, T. Schuler, D. A. Lopes and P. Olsson, Phys. Rev. B, 2016, 94, 174302.

A. Claisse, M. Klipfel, N. Lindbom, M. Freyss and P. Olsson, *J. Nucl. Mater.*, 2016, 478, 119-124.
 M. Klipfel, V. Di Marcello, A. Schubert, J. van de Laar and P. Van Uffelen, *J. Nucl. Mater.*, 2013, 442, 253-261.

13. C. Guéneau, M. Baichi, D. Labroche, C. Chatillon and B. Sundman, J. Nucl. Mater., 2002, 304, 161-175.

14. Emerson, Vathonne, Julia, Wiktor, Michel, Freyss, Gérald, Jomard, Marjorie and Bertolus, J. Phys-Condens. Mat., 2014, 26, 325501.

15. C.-K. Chung, X. Guo, G. Wang, T. L. Wilson, J. T. White, A. T. Nelson, A. Shelyug, H. Boukhalfa, P. Yang, E. R. Batista, A. A. Migdisov, R. C. Roback, A. Navrotsky and H. Xu, *J. Nucl. Mater.*, 2019, **523**, 101-110.

16. M. Katsura and H. Serizawa, J. Alloy. Compd., 1992, 187, 389-399.

- 17. Masahiro KATSURA and T. SANO, J. Nucl. Sci. Technol., 1967, 4, 283-288.
- 18. T. Hiroaki, J. Nucl. Mater., 1974, 51, 78-89.
- 19. V. Kocevski, D. A. Lopes, A. J. Claisse and T. M. Besmann, Nat. Commun., 2020, 11, 2621.
- 20. S. C. Middleburgh, A. Claisse, D. A. Andersson, R. W. Grimes, P. Olsson and S. Mašková, J. Nucl. Mater., 2018, 501, 234-237.