Supporting Information

Versatile transition metals monolayers with Catalytic and Superconducting Properties: Computational study

Xue Li^a, Hanyu Liu^{b*}, and Siyu Lu^{a*}

a. Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

 b. International Center for Computational Method & Software, State Key Laboratory of Superhard Materials, Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China

Contents

1. **Figure S1**. Phonon dispersion curves of VRu₂, FeRu₂, ReRu₂, MoRu₂, WRu₂, MnRu₂, TiRu₂, VOsRu, and VFeRu.

2. Figure S2. Phonon dispersion curves of ScRu₂, CrRu₂, CoRu₂, NiRu₂, CuRu₂, ZnRu₂, YRu₂, ZrRu₂, NbRu₂, RhRu₂, PdRu₂, AgRu₂, CdRu₂, HfRu₂, TaRu₂, IrRu₂, PtRu₂ and AuRu₂.

3. **Figure S3**. Optimized configurations for hydrogen atoms and Binding energies of VFeRu, FeRu₂, ReRu₂, VRu₂, VOsRu, MoRu₂, WRu₂, MnRu₂ and TiRu₂.

4. Figure S4. Calculated *d*-band center among newly predicted compounds.

5. Figure S5. Calculated orbital-resolved band structures for FeRu₂ and VRu₂.

6. Figure S6. Electron localization function for FeRu₂ and VRu₂.

7. Figure S7. Calculated phonon band structure of FeRu₂ with the strength of *q*-resolved λ_q indicated by circle size.

8. Figure S8. The variation of Tc, λ and pressure for (a) FeRu₂ and (b) VFeRu.

9. Table S1. Superconducting temperature under different uniaxial and biaxial stresses.

10. **Table S2**. Calculated free energy of atomic hydrogen (ΔG_H) and Binding energies (ΔE_H) for different H atoms (n) adsorbed on an VRu₂ monolayer respectively.

11. **Table S3**. Calculated Bulk Modulus (B), Young's Modulus (E), and Shear Modulus (G) for stable XRu₂ and VXRu.

12. Table S4. Total energies (eV/atom) under different magnetic configurations.

Figure S1. Phonon dispersion curves of (a) TiRu₂, (b) VRu₂, (c) MnRu₂, (d) FeRu₂, (e) MoRu₂, (f) TcRu₂, (g) WRu₂, (h) ReRu₂, (i) OsRu₂, (j) VOsRu, and (k) VFeRu.

Figure S2. Phonon dispersion curves of (a) ScRu₂, (b) CrRu₂, (c) CoRu₂, (d) NiRu₂, (e) CuRu₂, (f) ZnRu₂, (g) YRu₂, (h) ZrRu₂, (i) NbRu₂, (j) RhRu₂, (k) PdRu₂, (l) AgRu₂, (m) CdRu₂, (n) HfRu₂, (o) TaRu₂, (p) IrRu₂, (q) PtRu₂ and (r) AuRu₂. It is clearly seen that phonon mode shows obvious softening in these systems, leading to structural instability.

Figure S3. Optimized configurations for hydrogen atoms and Binding energies of VFeRu (a), FeRu₂ (b), ReRu₂ (c), VRu₂ (d), VOsRu (e), MoRu₂ (f), WRu₂ (g), MnRu₂ (h) and TiRu₂ (i).

VRu₂ MnRu₂ FeRu₂ MoRu₂ WRu₂ ReRu₂ OsRu₂ VFeRuVOsRu

Figure S4. Calculated *d*-band center among newly predicted compounds.

Figure S5. Calculated orbital-resolved band structures for (a) FeRu₂ and (b) VRu₂.

Figure S6. Electron localization function for FeRu₂ and VRu₂.

Figure S7. Calculated phonon band structure of FeRu₂ with the strength of *q*-resolved λ_q indicated by circle size.

Figure S8. The variation of T_c , λ and pressure for (a) FeRu₂ and (b) VFeRu.

Table S1. Superconducting temperature (K) under different uniaxial and biaxial stresses. The percentages denote strains level which applied to transition metals monolayers.

	uniaxial stresses				biaxial	stresses		
strain	+1%	+2%	-1%	-2%	+1%	+2%	-1%	-2%
FeRu ₂	14.9	14.4	14.5	14.4	14.4	14.5	14.4	14.5
VRu ₂	12.8	12.7	12.8	12.8	12.8	12.8	12.8	12.8

MnRu ₂	12.5	13.1	12.6	14.1	12.2	13.3	14.1	13.3
TiRu ₂	12.0	12.0	11.4	11.7	11.9	11.3	12.0	11.9
MoRu ₂	12.1	12.1	12.1	12.1	12.0	12.1	12.1	12.0
OsRu ₂	9.7	9.7	9.6	9.7	9.7	9.7	9.7	9.7
WRu ₂	8.7	8.8	8.8	8.8	8.8	8.7	8.7	8.7
TcRu ₂	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.6
ReRu ₂	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2
VFeRu	12.6	12.7	14.8	16.0	14.2	16.1	15.9	13.7
VOsRu	9.0	9.0	9.0	8.8	8.9	9.0	8.9	8.9

Table S2. Calculated free energy of atomic hydrogen ($\Delta G_{\rm H}$) and Binding energies ($\Delta E_{\rm H}$) for different H atoms (n) adsorbed on an VRu₂ monolayer respectively.

n	1	2	3	4	5	6	7	8	9
$\Delta G_{\rm H}({\rm eV})$	-0.002	0.027	0.056	0.049	0.074	0.096	0.061	0.093	0.119
$\Delta E_{\rm H}({\rm eV})$	-0.242	-0.213	-0.184	-0.191	-0.166	-0.144	-0.179	-0.147	-0.121

Table S3. Calculated Bulk Modulus (B), Young's Modulus (E), and Shear Modulus (G) for stable XRu₂ (X= Ti, V, Mn, Fe, Mo, Tc, W, Re, Os) and VXRu (X=Os, Fe).

XRu ₂	B (GPa)	E (GPa)	G (GPa)
FeRu ₂	270	238	88
VRu ₂	254	198	726
MnRu ₂	280	286	107
TiRu ₂	218	131	468
MoRu ₂	281	285	107
OsRu ₂	325	395	152
WRu ₂	297	282	105
TcRu ₂	299	361	139
ReRu ₂	323	383	147
VFeRu	279	228	838
VOsRu	245	171	61

Table S4. Total energies (eV/atom) under different magnetic configurations.

Configurations	NM	FM	AFM
FeRu ₂	-8.584	-8.573	-8.572
VRu ₂	-9.134	-9.134	-9.135
MnRu ₂	-8.918	-8.918	-8.894
TiRu ₂	-8.910	-8.910	-8.911

MoRu ₂	-9.671	-9.671	-9.671
OsRu ₂	-9.656	-9.656	-9.655
WRu ₂	-10.317	-10.317	-10.317
TcRu ₂	-9.479	-9.479	-9.479
ReRu ₂	-10.148	-10.148	-10.148
VFeRu	-8.725	-8.725	-8.725
VOsRu	-9.743	-9.743	-9.743