ELECTRONIC SUPPORTING INFORMATION (ESI)

Fluorescence of pyrene and its derivatives to reveal constituent and composition dependent solvation within hydrophobic deep eutectic solvents

Deepika, Shreya Juneja, and Siddharth Pandey*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110016, India.

*Corresponding Author. Phone: +91-11-26596503, Fax: +91-11-26581102,

E-mail: sipandey@chemistry.iitd.ac.in

Table of Contents

	Page No.
Table S1	S3
Table S2	S4
Table S3	S5
Table S4	S7
Table S5	S9
Table S6	S11
Table S7	S13
Table S8	S15
Table S9	S17
Table S10	S19
Table S11	S20
Fig. S1	S21
Fig. S2	S22
Fig. S3	S23
Fig. S4	S24
Fig. S5	S25
Fig. S6	S26
Fig. S7	S27
Fig. S8	S28
Fig. S9	S29
Fig. S10	S30
Fig. S11	S31
Fig. S12	S32
Fig. S13	S33
Fig. S14	S34
Fig. S15	S35
Fig. S16	S36
Fig. S17	S37

Table S1. Comparison of the Ratio of Band I-to-Band III Emission Intensities of Pyrene (Py I_1/I_3) Dissolved in DESs Investigated in this Work ($\lambda_{ex} = 337$ nm; slit: excitation/emission = 1.0/1.0 nm) with Solvent Systems Reported in Literature at 298.15 K (unless stated otherwise)

DES	$Py I_1/I_3^a$	solvent	Py I_1/I_3^{b}
Thu - Mon		Etholing	2.14
1 ny : Men $1 \cdot 1$	0.06	Glycolino	2.14
1.1	0.90		2.21
1:2	0.89	Reline	2.51
DA : Men			
1:1	0.78	[bmim][BF ₄]	2.01
1:2	0.78	[bmim][PF ₆]	1.92
Thy : DA		$[N_{1,4,4,4}][Tf_2N]$	1.92
2:1	0.93	[bmpyrr][Tf ₂ N]	2.10
1:1	0.87		
1:2	0.85	<i>n</i> -Butanol	1.05
		Cyclohexane	0.56
^{<i>a</i>} Py I_1/I_3 at 293. ^{<i>b</i>} ref 42	15 K. (Present V	Work)	

Table S2. Recovered Excited-State Intensity Decay Parameters for Pyrene (10 μ M; $\lambda_{em} = 373$ nm; excitation with a 340 nm nano-LED) Dissolved in the Investigated DESs at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. The Errors Associated with Decay Times (τ /ns) are $\leq \pm 5\%$.

	DES	Thy	: Men	DA	: Men		Thy : DA	
		1:1	1:2	1:1	1:2	2:1	1:1	1:2
293.15	$\frac{\tau}{\chi^2}$	66.0 1.24	77.1 1.20	77.2 1.33	85.6 1.02	78.8 1.14	77.9 1.23	76.9 1.30
303.15	τ	49.6	56.9	60.4	66.4	63.6	63.0	62.9
	χ^2	1.38	1.10	1.42	1.31	1.25	1.28	1.27
313.15	τ	39.6	45.1	47.3	54.9	52.3	52.0	51.8
	χ ²	1.29	1.22	1.16	1.07	1.17	1.23	1.34
323.15	τ	32.2	36.4	41.7	44.9	44.5	42.9	43.3
	χ^2	1.59	1.53	1.42	1.30	1.23	1.26	1.45
333.15	τ	27.3	30.5	36.1	38.2	36.7	36.8	35.9
	χ ²	1.46	1.31	1.29	1.10	1.21	1.37	1.35
343.15	τ	23.7	26.0	30.1	31.8	31.6	32.1	30.0
	χ^2	1.74	1.64	1.14	1.35	1.38	1.57	1.52
353.15	τ	21.3	22.9	26.0	28.9	26.4	24.6	26.2
	χ^2	1.57	1.52	1.18	1.10	1.29	1.54	1.53
363.15	τ	18.2	19.7	22.2	23.6	22.6	21.5	22.2
	χ^2	1.40	1.54	1.11	1.25	1.26	1.49	1.61

Table S3. Recovered Excited-State Intensity Decay Parameters for Pyrene (10 μ M; $\lambda_{em} = 373$ nm; excitation with a 340 nm nano-LED) Dissolved in the DES [**Thy : Men (1 : 1**)] at Varying Nitromethane Concentrations at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. The Errors Associated with Decay Times (τ /ns) and Pre-Exponential Factor (α) are $\leq \pm 5\%$.

	<i>T</i> (K)	293.15	313.15	333.15	353.15	363.15
[CH3NQ	,]/M					
	τ_0	66.0	39.6	27.3	21.3	18.2
0.000	(α ₁)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
	χ^2	1.24	1.29	1.46	1.57	1.40
	τ_1	-	0.25	0.16	0.28	0.17
0.005	(α ₁)		(0.02)	(0.04)	(0.03)	(0.04)
0.005	τ_2	44.2	17.8	13.0	11.0	9.81
	(α ₂)	(1.00)	(0.98)	(0.96)	(0.97)	(0.96)
	χ^2	1.18	1.37	1.26	1.16	1.15
	τ ₁	-	0.31	0.56	0.08	0.01
0.000	(α ₁)		(0.03)	(0.04)	(0.17)	(1.00)
0.009	τ_2	30.4	12.6	8.96	6.90	6.20
	(α ₂)	(1.00)	(0.97)	(0.96)	(0.83)	(0.00)
	χ^2	1.19	1.28	1.27	0.97	1.13
	τ_1	0.42	0.36	0.14	0.01	0.01
0.014	(α ₁)	(0.02)	(0.05)	(0.11)	(1.00)	(1.00)
0.014	τ_2	23.4	9.93	6.59	5.10	4.53
	(a ₂)	(0.98)	(0.95)	(0.89)	(0.00)	(0.00)
	χ^2	1.43	1.15	1.13	1.32	1.00
	τ ₁	0.56	0.34	0.14	0.01	0.01
0.010	(α ₁)	(0.03)	(0.06)	(0.13)	(1.00)	(1.00)
0.019	τ_2	19.3	8.20	5.30	4.07	3.66
	(a ₂)	(0.97)	(0.94)	(0.87)	(0.00)	(0.00)
	χ^2	1.39	1.25	0.96	1.03	1.05
	τ_1	1.44	0.15	0.14	0.01	0.24
0.023	(α ₁)	(0.04)	(0.12)	(0.15)	(1.00)	(1.00)
0.025	τ_2	16.3	6.52	4.49	3.42	3.12
	(a ₂)	(0.96)	(0.88)	(0.85)	(0.00)	(0.00)
	χ^2	1.40	1.02	0.93	0.93	0.84
	τ ₁	0.52	0.15	0.37	0.01	0.01
0.029	(α ₁)	(0.04)	(0.15)	(0.17)	(1.00)	(0.16)
0.028	$ au_2$	13.7	5.57	3.91	2.97	2.67
	(α ₂)	(0.96)	(0.85)	(0.83)	(0.00)	(0.84)
	χ^2	1.26	1.07	0.89	1.06	0.94

	τ_1	0.69	0.14	0.11	0.01	0.01
0.022	(a ₁)	(0.06)	(0.16)	(1.00)	(1.00)	(1.00)
0.033	τ_2	12.3	5.03	3.34	0.00	2.25
	(α ₂)	(0.94)	(0.84)	(0.00)	(1.00)	(0.00)
	χ^2	1.25	1.03	0.96	1.17	1.12
	τ_1	0.90	0.11	0.10	0.01	0.25
0.027	(a ₁)	(0.07)	(0.24)	(0.31)	(1.00)	(0.22)
0.037	τ_2	11.4	4.49	3.05	2.27	2.07
	(a ₂)	(0.93)	(0.76)	(0.69)	(0.00)	(0.78)
	χ^2	1.20	1.09	1.09	1.04	1.07
	τ_1	0.53	0.14	0.14	0.01	0.01
0.042	(a ₁)	(0.07)	(0.28)	(1.00)	(1.00)	(1.00)
0.042	τ_2	9.93	4.14	2.82	2.04	1.84
	(α ₂)	(0.93)	(0.72)	(0.00)	(0.00)	(0.00)
	χ^2	1.13	1.07	1.08	0.95	1.52

Table S4. Recovered Excited-State Intensity Decay Parameters for Pyrene (10 μ M; $\lambda_{em} = 373$ nm; excitation with a 340 nm nano-LED) Dissolved in the DES [**Thy : Men (1 : 2**)] at Varying Nitromethane Concentrations at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. The Errors Associated with Decay Times (τ /ns) and Pre-Exponential Factor (α) are $\leq \pm 5\%$.

	<i>T</i> (K)	293.15	313.15	333.15	353.15	363.15
[CH3NQ	.]/ M					
	τ	77.1	45.1	30.5	22.9	19.7
0.000	(α ₁)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
	χ^2	1.20	1.22	1.31	1.52	1.54
	τ ₁	0.23	0.14	0.20	0.25	0.52
0.005	(α ₁)	(0.01)	(0.01)	(0.03)	(0.03)	(0.02)
0.005	τ_2	49.5	25.9	16.0	11.8	10.7
	(α ₂)	(0.99)	(0.99)	(0.97)	(0.97)	(0.98)
	χ^2	1.10	1.20	1.34	1.21	1.18
	τ ₁	0.49	0.12	0.68	0.19	0.36
0.000	(α ₁)	(0.01)	(0.01)	(0.04)	(0.06)	(0.04)
0.009	τ_2	36.1	18.0	11.2	7.97	7.05
	(a ₂)	(0.99)	(0.99)	(0.96)	(0.94)	(0.96)
	χ^2	1.20	1.14	1.30	1.13	1.15
	τ ₁	0.68	0.18	0.37	0.21	0.23
0.014	(α ₁)	(0.01)	(0.03)	(0.05)	(0.10)	(0.07)
0.014	τ_2	28.3	14.0	8.27	5.87	5.02
	(α ₂)	(0.99)	(0.97)	(0.95)	(0.90)	(0.93)
	χ^2	1.11	1.24	1.20	0.96	1.19
	τ ₁	1.10	0.15	0.49	0.16	0.20
0.010	(α ₁)	(0.02)	(0.08)	(0.06)	(0.14)	(0.11)
0.019	τ_2	23.6	11.4	6.57	4.62	4.02
	(α ₂)	(0.98)	(0.92)	(0.94)	(0.86)	(0.89)
	χ^2	1.11	1.17	1.21	1.06	0.97
	τ_1	0.77	0.62	0.17	0.13	0.18
0.023	(α ₁)	(0.02)	(0.05)	(0.12)	(0.17)	(0.15)
0.025	τ_2	20.2	9.86	5.36	3.82	3.35
	(α ₂)	(0.98)	(0.95)	(0.88)	(0.83)	(0.85)
	χ^2	1.14	1.27	0.88	0.92	1.13
	τ ₁	0.95	0.25	0.32	0.21	0.15
0.020	(α ₁)	(0.03)	(0.07)	(0.10)	(0.12)	(0.20)
0.028	τ_2	17.8	8.23	4.66	3.28	2.93
	(α ₂)	(0.97)	(0.93)	(0.90)	(0.88)	(0.80)
	χ^2	1.12	1.14	0.86	1.19	1.14

	τ ₁	0.41	0.22	0.26	0.15	0.12
0.022	(a ₁)	(0.04)	(0.09)	(0.12)	(0.17)	(0.26)
0.033	τ_2	15.5	7.24	4.14	2.90	2.55
	(a ₂)	(0.96)	(0.91)	(0.88)	(0.83)	(0.74)
	χ^2	1.22	0.99	0.98	1.13	1.32
	τ_1	1.00	0.27	0.15	0.22	0.10
0.027	(a ₁)	(0.05)	(0.12)	(0.13)	(0.22)	(0.30)
0.037	τ_2	14.1	6.51	3.67	2.62	2.25
	(a ₂)	(0.95)	(0.88)	(0.87)	(0.78)	(0.70)
	χ^2	1.13	1.12	1.12	0.93	1.01
	τ_1	0.85	0.32	0.25	0.12	0.32
0.042	(a ₁)	(0.05)	(0.15)	(0.13)	(0.30)	(0.36)
0.042	τ_2	12.6	5.75	3.27	2.36	2.02
	(α ₂)	(0.95)	(0.85)	(0.87)	(0.70)	(0.64)
	χ^2	1.35	0.97	1.04	1.09	1.02

Table S5. Recovered Excited-State Intensity Decay Parameters for Pyrene (10 μ M; $\lambda_{em} = 373$ nm; excitation with a 340 nm nano-LED) Dissolved in the DES [**DA : Men (1 : 1**)] at Varying Nitromethane Concentrations at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. The Errors Associated with Decay Times (τ /ns) and Pre-Exponential Factor (α) are $\leq \pm 5\%$.

	<i>T</i> (K)	293.15	313.15	333.15	353.15	363.15
[CH ₃ NQ	.]/M					
	τ	77.2	47.3	36.1	26.0	22.2
0.000	(a ₁)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
	χ^2	1.33	1.16	1.29	1.18	1.11
	τ ₁	0.79	1.51	0.40	0.48	0.38
0.005	(α ₁)	(0.06)	(0.05)	(0.09)	(0.08)	(0.09)
0.005	τ_2	44.0	27.4	21.4	15.1	11.1
	(α ₂)	(0.94)	(0.95)	(0.91)	(0.92)	(0.91)
	χ^2	1.16	1.21	1.00	1.12	1.05
	τ ₁	0.80	0.91	0.35	0.31	0.32
0.000	(α ₁)	(0.08)	(0.06)	(0.12)	(0.11)	(0.13)
0.009	τ_2	31.0	18.6	14.8	9.84	7.11
	(α ₂)	(0.92)	(0.94)	(0.88)	(0.89)	(0.87)
	χ^2	1.17	1.17	1.05	1.20	1.15
	τ ₁	0.78	0.82	0.41	0.40	0.31
0.014	(α ₁)	(0.10)	(0.07)	(0.14)	(0.14)	(0.15)
0.014	τ_2	24.1	14.5	11.6	7.54	5.50
	(α ₂)	(0.90)	(0.93)	(0.86)	(0.86)	(0.85)
	χ^2	1.26	1.07	1.01	1.24	1.03
	τ ₁	0.70	1.12	0.34	0.30	0.34
0.010	(α ₁)	(0.12)	(0.10)	(0.18)	(0.18)	(0.18)
0.019	τ_2	19.4	11.7	9.31	5.98	4.68
	(α ₂)	(0.88)	(0.90)	(0.82)	(0.82)	(0.82)
	χ^2	1.18	1.11	1.03	1.06	1.10
	τ_1	0.60	0.89	0.35	0.34	0.28
0.023	(α ₁)	(0.14)	(0.11)	(0.19)	(0.20)	(0.22)
0.025	τ_2	16.2	9.94	7.65	5.11	4.00
	(α ₂)	(0.86)	(0.89)	(0.81)	(0.80)	(0.78)
	χ^2	1.29	1.16	1.11	0.92	1.00
	τ ₁	0.74	0.93	0.40	0.37	0.37
0.020	(α ₁)	(0.16)	(0.12)	(0.23)	(0.22)	(0.21)
0.028	τ_2	14.0	8.82	6.32	4.39	3.58
	(α ₂)	(0.84)	(0.88)	(0.77)	(0.78)	(0.79)
	χ^2	1.15	1.21	1.10	0.94	1.00

	τ_1	0.65	0.67	0.31	0.30	0.27
0.022	(a ₁)	(0.18)	(0.13)	(0.25)	(0.24)	(0.24)
0.033	τ_2	12.0	7.62	5.59	3.79	3.18
	(a ₂)	(0.82)	(0.87)	(0.75)	(0.76)	(0.76)
	χ^2	1.17	1.14	0.95	1.10	1.02
	τ_1	0.64	0.56	0.36	0.32	0.22
	(α ₁)	(0.19)	(0.14)	(0.26)	(0.27)	(0.28)
0.037	τ_2	10.9	6.82	4.86	3.42	2.84
	(a ₂)	(0.81)	(0.86)	(0.74)	(0.73)	(0.72)
	χ^2	1.10	1.10	1.13	0.86	1.01
	τ_1	0.55	0.86	0.30	0.25	0.21
0.042	(a ₁)	(0.21)	(0.16)	(0.29)	(0.29)	(0.29)
0.042	τ_2	9.52	6.22	4.40	3.08	2.58
	(α ₂)	(0.79)	(0.84)	(0.71)	(0.71)	(0.71)
	χ^2	1.11	1.09	1.04	1.05	1.16

Table S6. Recovered Excited-State Intensity Decay Parameters for Pyrene (10 μ M; $\lambda_{em} = 373$ nm; excitation with a 340 nm nano-LED) Dissolved in the DES [**DA : Men (1 : 2**)] at Varying Nitromethane Concentrations at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. The Errors Associated with Decay Times (τ /ns) and Pre-Exponential Factor (α) are $\leq \pm 5\%$.

	<i>T</i> (K)	293.15	313.15	333.15	353.15	363.15
[CH ₃ NQ	,]/M					
	τ	85.6	54.9	38.2	28.9	23.6
0.000	(a ₁)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
	χ^2	1.02	1.07	1.10	1.10	1.25
	τ_1	0.86	0.63	0.43	0.45	0.44
0.005	(α ₁)	(0.05)	(0.05)	(0.05)	(0.07)	(0.08)
0.005	τ_2	53.1	29.8	19.5	15.4	11.9
	(α ₂)	(0.95)	(0.95)	(0.95)	(0.93)	(0.92)
	χ^2	1.17	1.23	1.23	1.21	1.29
	τ ₁	0.83	0.59	0.56	0.41	0.35
0.000	(α ₁)	(0.07)	(0.08)	(0.09)	(0.11)	(0.12)
0.009	τ_2	35.7	20.3	12.5	10.0	8.07
	(α ₂)	(0.93)	(0.92)	(0.91)	(0.89)	(0.88)
	χ^2	1.15	1.28	1.10	1.28	1.09
	τ_1	0.80	0.54	0.48	0.42	0.30
0.014	(α ₁)	(0.09)	(0.10)	(0.11)	(0.12)	(0.15)
0.014	τ_2	27.7	15.2	9.72	7.42	6.05
	(a ₂)	(0.91)	(0.90)	(0.89)	(0.88)	(0.85)
	χ^2	1.03	1.26	1.17	1.13	1.12
	τ_1	0.70	0.55	0.52	0.46	0.31
0.010	(α ₁)	(0.10)	(0.13)	(0.14)	(0.16)	(0.18)
0.019	τ_2	22.4	12.0	7.73	6.03	4.86
	(a ₂)	(0.90)	(0.87)	(0.86)	(0.84)	(0.82)
	χ^2	1.21	1.21	1.16	1.08	1.00
	τ_1	0.70	0.56	0.49	0.37	0.31
0.023	(α ₁)	(0.12)	(0.15)	(0.16)	(0.18)	(0.19)
0.025	τ_2	19.1	10.2	6.53	4.96	4.07
	(a ₂)	(0.88)	(0.85)	(0.84)	(0.82)	(0.81)
	χ^2	1.26	1.20	1.15	1.04	1.10
	τ ₁	0.67	0.52	0.49	0.33	0.32
0.020	(α ₁)	(0.13)	(0.17)	(0.17)	(0.19)	(0.21)
0.028	τ_2	16.4	8.50	5.69	4.18	3.47
	(α ₂)	(0.87)	(0.83)	(0.83)	(0.81)	(0.79)
	χ^2	1.02	1.23	0.89	1.01	1.13

	τ_1	0.66	0.37	0.42	0.30	0.27
0.022	(a ₁)	(0.15)	(0.19)	(0.18)	(0.22)	(0.23)
0.033	τ_2	14.3	7.31	4.87	3.68	2.98
	(α ₂)	(0.85)	(0.81)	(0.82)	(0.78)	(0.77)
	χ^2	1.20	1.06	1.10	1.01	1.10
	τ_1	0.64	0.44	0.36	0.30	0.26
0.027	(a ₁)	(0.17)	(0.20)	(0.21)	(0.24)	(0.29)
0.037	τ_2	12.6	6.46	4.34	3.27	2.78
	(a ₂)	(0.83)	(0.80)	(0.79)	(0.76)	(0.71)
	χ^2	1.25	1.21	1.04	0.82	1.04
	τ_1	0.60	0.42	0.36	0.40	0.27
0.043	(a ₁)	(0.19)	(0.21)	(0.22)	(0.25)	(0.30)
0.042	τ_2	11.1	5.78	3.88	2.95	2.58
	(α ₂)	(0.81)	(0.79)	(0.78)	(0.75)	(0.70)
	χ^2	1.20	1.07	0.93	1.03	1.02

Table S7. Recovered Excited-State Intensity Decay Parameters for Pyrene (10 μ M; $\lambda_{em} = 373$ nm; excitation with a 340 nm nano-LED) Dissolved in the DES [**Thy : DA (2 : 1**)] at Varying Nitromethane Concentrations at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. The Errors Associated with Decay Times (τ /ns) and Pre-Exponential Factor (α) are $\leq \pm 5\%$.

	<i>T</i> (K)	293.15	313.15	333.15	353.15	363.15
]/M					
	τ	78.8	52.3	36.7	26.4	22.6
0.000	(a ₁)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
	χ^2	1.14	1.17	1.21	1.29	1.26
	τ_1	0.37	0.32	0.34	0.21	0.01
0.005	(α ₁)	(0.02)	(0.02)	(0.03)	(0.04)	(1.00)
0.005	τ_2	38.1	22.4	14.7	10.9	7.92
	(a ₂)	(0.98)	(0.98)	(0.97)	(0.96)	(0.00)
	χ^2	1.05	1.29	1.20	1.19	1.14
	τ ₁	0.26	0.45	0.28	0.31	0.01
0.000	(α ₁)	(0.03)	(0.03)	(0.05)	(0.06)	(1.00)
0.009	τ_2	25.7	14.4	9.26	6.07	5.02
	(a ₂)	(0.97)	(0.97)	(0.95)	(0.94)	(0.00)
	χ^2	1.11	1.12	1.07	1.11	1.03
	τ ₁	0.54	0.42	0.13	0.28	0.01
0.014	(α ₁)	(0.03)	(0.04)	(1.00)	(0.09)	(1.00)
0.014	τ_2	19.9	10.8	6.93	4.38	3.79
	(a ₂)	(0.97)	(0.96)	(0.00)	(0.91)	(0.00)
	χ^2	1.24	1.22	1.09	0.97	0.91
	τ ₁	0.42	0.46	0.01	0.38	0.26
0.010	(α ₁)	(0.04)	(0.05)	(1.00)	(0.12)	(0.16)
0.019	τ_2	15.9	8.65	5.35	3.58	3.03
	(a ₂)	(0.96)	(0.95)	(0.00)	(0.88)	(0.84)
	χ^2	1.16	1.29	1.03	1.15	0.94
	τ_1	0.43	0.25	0.01	0.27	0.01
0.023	(α ₁)	(0.06)	(0.09)	(1.00)	(0.16)	(1.00)
0.025	τ_2	13.0	7.14	4.40	2.88	2.53
	(a ₂)	(0.94)	(0.91)	(0.00)	(0.84)	(0.00)
	χ^2	1.16	1.07	1.07	1.26	1.14
	τ_1	0.42	0.31	0.02	0.30	0.01
0.020	(α ₁)	(0.08)	(0.09)	(1.00)	(0.20)	(1.00)
0.028	τ_2	10.8	6.04	3.90	2.36	2.24
	(a ₂)	(0.92)	(0.91)	(0.00)	(0.80)	(0.00)
	χ ²	1.26	1.01	0.89	1.08	1.14

	τ_1	0.37	0.20	0.13	0.21	0.21
0.033	(a ₁)	(0.10)	(0.14)	(0.26)	(0.24)	(0.29)
	τ_2	9.53	5.29	3.36	2.07	1.97
	(a ₂)	(0.90)	(0.86)	(0.74)	(0.76)	(0.71)
	χ^2	1.08	1.00	1.26	1.06	1.09
	τ_1	0.19	0.24	0.08	0.35	0.01
0.037	(a ₁)	(0.15)	(0.14)	(0.30)	(0.30)	(1.00)
	τ_2	8.23	4.63	2.99	1.89	1.65
	(a ₂)	(0.85)	(0.86)	(0.70)	(0.70)	(0.00)
	χ^2	1.27	1.08	1.15	1.15	1.04
	τ_1	0.30	0.19	0.01	0.20	0.17
0.042	(a ₁)	(0.15)	(0.20)	(1.00)	(0.33)	(0.33)
	τ_2	7.32	4.27	2.73	1.73	1.57
	(α ₂)	(0.85)	(0.80)	(0.00)	(0.67)	(0.67)
	χ^2	1.04	1.19	1.26	1.09	1.06

Table S8. Recovered Excited-State Intensity Decay Parameters for Pyrene (10 μ M; $\lambda_{em} = 373$ nm; excitation with a 340 nm nano-LED) Dissolved in the DES [**Thy : DA (1 : 1**)] at Varying Nitromethane Concentrations at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. The Errors Associated with Decay Times (τ /ns) and Pre-Exponential Factor (α) are $\leq \pm 5\%$.

	<i>T</i> (K)	293.15	313.15	333.15	353.15	363.15
[CH ₃ NQ]/M					
	τ	77.9	52.0	36.8	24.6	21.5
0.000	(α ₁)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
	χ^2	1.23	1.23	1.37	1.54	1.49
	τ ₁	0.24	0.22	0.08	0.06	0.01
0.005	(α ₁)	(0.02)	(0.02)	(0.04)	(0.28)	(1.00)
0.005	τ_2	42.5	24.8	18.0	11.4	7.74
	(α ₂)	(0.98)	(0.98)	(0.96)	(0.72)	(0.00)
	χ^2	1.17	1.12	1.32	1.10	1.27
	τ ₁	0.32	0.37	0.26	0.07	0.04
0.000	(α ₁)	(0.03)	(0.04)	(0.06)	(0.31)	(0.80)
0.009	τ_2	27.1	16.0	11.0	7.02	5.22
	(α ₂)	(0.97)	(0.96)	(0.94)	(0.69)	(0.20)
	χ^2	1.17	1.06	1.18	1.21	1.04
	τ_1	0.46	0.23	0.33	0.05	0.01
0.014	(α ₁)	(0.04)	(0.06)	(0.08)	(0.61)	(1.00)
	τ_2	22.4	11.7	8.06	5.22	4.01
	(α ₂)	(0.96)	(0.94)	(0.92)	(0.39)	(0.00)
	χ^2	1.12	1.02	1.30	1.04	0.79
	τ ₁	0.26	0.41	0.10	0.01	0.02
0.010	(α ₁)	(0.06)	(0.07)	(0.24)	(1.00)	(1.00)
0.019	τ_2	18.2	9.22	6.29	4.14	3.24
	(α ₂)	(0.94)	(0.93)	(0.76)	(0.00)	(0.00)
	χ^2	1.13	1.17	1.11	0.99	1.07
	τ_1	0.31	0.20	0.11	0.01	0.01
0.023	(α ₁)	(0.07)	(0.10)	(0.23)	(1.00)	(1.00)
0.025	τ_2	15.3	7.59	5.10	3.47	2.78
	(α ₂)	(0.93)	(0.90)	(0.77)	(0.00)	(0.00)
	χ^2	1.19	1.15	1.11	1.05	0.89
	τ_1	0.24	0.21	0.12	0.01	0.01
0.020	(α ₁)	(0.08)	(0.13)	(0.28)	(1.00)	(1.00)
0.028	τ_2	12.9	6.48	4.36	2.98	2.35
	(α ₂)	(0.92)	(0.87)	(0.72)	(0.00)	(0.00)
	χ^2	1.24	1.19	1.21	1.08	1.17

	τ ₁	0.26	0.20	0.12	0.01	0.01
0.033	(α ₁)	(0.09)	(0.14)	(0.31)	(1.00)	(1.00)
	τ_2	11.6	5.50	3.84	2.54	2.13
	(a ₂)	(0.91)	(0.86)	(0.69)	(0.00)	(0.00)
	χ^2	1.24	1.18	1.02	1.13	1.24
	τ_1	0.25	0.17	0.20	0.05	0.01
0.037	(α ₁)	(0.11)	(0.21)	(0.24)	(0.83)	(1.00)
	τ_2	10.1	4.88	3.34	2.26	1.93
	(α ₂)	(0.89)	(0.79)	(0.76)	(0.17)	(0.00)
	χ^2	1.29	0.96	1.15	1.20	1.16
	τ ₁	0.26	0.19	0.10	0.01	0.01
0.042	(α ₁)	(0.13)	(0.21)	(0.47)	(1.00)	(1.00)
	τ_2	9.18	4.45	3.11	2.02	1.80
	(α ₂)	(0.87)	(0.79)	(0.53)	(0.00)	(0.00)
	χ^2	1.17	1.11	0.84	0.97	1.08

Table S9. Recovered Excited-State Intensity Decay Parameters for Pyrene (10 μ M; $\lambda_{em} = 373$ nm; excitation with a 340 nm nano-LED) Dissolved in the DES [**Thy : DA (1 : 2**)] at Varying Nitromethane Concentrations at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. The Errors Associated with Decay Times (τ /ns) and Pre-Exponential Factor (α) are $\leq \pm 5\%$.

	<i>T</i> (K)	293.15	313.15	333.15	353.15	363.15
[CH ₃ NQ]/M					
0.000	τ	76.9	51.8	35.9	26.2	22.2
	(α ₁)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
	χ^2	1.30	1.34	1.35	1.53	1.61
	τ ₁	0.35	0.32	0.12	0.24	0.24
0.005	(α ₁)	(0.03)	(0.03)	(0.14)	(0.06)	(0.08)
0.005	τ_2	39.2	27.4	16.3	12.3	10.8
	(α ₂)	(0.97)	(0.97)	(0.86)	(0.94)	(0.92)
	χ^2	1.09	1.09	1.05	1.05	1.21
	τ ₁	0.43	0.30	0.25	0.18	0.21
0.000	(α ₁)	(0.04)	(0.06)	(0.11)	(0.13)	(0.10)
0.009	τ ₂	25.5	16.8	10.2	7.66	7.00
	(α ₂)	(0.96)	(0.94)	(0.89)	(0.87)	(0.90)
	χ^2	1.15	1.11	1.22	1.25	1.06
	τ ₁	0.42	0.40	0.14	0.09	0.01
0.014	(α ₁)	(0.05)	(0.07)	(0.22)	(0.32)	(1.00)
	τ_2	18.7	12.3	7.51	5.51	5.15
	(α ₂)	(0.95)	(0.93)	(0.78)	(0.68)	(0.00)
	χ^2	1.17	1.15	1.04	0.98	0.89
	τ ₁	0.33	0.33	0.01	0.11	0.01
0.010	(α ₁)	(0.09)	(0.10)	(1.00)	(0.30)	(1.00)
0.019	τ_2	14.9	9.48	6.16	4.33	4.03
	(α ₂)	(0.91)	(0.90)	(0.00)	(0.70)	(0.00)
	χ^2	1.13	1.17	1.05	1.03	0.99
	τ ₁	0.27	0.36	0.02	0.01	0.01
0.022	(α ₁)	(0.09)	(0.11)	(1.00)	(1.00)	(1.00)
0.025	τ_2	12.3	7.71	5.26	3.56	3.36
	(α ₂)	(0.91)	(0.89)	(0.00)	(0.00)	(0.00)
	χ^2	1.25	1.07	1.02	1.17	1.12
	τ ₁	0.33	0.29	0.05	0.01	0.01
0.020	(α ₁)	(0.10)	(0.15)	(0.80)	(1.00)	(1.00)
0.028	τ_2	10.5	6.57	4.50	3.09	2.88
	(α ₂)	(0.90)	(0.85)	(0.20)	(0.00)	(0.00)
	χ^2	1.10	1.12	1.10	1.18	1.11

	τ_1	0.25	0.21	0.01	0.09	0.05
0.022	(α ₁)	(0.13)	(0.20)	(1.00)	(0.48)	(0.79)
0.033	τ_2	9.20	5.76	3.91	2.68	2.54
	(a ₂)	(0.87)	(0.80)	(0.00)	(0.52)	(0.21)
	χ^2	1.19	0.88	0.97	1.16	1.20
	τ_1	0.32	0.35	0.01	0.09	0.05
0.037	(α ₁)	(0.14)	(0.20)	(1.00)	(0.51)	(0.86)
	τ_2	8.38	5.11	3.45	2.42	2.31
	(α ₂)	(0.86)	(0.80)	(0.00)	(0.49)	(0.14)
	χ^2	1.26	1.14	1.19	1.20	0.90
	τ ₁	0.20	0.22	0.01	0.01	0.07
0.042	(α ₁)	(0.18)	(0.24)	(1.00)	(1.00)	(0.98)
	τ_2	7.45	4.50	3.04	2.13	2.08
	(a ₂)	(0.82)	(0.76)	(0.00)	(0.00)	(0.02)
	χ^2	1.27	0.89	0.98	1.12	1.13

Table S10. Recovered Intensity Decay Parameters and Microviscosity (η_{μ}/ns) for Py-PDMS-Py (10 μ M; $\lambda_{em} = 480$ nm; excitation with a 340 nm nano-LED) Dissolved in the Investigated DESs at Different Temperatures in the Range 293.15 K $\leq T \leq 363.15$ K. Excimer Decay Time ($\tau_{\rm F}/ns$) is Associated with an Error of $\leq \pm 5\%$.

$\sum_{i=1}^{n}$	DES	Thy : Men		DA : Men		Thy : DA		
<i>T</i> (K)		1:1	1:2	1:1	1:2	2:1	1:1	1:2
	τ	32.7	55.8	51.8	43.4	52.2	37.1	48.8
293.15	χ^2	1.44	1.43	1.58	1.63	1.47	1.51	2.27
270110	η_{μ}	535 ± 16	1929 ± 35	1034 ± 20	526 ± 12	1036± 21	796 ± 18	872 ± 20
	$\tau_{\rm E}$	30.3	35.5	42.7	35.5	44.0	36.2	42.3
303.15	χ^2	1.21	1.34	1.48	1.41	1.47	1.45	2.12
	η_{μ}	299 ± 10	822 ± 23	639 ± 15	332 ± 9	653 ± 16	572 ± 14	604 ± 15
	$\tau_{\rm E}$	29.5	31.0	36.2	24.3	36.9	31.5	36.0
313.15	χ^2	1.12	1.23	1.44	1.43	1.38	1.46	2.00
	η_{μ}	181 ± 6	532 ± 17	411 ± 11	176 ± 7	396 ± 10	396 ± 11	392 ± 11
	$\tau_{\rm E}$	24.2	30.7	31.7	19.0	31.5	28.6	30.7
323.15	χ^2	1.12	1.21	1.42	1.42	1.25	1.23	1.96
	η_{μ}	105 ± 4	375 ± 12	296 ± 9	114 ± 6	267 ± 9	289 ± 9	272 ± 9
	$\tau_{\rm E}$	18.5	26.7	27.9	17.6	25.9	25.2	26.6
333.15	χ^2	1.14	1.33	1.34	1.27	1.17	1.27	1.86
	η_{μ}	65 ± 4	286 ± 10	246 ± 9	93 ± 6	188 ± 8	218 ± 8	198 ± 7
	τ _E	12.2	23.2	24.5	16.4	22.6	22.1	22.8
343.15	χ^2	1.23	1.43	1.22	1.37	1.13	1.33	1.84
040.15	η_{μ}	37 ± 3	222 ± 9	201 ± 8	78 ± 5	148 ± 8	166 ± 8	154 ± 6
	τ _E	9.18	19.5	20.9	10.2	19.8	19.1	19.8
353 15	χ^2	1.15	1.20	1.67	1.33	1.03	1.46	1.81
	ημ	26 ± 3	147 ± 8	138 ± 7	46 ± 5	120 ± 7	136 ± 7	122 ± 6
	τ _E	6.85	15.6	14.9	7.91	17.0	16.7	17.0
363.15	χ^2	1.22	1.24	1.44	1.47	1.05	1.67	1.83
	ημ	19 ± 2	108 ± 7	96 ± 6	36 ± 4	102 ± 6	113 ± 6	104 ± 6

Table S11. Summary of Parameters Associated with Microviscosity ($\eta_{\mu/ns}$) of the Investigated

DES	A	В	<i>T</i> _{0/K}	R ²	${}_{a}E_{a,\eta\mu/kJ} \operatorname{mol}^{-1}$			
Thy : Men								
1:1	-9.5 ± 3.6	4010 ± 2046	39 ± 73	0.9984	44.1 ± 17.0			
1:2	1.6 ± 1.2	489 ± 267	210 ± 29	0.9892	46.6 ± 2.2			
DA : Men								
1:1	-1.3 ± 3.6	1533 ± 1583	106 ± 112	0.9892	30.7 ± 13.1			
1:2	-1.0 ± 2.2	895 ± 670	170 ± 55	0.9887	40.4 ± 5.6			
Thy : DA								
2:1	1.7 ± 0.5	437 ± 103	209 ± 13	0.9980	41.2 ± 1.5			
1:1	0.1 ± 0.7	1059 ± 279	132 ± 25	0.9991	28.4 ± 2.5			
1:2	0.8 ± 0.7	733 ± 209	171 ± 21	0.9983	33.7 ± 2.0			
${}^{a}E_{a,\eta \text{ is}}$ calculated at $T = (298.15 \text{ K})$. Standard deviations are given with \pm sign.								

DESs According to the VFT Model Using Equation: $\ln \eta_{\mu} = A + \frac{B}{T - T_0}$

Figure S1. Steady-state fluorescence excitation spectra [$\lambda_{em} = 373$ nm; excitation and emission slits are 1.0 and 1.0 nm, respectively] of pyrene (10 μ M) dissolved in the investigated DESs at different temperatures.

Figure S2. Steady-state fluorescence emission spectra [$\lambda_{ex} = 337$ nm; excitation and emission slits are 1.0 and 1.0 nm, respectively] of pyrene (10 μ M) dissolved in the investigated DESs at different temperatures.

Figure S3. Plots of τ_0/τ *versus* [nitromethane] for pyrene (10 µM) within Thy : Men [1 : 1 (left) and 1 : 2 (right)] DES. Solid lines represent best fit to Stern-Volmer equation (eq 1). Estimated k_q (eq 2) at different temperatures are listed in Table 2. The error associated with τ_0/τ is $\leq \pm 5\%$.

Figure S4. Plots of τ_0/τ *versus* [nitromethane] for pyrene (10 µM) within DA : Men [1 : 1 (left) and 1 : 2 (right)] DES. Solid lines represent best fit to Stern-Volmer equation (eq 1). Estimated k_q (eq 2) at different temperatures are listed in Table 2. The error associated with τ_0/τ is $\leq \pm 5\%$.

Figure S5. Plots of τ_0/τ versus [nitromethane] for pyrene (10 µM) within Thy : DA [2 : 1 (left), 1 : 1 (middle), and 1 : 2 (right)] DES. Solid lines represent best fit to Stern-Volmer equation (eq 1). Estimated k_q (eq 2) at different temperatures are listed in Table 2. The error associated with τ_0/τ is $\leq \pm 5\%$.

Figure S6. Variation of $\ln k_q$ with 1/T for pyrene-nitromethane fluorophore-quencher pair dissolved in the investigated DESs. Solid lines represent linear fit in agreement with empirical Arrhenius law. Recovered parameters – activation energy (E_a) and ln A are listed in **Table 3**.

Figure S7. Normalized Fluorescence emission spectra of Py-PDMS-Py (10 μ M, λ_{ex} = 340 nm; excitation and emission slits are 1.0 and 1.0 nm, respectively) dissolved in the investigated DESs at different temperatures (293.15 K – 363.15 K).

Figure S8. Relative Fluorescence emission spectra of Py-PDMS-Py (10 μ M, $\lambda_{ex} = 340$ nm; excitation and emission slits are 1.0 and 1.0 nm, respectively) dissolved in the investigated DESs at different temperatures (293.15 K – 363.15 K).

Figure S9. Variation of $I_{\rm M}$ and $I_{\rm E}$ with temperature for Py-PDMS-Py dissolved in the investigated DESs. The error associated with $I_{\rm M}$ and $I_{\rm E}$ is $\leq \pm 5\%$.

Figure S10. Normalized Fluorescence excitation spectra of Py-PDMS-Py (10 μ M) dissolved in the investigated DESs; obtained with emission wavelengths fixed at 377 nm and 480 nm (emission and excitation slits are 1.0 and 1.0 nm, respectively) at 293.15 K.

Figure S11. Normalized Fluorescence excitation spectra of Py-PDMS-Py (10 μ M) dissolved in the investigated DESs; obtained with emission wavelengths fixed at 377 nm and 480 nm (emission and excitation slits are 1.0 and 1.0 nm, respectively) at 303.15 K.

Figure S12. Normalized Fluorescence excitation spectra of Py-PDMS-Py (10 μ M) dissolved in the investigated DESs; obtained with emission wavelengths fixed at 377 nm and 480 nm (emission and excitation slits are 1.0 and 1.0 nm, respectively) at 313.15 K.

Figure S13. Normalized Fluorescence excitation spectra of Py-PDMS-Py (10 μ M) dissolved in the investigated DESs; obtained with emission wavelengths fixed at 377 nm and 480 nm (emission and excitation slits are 1.0 and 1.0 nm, respectively) at 323.15 K.

Figure S14. Normalized Fluorescence excitation spectra of Py-PDMS-Py (10 μ M) dissolved in the investigated DESs; obtained with emission wavelengths fixed at 377 nm and 480 nm (emission and excitation slits are 1.0 and 1.0 nm, respectively) at 333.15 K.

Figure S15. Normalized Fluorescence excitation spectra of Py-PDMS-Py (10 μ M) dissolved in the investigated DESs; obtained with emission wavelengths fixed at 377 nm and 480 nm (emission and excitation slits are 1.0 and 1.0 nm, respectively) at 343.15 K.

Figure S16. Normalized Fluorescence excitation spectra of Py-PDMS-Py (10 μ M) dissolved in the investigated DESs; obtained with emission wavelengths fixed at 377 nm and 480 nm (emission and excitation slits are 1.0 and 1.0 nm, respectively) at 353.15 K.

Figure S17. Normalized Fluorescence excitation spectra of Py-PDMS-Py (10 μ M) dissolved in the investigated DESs; obtained with emission wavelengths fixed at 377 nm and 480 nm (emission and excitation slits are 1.0 and 1.0 nm, respectively) at 363.15 K.