Supporting Information for

Ultra-fast Excited-state Dynamics of substituted *trans*-Naphthalene Azo Moieties

Robert C. Hamburger, ^a Tao Huang, ^a Shea M. Martin, ^a Craig A. Pointer, ^a Lisa A. Fredin*^a and Elizabeth R. Young*^a

^a Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.

Contents

Materials and Synthetic Procedures5
Synthesis5
1. Nap-azo-ph (1)5
2. Nap-azo-phOH (2)6
3. Nap-azo-phOMe (3)6
4. Nap-azo-phNMe ₂ (4)7
Photoisomerization and reversion of azo 1 - 4:9
Figure S1. a) Photoisomerization and reversion spectra of azo 1 – 4. b) Partial photoisomerization of 1 – 4 occurs with the lamp of the UV-vis spectrometer. c) Kinetic traces of isomerization and reversion (with fitted lifetimes) d) Plot of reversion lifetime as a function of Hammett parameter
Figure S2. Molar absorptivity of azo 1 in acetonitrile12
Figure S3. Molar absorptivity of azo 2 in acetonitrile13
Figure S4. Molar absorptivity of azo 3 in acetonitrile14
Figure S5. Molar absorptivity of azo 4 in acetonitrile15
Molecular orbital diagrams for azo 1 - 4:16
Figure S6. Molecular orbital diagrams for azo 116
Figure S7. Molecular orbital diagrams for azo 217
Figure S8. Molecular orbital diagrams for azo 318
Figure S9. Molecular orbital diagrams for azo 419
Transient Absorption Fitting20
Figure S10. Heat map of 1 TAS a) before b) after chirp correction

Figure S12. Heat map of 2 TAS a) before b) after chirp correction2 Figure S13. TAS heat map, global analysis fitting and analysis of fit for 2 collected at 370 nm excitatior	- 3 1. 4 5
Figure S13. TAS heat map, global analysis fitting and analysis of fit for 2 collected at 370 nm excitation	ו. 4 5
	5
Figure S14. Heat map of 3 TAS a) before b) after chirp correction	
Figure S15. TAS heat map, global analysis fitting and analysis of fit for 3 collected at 370 nm excitation2	ו. 6
Figure S16. Heat map of 4 TAS a) before b) after chirp correction2	7
Figure S17. TAS heat map, global analysis fitting and analysis of fit for 4 collected at 370 nm excitation 2	1. 8
Figure S18. Comparison of azobenzene with 1-4 on our TAS instrumentation.	0
Figure S19. Comparison of TAS residual spectrum with the difference of the steady-state absorption spectra of the <i>trans</i> - and <i>cis</i> - isomer of 1-43	1
Triplet Potential Energy Curves of Azo 1 and 4	2
Figure S20. CSinglet and triplet PECs below 5 eV in energy along the torsional (\angle CNNC) and inversion (\angle^{Nap} CNN) S ₀ trans-cis isomerization. The excited state (TDDFT) surfaces above each shown point are plotted and like excited states are connected with lines (black singlets and red triplets). B3LYP/6-311G(d,p)/PCM(ACN). The relaxed triplet (T ₁) surfaces are shown in Figure S39-40	2
Figure S21. Spin orbit coupling between the first singlet and first two triplet excited states ($ \mathfrak{H}_{SOC} S_1> (top) and the lowest triplet and ground state ((bottom) along the torsional (\angle CNNC) and inversion (\angle^{Nap}CNN) trans-cis isomerization. B3LYP/6-311G(d,p)/PCM(ACN)$	3
S_0 geometries and transition states of Azo 1 - 4	4
Figure S22. S ₀ geometries of azo 1 with various \angle CNNC angles3	4
Figure S23. S ₀ geometries of azo 1 with various $\angle^{Ph}CNN$ angles	5
Figure S24. Geometry of azo 1 transition state from point 8 in Figure S23. The imaginary vibrational mode at -409.97 cm ⁻¹ is indicated by the blue arrow	6
Figure S25. S ₀ geometries of azo 1 with various $\angle^{Nap}CNN$ angles	7
Figure S26. Geometry of azo 1 transition state from point 8 in Figure S25. The imaginary vibrational mode at -404.81 cm ⁻¹ is indicated by the blue arrow	8
Figure S27. Geometry and relative energy of azo 2 transition states and the ground states at <i>trans</i> - and <i>cis</i> - configurations	9
Figure S28. Geometry of azo 2 transition state from point 2 in Figure S27. The imaginary vibrational mode at -398.49 cm ⁻¹ is indicated by the blue arrow4	0
Figure S29. Geometry of azo 2 transition state from point 3 in Figure S27. The imaginary vibrational mode at -459.90 cm ⁻¹ is indicated by the blue arrow4	1

Figure S30. Geometry and relative energy of azo 3 transition states and the ground states at <i>trans</i> - and <i>cis</i> - configurations	42
Figure S31. Geometry of azo 3 transition state from point 2 in Figure S30. The imaginary vibrational mode at -397.45 cm ⁻¹ is indicated by the blue arrow.	43
Figure S32. Geometry of azo 3 transition state from point 3 in Figure S30. The imaginary vibrational mode at -422.82 cm ⁻¹ is indicated by the blue arrow.	44
Figure S33. S ₀ geometries of azo 4 with various \angle CNNC angles	45
Figure S34. S ₀ geometries of azo 4 with various $\angle^{Ph}CNN$ angles	46
Figure S35. S ₀ geometries of azo 4 with various $\angle^{Nap}CNN$ angles	47
Figure S36. Geometry of azo 4 transition state from point 8 in Figure S35. The imaginary vibrational mode at -384.14 cm ⁻¹ is indicated by the blue arrow.	48
Figure S37. Comparing trans-, cis-, and transition states between azo 1 (top) and azo 4 (bottom)	49
Figure S38. Comparing optimized triplet geometries of azo 1-4 and their spin densities	49
Figure S39. Triplet potential surface for azo 1 with various ∠CNNC dihedral angles	50
Figure S40. Triplet potential surface for azo 4 with various ∠CNNC dihedral angles, and ∠ ^{№ap} CNN angles	51
DFT Optimized Coordinates	52
Trans - Nap-azo-ph (azo 1) coordinates (B3LYP/6-311G(d.p)/PCM(ACN))	52
Cis - Nap-azo-ph (azo 1) coordinates (B3LYP/6-311G(d.p)/PCM(ACN))	53
TS - Nap-azo-ph (azo 1) coordinates (B3LYP/6-311G(d.p)/PCM(ACN))	54
Triplet - Nap-azo-ph (azo 1) coordinates (B3LYP/6-311G(d.p)/PCM(ACN))	55
Trans-Nap-azo-phOH (azo 2) coordinates	56
Cis-Nap-azo-phOH (azo 2) coordinates	57
TS-Nap-azo-phOH (azo 2) coordinates	58
Trans-Nap-azo-phOMe (azo 3) coordinates	59
Cis-Nap-azo-phOMe (azo 3) coordinates	60
TS-Nap-azo-phOMe (azo 3) coordinates	61
Trans-Nap-azo-phNMe ₂ (azo 4) coordinates	62
Cis-Nap-azo-phNMe ₂ (azo 4) coordinates	63
TS-Nap-azo-phNMe ₂ (azo 4) coordinates	64
Triplet-Nap-azo-phNMe ₂ (azo 4) coordinates	65
TD-DFT tables (FC states)	66
Table S1. 30 TDDFT singlet excitations of azo 1 from <i>trans-</i> S0 geometry, B3LYP/6-311G(d.p)/PCM(AC	CN)
	66

Table S2. 30 TDDFT triplet excitations of azo 1 from <i>trans</i> -S ₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)
Table S3. 30 TDDFT singlet excitations of azo 2 from <i>trans</i> -S ₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)
Table S4. 30 TDDFT triplet excitations of azo 2 from <i>trans</i> -S ₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN) 77
Table S5. 30 TDDFT singlet excitations of azo 3 from <i>trans</i> -S ₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN) 82
Table S6. 30 TDDFT triplet excitations of azo 3 from <i>trans</i> -S ₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)
Table S7. 30 TDDFT singlet excitations of azo 4 from <i>trans</i> -S ₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)
Table S8. 30 TDDFT triplet excitations of azo 4 from <i>trans</i> -S ₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN) 94
Azo 1 and 4 PECs99
Table S9. TDDFT Energies of 1 along the torsional \angle CNNC of the S ₀ trans-cis isomerization
Table S10. TDDFT Energies of 1 along the inversion \angle ^{Nap} CNN of the S ₀ trans-cis isomerization
Table S11. TDDFT Energies of 4 along the torsional \angle CNNC of the S ₀ trans-cis isomerization100
Table S12. TDDFT Energies of 4 along the inversion \angle ^{Nap} CNN of the S ₀ trans-cis isomerization100
Spin orbit coupling101
Table S13. Spin-orbit coupling constants between $S_0 - S_3$ and $T_1 - T_3$ states of azo 1 – 4 based on <i>trans</i> -S ₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)101
Figure S41. Schematic demonstration of spin-orbit coupling constants between $S_0 - S_3$ and $T_1 - T_3$ states of azo 1 – 4 at the Franck-Condon geometry (<i>trans</i> -ground state)
Table S14. Spin-orbit coupling constants between $S_0 - S_3$ and $T_1 - T_3$ states of azo 1 at various CNNC dihedral angles and ^{Nap} CNN angles B3LYP/6-311G(d.p)/PCM(ACN)102
Figure S42. Schematic demonstration of spin-orbit coupling constants between $S_0 - S_1$ and $T_1 - T_3$ states of azo 1 at various CNNC dihedral angles and ^{Nap} CNN angles103
Table S15. Spin-orbit coupling constants between $S_0 - S_3$ and $T_1 - T_3$ states of azo 4 at various CNNC dihedral angles and ^{Nap} CNN angles B3LYP/6-311G(d.p)/PCM(ACN)104
Figure S43. Schematic demonstration of spin-orbit coupling constants between $S_0 - S_1$ and $T_1 - T_3$ states of azo 4 at various CNNC dihedral angles and ^{Nap} CNN angles

Experimental Details

Materials and Synthetic Procedures

All reagents were obtained from commercial sources used as received without further purification, unless otherwise specified. Air-sensitive reactions were conducted using a standard Schlenk line techniques under nitrogen. Acetonitrile was dried over CaH2 and distilled. Dried acetonitrile was stored over 4 Å sieves.

Synthesis

1. Nap-azo-ph (1)

The synthesis of azo 1 is modified from literatures.^{14,15} In 50 mL Schlenk flask, 0.45 g (3.1 mmol) 2-naphthylamine, and 0.3 g (2.4 mmol) nitrobenzene are mixture with 0.25 g (6.25 mmol) NaOH. The solids are heated to 180 °C. This melt mixture is further stirred under N₂ for 30 min. After the reaction is compete, the mixture is cooled down to room temperature, dissolved in 30 mL Et_2O and neutralized with 7.5 mL 2 M HCl solution. The organic layer is separated and dried under vacuum. The final product is obtained after chromatographic purification using a silica gel column with 1:20 ethyl acetate/pentane eluent.

Yield: 160 mg (28.7%)

¹H-NMR (Acetone-D⁶): 8.57 (1H), 8.17 (1H), 8.11 (1H), 8.06-8.03 (4H). 7.66-7.57 (5H)

2. Nap-azo-phOH (2)

In 100 mL round bottom flask equipped with a stir-bar, 0.83 g (5.7 mmol) 2-naphthylamine is dissolved in 2.4 mL acetone. The solution is cooled to 0 °C in an ice bath and 2 mL 10 M HCl is added. To this solution, a pre-cooled aqueous solution (12 mL) of 0.41 g (6.0 mmol) NaNO₂ is added dropwise to convert the 2-naphthylamine into its corresponding diazonium salt. Following this, a pre-cooled 0.5 M NaOH solution (12 mL) of 1.18 g (8.5 mmol) K_2CO_3 and 0.57 g (6.0 mmol) phenol is added. The reaction is further stirred for 1 hr. After warming up to room temperature, the reaction neutralized using 2 M HCl and resulted solution is filtered over a frit equipped with a celite pad. The collected solid on the frit is washed with 30 mL DI water and extracted with 60 mL Et₂O. After evaporating the Et₂O over vacuum, the raw product is obtained. The raw product is further purified through a silica gel column using 1:1 pentane/Et₂O eluent.

Yield: 0.84 g (58.5%)

¹H-NMR (DMSO-D⁶): 10.35 (1H), 8.45 (1H), 8.14 (1H), 8.05-7.96 (3H), 7.86 (2H), 7.61 (2H), 6.97 (2H)

3. Nap-azo-phOMe (3)

In 50 mL Schlenk flask, 200 mg (0.8 mmol) nap-azo-phOH and 0.5 ml (8 mmol) MeI are dissolved in 5 ml anhydrous THF under the protection of N_2 . To this solution, a suspension of 200 mg NaH (60 % dispersion in mineral oil) in 15 mL THF is added. The reaction is heated to 65 °C and stirred for 16 hrs. After the reaction is compete, the solvent is removed under vacuum.

The final product is obtained after chromatographic purification using a silica gel column with 1:1 ethyl pentane/Et₂O eluent.

Chemical shift (ppm)

¹H-NMR (Acetone-D⁶): 8.47 (1H), 8.14 (1H) 8.04 - 7.99 (5H), 7.62 (2H), 7.15 (2), 3.93 (3H)

4. Nap-azo-phNMe₂ (4)

In 100 mL round bottom flask equipped with a stir-bar, 0.41 g (2.8 mmol) 2-naphthylamine is dissolved in 1.2 mL acetone. The solution is cooled to 0 °C in an ice bath and 1 mL 10 M HCl is added. To this solution, a pre-cooled aqueous solution (12 mL) of 0.41 g (6.0 mmol) NaNO₂ is added dropwise to convert the 2-naphthylamine into its corresponding diazonium salt. Following this, a pre-cooled aqueous solution (6 mL) of 0.16 mL (2.8 mmol) glacial acetic acid and 0.37 mL (2.9 mmol) dimethylaniline is added. The reaction is further stirred for 3 hrs. After warming up to room temperature, the reaction neutralized using 2 M NaOH and resulted solution is filtered over a frit equipped with a celite pad. The collected solid on the frit is washed with 30 mL DI water and extracted with 60 mL Et₂O. After evaporating the Et₂O over vacuum, the raw product is obtained. The raw product is further purified through a basic aluminum oxide silica gel column using 1:1 pentane/Et₂O eluent.

Yield: 266 mg, (34%)

¹H-NMR (DMSO-D⁶): 8.36 (1H), 8.09 – 8.03 (2H), 7.99 – 7.96 (2H), 7.91 (2H), 7.57 (2H), 6.88 (2H), 3.13 (2H)

a) Photoisomerization Reversion (cis- to trans-) 1.0 Time (sec) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Time (m 20 40 60 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 440 460 480 1 1 0.9 ⊢ 0.8 0.7 Absorbance (AU) 0.6 0.5 1 2 0.4 0.3 0.2 0.1 0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 - 1.9 - 2 Time (min) 11 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 Time (sec) 2 2 0.9 -2 12 13 14 15 16 17 18 19 20 3 0.8 _ 4 5 6 7 0.7 _ Absorbance (AU) 0.6 8 9 10 0.5 0.4 0.3 0.2 0.1 0.0 0.8 Time (sec) 0.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Time (min) 0 70 80 90 100 110 120 3 3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 20 30 40 50 0.7 0.6 Absorbance (AU) 60 130 0.5 0.4 2 -3 0.3 0.2 0.1 8:8 Time (min) 0.5 5.5 10.5 15.5 Time (sec) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 4 4 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 11 11.5 Ē 16 16.5 17 17.5 18 18.5 1 1.5 0.7 6.5 2 2.5 3 3.5 4 4.5 7 12 12.5 13 13.5 14 14.5 15 7.5 0.6 8 8.5 Absorbance (AU) 0.5 9 9.5 10 - 19 - 19.5 5 20 0.4 2 3 0.3 0.2 0.1 0.0 300 700 300 800 200 400 500 600 800200 400 500 600 700 Wavelength (nm) Wavelength (nm)

Photoisomerization and reversion of azo 1 - 4:

S10

Figure S1. a) Photoisomerization and reversion spectra of azo 1 - 4. b) Partial photoisomerization of 1 - 4 occurs with the lamp of the UV-vis spectrometer. c) Kinetic traces of isomerization and reversion (with fitted lifetimes) d) Plot of reversion lifetime as a function of Hammett parameter.

The photoisomerziation spectra in Figure S1a show that all four azo dyes photoisomerize from the *trans* to *cis* configuration upon several minutes of irradiation with a UV LED ($\lambda_{max} = 370$ nm) at 155 mW for **1** – **3** or a blue LED ($\lambda_{max} = 453$ nm) at 120 mW for **4**. When illumination was stopped, the azo dyes reverted to the *trans* configuration over minutes (**2** and **4**) or hours (**1** and **3**). It appears that **1** and **3** do fully convert back to the *trans* configuration, however we determined that this results from the small amount of light originating from the spectrometer that maintains the *trans* \rightarrow *cis* photoisomerization process. Figure S1b shows a "photoisomerization" experiment starting from the *trans* configuration using only the spectrometer light. **1** and **3** show detectable isomerization, however **2** and **4** are essentially unchanged. These results are consistent with the incomplete reversion seen in Figure S1a. Plotting the reversion progress over time in Figure S1c and fitting these data reveals reversion lifetimes for the azo **1** – **4**. Plotting the reversion lifetime as a function of Hammett parameter in Figure 1d shows that the dyes containing more electron donating substituents undergo faster *cis* \rightarrow *trans* isomerization.

Absorption spectra for azo 1 - 4:

Figure S2. Molar absorptivity of azo 1 in acetonitrile.

Figure S3. Molar absorptivity of azo 2 in acetonitrile.

Figure S4. Molar absorptivity of azo 3 in acetonitrile.

Figure S5. Molar absorptivity of azo 4 in acetonitrile.

Molecular orbital diagrams for azo 1 - 4:

Figure S6. Molecular orbital diagrams for azo 1.

Figure S7. Molecular orbital diagrams for azo 2.

Figure S8. Molecular orbital diagrams for azo 3.

Figure S9. Molecular orbital diagrams for azo 4.

Transient Absorption Fitting

For each of the azo dyes 1 - 4, we show the heat map of our TAS data before and after the chirp correction is applied in a single SI figure (Figures S10, S12, S14, S16). In a second figure (Figures S11, 13, 15 and 17), we show a multi-panel series of data, fits and analysis of the fits. We provide here a detailed explanation of each panel of figures S11, 13, 15 and 17 below.

In figures S11, 13, 15 and 17, the top left panel labeled "Raw Data Surface" is the original data for each dye after chip correction, and other data preparation are applied. Global analysis fitting is performed providing a model featuring DADS and associated lifetimes as shown in Figure 5 in the text (and in the bottom left panel of the SI figure). Combining the DADS, lifetimes, time zero, and IRF produced by the fit model, the TAS surface is "reconstructed". The reconstructed data surface is shown in the top middle panel, labeled "Reconstructed Surface". From this surface a selection of spectra are presented in the bottom middle panel labeled "Reconstructed Representative Spectra". Finally, the original data is compared to the reconstructed data in the right most column. Top right panel is a heat map of the residual between the original data surface and the reconstructed surface. The residual surface was used to evaluate the global analysis fit. Fit models were selected or modified in order to reduce or remove structure from the residual surface. Residual surfaces lacking distinct features and more closely resembling noise, resulted in a favoring of that fit. The root mean square error (RSE) value was calculated for each residual surface as a measure of how well that fit matched the data surface. This value was also used to identify fit improvements when differences became difficult to identify visually. RSE values were only used to judge improvements to fits for the same data surface, and were not assessed between data surfaces. On the lower right panel, single wavelength TAS data at a range of lifetime (dotted data points) are displayed. Solid lines representing the single wavelength traces constructed using the fitted lifetimes from global analysis overlay the data. This plot is another method of evaluating the fits obtained using global analysis.

Figure S10. Heat map of 1 TAS a) before b) after chirp correction.

Figure S11. TAS heat map, global analysis fitting and analysis of fit for 1 collected at 370 nm excitation.

Figure S12. Heat map of 2 TAS a) before b) after chirp correction.

Figure S13. TAS heat map, global analysis fitting and analysis of fit for 2 collected at 370 nm excitation.

Figure S14. Heat map of 3 TAS a) before b) after chirp correction.

Figure S15. TAS heat map, global analysis fitting and analysis of fit for 3 collected at 370 nm excitation.

Figure S16. Heat map of 4 TAS a) before b) after chirp correction.

Figure S17. TAS heat map, global analysis fitting and analysis of fit for 4 collected at 370 nm excitation.

Fit of azobenzene data taken on our instrument

Comparison of 1 (left two panels) and azobenzene (right two panels) showing representative spectra and DADS

Schematic Diagram of the Relaxation of azo 1 - 3, 4, and azobenzene.

Figure S18. Comparison of azobenzene with 1-4 on our TAS instrumentation.

Figure S19. Comparison of TAS residual spectrum with the difference of the steady-state absorption spectra of the *trans*- and *cis*- isomer of 1-4.

Triplet Potential Energy Curves of Azo 1 and 4

In order to evaluate the potential for intersystem crossing into the triplet excited state manifold, we first evaluated the alignment of the vertical Frank-Condon singlet and triplet excited-state surfaces (center line Figure S20). Assuming that the potential intersystem crossing happens rapidly, with a typical lifetime of several picoseconds, spin-orbit-couplings (SOC) between singlet and triplet excited states at the ground state minimum geometry provide a quantitative measure (Table S13) of the probability for singlet excited states to cross into the triplet manifold.

In order to identify possible deactivation mechanisms of the initially generated excited state singlets through a triplet intermediate, the spin orbit coupling between the excited singlets (S_1 and S_2) with the triplets in the same energy region ($T_1 - T_3$) were calculated (center line in Figures S20 and S21). The SOC (Table S13) between S_1 and T_1 of azo **4** is 4.1 cm⁻¹, four times the coupling in azo **1 – 3** (0.98 – 1.04 cm⁻¹), indicating a fast, low-energy pathway to generate a triplet. However, the SOC between S_1 and T_3 is high for all the dyes (3.19 – 4.97 cm⁻¹), indicating several possible intersystem crossing pathways to generate triplets ($T_1 - T_3$) from singlet excitations ($S_1 - S_2$). Therefore, a possible photophysical fate of azo dyes **1 – 4** is formation of a triplet state.

Another consideration in a triplet mediated deactivation pathway is the strength of the coupling of the triplets back to the ground state surface. The SOC constants between T_1 and S_0 ($<S_0 | \mathfrak{H}_{SOC} | T_1 >$) are all close to 38 cm⁻¹ for azo $\mathbf{1} - \mathbf{3}$, more than two orders of magnitude larger than azo $\mathbf{4}$ (SOC 0.07 cm⁻¹). Inversely, the SOC between T_2 and S_0 of azo $\mathbf{1} - \mathbf{3}$ (0.09 – 0.28 cm⁻¹) are two orders of magnitude smaller than azo $\mathbf{4}$ (37.2 cm⁻¹). The $<S_0 | \mathfrak{H}_{SOC} | T_3 >$ of all four azo dyes are low (0.22 – 0.24 cm⁻¹). This indicates a rapid $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{1} - \mathbf{3}$ and a slower $T_1 \rightarrow S_0$ ground state recovery in azo $\mathbf{4}$ has strong SOC, it would be competing with faster internal conversion of the exited state population to the lowest energy triplet (T_1). Thus a possible ground-state recovery pathway in $\mathbf{4}$ could be through the lowest energy (T_1). Interestingly, any perturbation of the structure, along both the torsional and inversion surfaces, increase the $<S_0 | \mathfrak{H}_{SOC} | T_1 >$.

While the triplets generated in azo 1 - 3 are unlikely to be long-lived, due to fast deactivation back to the ground state, in azo 4 the lowest triplet excited state could be stable with a longer lifetime, due to poor SOC back to the ground state. This difference in $< S_0 | \mathfrak{H}_{Soc} | T_1 >$ is readily apparent in the dramatic differences in the spin density of azo 1 - 3 vs. azo 4

Figure S20. Singlet and triplet PECs below 5 eV in energy along the torsional (\angle CNNC) and inversion (\angle ^{Nap}CNN) S₀ trans-cis isomerization. The excited state (TDDFT) surfaces above each shown point are plotted and like excited states are connected with lines (black singlets and red triplets). B3LYP/6-311G(d,p)/PCM(ACN). The relaxed triplet (T₁) surfaces are shown in Figure S39-40.

(Figure S36). In particular, the T₁ state in azo 1 - 3 is a mixed n and π density, while in azo 4 the density only has π character.

We have carried out several experiments on azo dyes 3 and 4 within our laboratory and thus far have been unable to collected experimental evidence of the triplet. We have thus far been unable to detect low-energy phosphorescence from either azo dye that would directly verify the triplet formation and decay. Additionally, we have attempted to sensitize oxygen and record the emission spectrum for singlet oxygen emission. Both of these methods likely fail because of the low predicted energy of the triplet. Based on DFT (Figure S20) if the triplet emission occurred from the Franck-Condon state, emission would be predicted to occur between 620 nm - 830 nm (~2.0 eV), which is already difficult to detect and partially outside the window of our spectrometer. If, however, the emission occurred from a relaxed triplet, the energy transfer to triplet oxygen forming singlet oxygen is energetically uphill (see Figure S20, \angle CNNC of 90° – 100°) and we would expect to see no phosphorescence or sensitization of oxygen. Further, we attempted to react 3 and 4 with the radical TEMPO (2,2,6,6-Tetramethyl-1-piperidinyloxy) to form a photoinduced radical-initiated product. These reactions have thus far yielded no conclusive evidence of triplet formation. In these experiments, the extremely short lifetimes of the azo dyes are a major impediment to bimolecular reactivity.

Figure S21. Spin orbit coupling between the first singlet and first two triplet excited states ($<T_2$ - T_1 | \Re_{SOC} |S₁> (top) and the lowest triplet and ground state ($<S_0$ | \Re_{SOC} |T₁> (bottom) along the torsional (\angle CNNC) and inversion (\angle^{Nap} CNN) trans-cis isomerization. B3LYP/6-311G(d,p)/PCM(ACN).

 S_0 geometries and transition states of Azo $1\mbox{--}4$

Figure S22. S₀ geometries of azo 1 with various ∠CNNC angles.

Figure S23. S₀ geometries of azo 1 with various \angle ^{Ph}CNN angles.

Figure S24. Geometry of azo 1 transition state from point 8 in Figure S23. The imaginary vibrational mode at -409.97 cm⁻¹ is indicated by the blue arrow

Figure S25. S₀ geometries of azo 1 with various \angle^{Nap} CNN angles.

Figure S26. Geometry of azo 1 transition state from point 8 in Figure S25. The imaginary vibrational mode at -404.81 cm⁻¹ is indicated by the blue arrow

Figure S27. Geometry and relative energy of azo 2 transition states and the ground states at *trans*- and *cis*- configurations.

Figure S28. Geometry of azo 2 transition state from point 2 in Figure S27. The imaginary vibrational mode at -398.49 cm⁻¹ is indicated by the blue arrow.

Figure S29. Geometry of azo 2 transition state from point 3 in Figure S27. The imaginary vibrational mode at -459.90 cm⁻¹ is indicated by the blue arrow.

Figure S30. Geometry and relative energy of azo 3 transition states and the ground states at *trans*- and *cis*- configurations.

Figure S31. Geometry of azo 3 transition state from point 2 in Figure S30. The imaginary vibrational mode at -397.45 cm⁻¹ is indicated by the blue arrow.

Figure S32. Geometry of azo 3 transition state from point 3 in Figure S30. The imaginary vibrational mode at -422.82 cm⁻¹ is indicated by the blue arrow.

Figure S33. S₀ geometries of azo 4 with various \angle CNNC angles.

Figure S34. S₀ geometries of azo 4 with various \angle ^{Ph}CNN angles.

Figure S35. S₀ geometries of azo 4 with various \angle^{Nap} CNN angles.

Figure S36. Geometry of azo 4 transition state from point 8 in Figure S35. The imaginary vibrational mode at -384.14 cm⁻¹ is indicated by the blue arrow.

Figure S37. Comparing *trans-*, *cis-*, and transition states between azo 1 (top) and azo 4 (bottom).

Figure S38. Comparing optimized triplet geometries of azo 1-4 and their spin densities.

Figure S39. Triplet potential surface for azo 1 with various ∠CNNC dihedral angles.

Figure S40. Triplet potential surface for azo 4 with various \angle CNNC dihedral angles, and \angle ^{Nap}CNN angles.

DFT Optimized Coordinates

Trans - Nap-azo-ph (azo 1) coordinates (B3LYP/6-311G(d.p)/PCM(ACN)) 01 C 5.51758740 -0.04340709 -0.00003404 C 4.58079551 -1.05258151 -0.00000214 C 3.19636550 -0.75376199 0.00000193 C 2.78504925 0.61759322 -0.00001719 C 3.77540906 1.63521482 -0.00004352 C 5.11195086 1.31131926 -0.00003769 H 2.51269393 -2.80833483 0.00010176 H 6.57433965 -0.28476221 -0.00003828 H 4.89366478 -2.09113031 0.00001853 C 2.19700862 -1.77035291 0.00007187 C 1.40045117 0.91352227 -0.00001239 H 3.46008106 2.67301244 -0.00004409 H 5.86119362 2.09447884 -0.00003890 C 0.45517238 -0.09364150 -0.00002950 C 0.86538072 -1.45820105 0.00005576 H 1.06443029 1.94423870 -0.00007107 H 0.10652882 -2.22831221 0.00008670 N -0.89252667 0.33233652 -0.00005810 N -1.74693477 -0.58861770 0.00010072 C -3.09905091 -0.16169887 0.00009203 C -4.05482965 -1.18440469 -0.00005654 C -3.51343295 1.17987765 0.00013941 C -5.41242189 -0.87620084 -0.00012704 H -3.71190353 -2.21229108 -0.00011162 C -4.86820743 1.48069798 0.00005532 H -2.76580293 1.96148327 0.00022187 C -5.82131424 0.45626925 -0.00008125 H -6.14775215 -1.67219393 -0.00023809 H -5.18929029 2.51614805 0.00009843 H -6.87743386 0.70016745 -0.00013367

Cis - Nap-azo-ph (azo 1) coordinates (B3LYP/6-311G(d.p)/PCM(ACN)) 01 C -4.55062900 -1.23923900 0.00024900 C -3.39971000 -1.47802500 -0.71445000 C -2.29078500 -0.59995200 -0.61465700 C -2.38729900 0.54466400 0.24002700 C -3.59127200 0.76518400 0.96121100 C -4.64685300 -0.10745000 0.84464800 H -1.02656500 -1.65437400 -2.01985000 H -5.39150300 -1.91833400 -0.08144800 H -3.32507900 -2.34356800 -1.36397000 C -1.08955900 -0.80540400 -1.34769000 C -1.28657200 1.43143500 0.32339900 H -3.66307900 1.63366900 1.60697100 H -5.56050100 0.06844600 1.40077500 C -0.11297700 1.16876600 -0.35161400 C -0.02147700 0.04307600 -1.21722100 H -1.35745100 2.32391500 0.93522800 H 0.88201900 -0.12506500 -1.78834300 N 0.90791800 2.17220900 -0.26780700 N 2.12688800 1.92795600 -0.17280600 C 2.67257200 0.62516300 0.07632200 C 3.81681000 0.27399400 -0.64807200 C 2.22155700 -0.19678600 1.11688900 C 4.46421000 -0.92822900 -0.38262600 H 4.17877800 0.94583800 -1.41757800 C 2.89924800 -1.37859000 1.40082500 H 1.36419400 0.09669600 1.70908900 C 4.00900600 -1.75662600 0.64407800 H 5.33464700 -1.20969400 -0.96377400 H 2.55721200 -2.00747500 2.21469300 H 4.52607300 -2.68309500 0.86457300

TS - Nap-azo-ph (azo 1) coordinates (B3LYP/6-311G(d.p)/PCM(ACN)) 01 C -5.25883569 0.93232232 -0.00484580 C -4.04478655 1.58125738 -0.00836346 C -2.83361754 0.84657254 -0.00422442 C -2.89427163 -0.58440483 0.00293869 C -4.16165334 -1.22366769 0.00679917 C -5.31845911 -0.48061249 0.00310448 H -1.52121534 2.56918360 -0.01075348 H -6.17886438 1.50534990 -0.00831198 H -4.00157170 2.66485719 -0.01432270 C -1.55918671 1.48531840 -0.00658995 C -1.68179594 -1.31573185 0.00557935 H-4.20189082 -2.30728015 0.01273669 H -6.28259937 -0.97544874 0.00632919 C -0.47041345 -0.66156914 0.00228939 C -0.40111430 0.75581519 -0.00319380 H -1.69231871 -2.39997573 0.00995677 H 0.56560401 1.24388470 -0.00361847 N 0.68509330 -1.52549417 0.00308871 N 1.78862510 -1.00062328 0.00152053 C 2.98935706 -0.42984010 0.00093143 C 3.65458986 -0.14243679 -1.22328351 C 3.64453068 -0.11783171 1.22453135 C 4.91789775 0.43075778 -1.19973111 H 3.16354515 -0.37489786 -2.15959237 C 4.90915706 0.45244967 1.20000330 H 3.14572181 -0.33143801 2.16122667 C 5.56557541 0.73576555 -0.00013942 H 5.40444798 0.64185472 -2.14649127 H 5.38878110 0.68063656 2.14633017 H 6.55249045 1.18111059 -0.00058797

Triplet - Nap-azo-ph (azo 1) coordinates (B3LYP/6-311G(d.p)/PCM(ACN)) 03 C 5.18685648 -0.42054324 -0.72052949 C 4.10105403 -1.26850309 -0.65494069 C 2.84675914 -0.80307114 -0.19981629 C 2.71443603 0.56862617 0.19739129 C 3.85349009 1.41661685 0.11907934 C 5.05992145 0.93211375 -0.32989005 H 1.80761210 -2.69330549 -0.40868223 H 6.14325636 -0.78943945 -1.07253958 H 4.19814599 -2.30665197 -0.95415636 C 1.70264914 -1.65371334 -0.11654481 C 1.46449018 1.03475852 0.65555701 H 3.75468091 2.45405344 0.41957458 H 5.92088200 1.58826932 -0.38589732 C 0.35324244 0.18572214 0.71378639 C 0.49679818 -1.18801631 0.31985951 H 1.34830126 2.06776425 0.96259651 H -0.36381632 -1.84164419 0.38508214 N -0.82895417 0.71575152 1.14480280 N -1.89602562 0.00044884 1.32189456 C -2.97093786 0.07123758 0.47095257 C -4.11615854 -0.68774310 0.80774319 C -2.98488392 0.85607518 -0.70793060 C -5.22897850 -0.67305003 -0.01709457 H -4.09598082 -1.27838496 1.71578575 C -4.11022739 0.86389777 -1.51740863 H -2.11618920 1.45242347 -0.95741596 C -5.23448101 0.10094701 -1.18313236 H -6.09992659 -1.26221810 0.24570871 H -4.11742490 1.46962492 -2.41658649 H -6.10886196 0.11397798 -1.82284221

Trans-Nap-azo-phOH (azo 2) coordinates 01 C 5.96596468 -0.02648278 -0.00025723 C 5.04643910 0.99834634 -0.00020514 C 3.65689223 0.72341473 -0.00005277 C 3.22093889 -0.64032130 0.00005497 C 4.19417029 -1.67453014 0.00001171 C 5.53623031 -1.37383033 -0.00014133 H 3.00794672 2.78906668 -0.00013320 H 7.02676345 0.19648474 -0.00038304 H 5.37676428 2.03155088 -0.00027502 C 2.67500018 1.75638254 -0.00001096 C 1.83120663 -0.91234942 0.00021419 H 3.86123320 -2.70688921 0.00011753 H 6.27152517 -2.17020530 -0.00016742 C 0.90213567 0.10990619 0.00023912 C 1.33804729 1.46669300 0.00008089 H 1.47837924 -1.93751811 0.00026963 H 0.59307490 2.25028445 0.00001291 N -0.45355360 -0.29042755 0.00024158 N -1.28949218 0.65084715 0.00028715 C -2.64487625 0.26625379 0.00009856 C -3.58012573 1.31145001 0.00015679 C -3.10610059 -1.06113200 0.00003423 C -4.94109246 1.05027463 -0.00015219 H -3.21442386 2.33140161 0.00026908 C -4.46357924 -1.33020022 -0.00000748 H -2.38583349 -1.86809058 0.00015572 C -5.39018226 -0.27478323 -0.00000681 H -5.66797417 1.85310684 -0.00034931 H -4.81619665 -2.35661188 -0.00005668 O -6.73176983 -0.48045512 -0.00045790 H -6.92219194 -1.42642725 0.00016262

Cis-Nap-azo-phOH (azo 2) coordinates 0 1

C 4.72733159 -1.51072065 0.12273273 C 3.61529494 -1.48490397 0.93214848 C 2.58336841 -0.53659084 0.71556916 C 2.71703693 0.40174176 -0.35775071 C 3.87965722 0.35105328 -1.17260650 C 4.85993200 -0.58398378 -0.93856722 H 1.33378315 -1.16220097 2.36923717 H 5.50884444 -2.24162007 0.29588898 H 3.51310371 -2.19281907 1.74777186 C 1.42424030 -0.47223739 1.53711710 C 1.69442865 1.36108837 -0.56195612 H 3.98114166 1.06212426 -1.98539523 H 5.74177302 -0.61480440 -1.56827074 C 0.55634595 1.35830837 0.21596435 C 0.42965028 0.43837351 1.29458532 H 1.79889680 2.10144903 -1.34755278 H -0.44499051 0.47751383 1.93138218 N -0.37967995 2.42628446 0.02158582 N -1.62039643 2.27939490 -0.01213165 C -2.29028604 1.02140051 -0.08861054 C -3.54161374 0.96252874 0.53731715 C -1.86965921 -0.06523006 -0.87357896 C -4.32542330 -0.17969509 0.45711737 H -3.88412737 1.82419465 1.09796376 C -2.66877496 -1.19042993 -0.99398218 H -0.93343605 -0.02059931 -1.41321659 C -3.89124509 -1.26405933 -0.31360037 H -5.28074017 -0.22396579 0.96916986 H -2.36304350 -2.02470425 -1.61363855 O -4.61673234 -2.40338616 -0.45803019 H -5.43851535 -2.33709509 0.04332804

TS-Nap-azo-phOH (azo 2) coordinates 0 1

C -5.65481195 1.02974757 -0.23139237 C -4.41666900 1.62247003 -0.33326254 C -3.23386856 0.85794798 -0.17714398 C -3.34743164 -0.54491498 0.08920150 C -4.63908741 -1.12599092 0.18861879 C -5.76711215 -0.35549577 0.03163712 H -1.85584509 2.50076205 -0.47838287 H -6.55246569 1.62500189 -0.35300972 H -4.33186286 2.68481260 -0.53502586 C -1.93595135 1.43785477 -0.27693439 C -2.16290868 -1.30595355 0.24435417 H -4.72112640 -2.18840454 0.39054640 H -6.74914410 -0.80756318 0.10903265 C -0.92503086 -0.71083811 0.14429736 C -0.80716288 0.67866233 -0.12209340 H -2.21570475 -2.37097963 0.44258472 H 0.17778319 1.12208105 -0.20006846 N 0.20036606 -1.60181454 0.30414482 N 1.32692521 -1.11187588 0.20424463 C 2.55337477 -0.59013847 0.11545032 C 3.49502518 -1.09959229 -0.81716856 C 2.96626946 0.47442625 0.96306044 C 4.75678031 -0.53282499 -0.92659920 H 3.20276800 -1.91314320 -1.46899693 C 4.26280934 0.95931556 0.90438369 H 2.26608118 0.87710385 1.68413757 C 5.16208512 0.48222199 -0.05449081 H 5.44643952 -0.91048237 -1.67520641 H 4.58286033 1.74403139 1.58025610 O 6.41135856 1.04271191 -0.08961263 H 6.93045086 0.62953326 -0.78920114

Trans-Nap-azo-phOMe (azo 3) coordinates 01 C -6.39763430 -0.10423931 0.09823658 C -5.49925225 0.93912324 0.11271898 C -4.10508356 0.69323322 0.06932467 C -3.64273649 -0.66047744 0.01003740 C -4.59441374 -1.71434811 -0.00290432 C -5.94167248 -1.44166027 0.04001506 H -3.49832409 2.77096392 0.12707486 H -7.46233935 0.09644087 0.13151616 H -5.85000358 1.96452788 0.15734343 C -3.14449900 1.74633550 0.08165896 C -2.24855940 -0.90339656 -0.03528629 H -4.24079044 -2.73876341 -0.04780965 H -6.66101169 -2.25235398 0.02927161 C -1.34142091 0.13822483 -0.02347020 C -1.80262275 1.48517086 0.03694169 H -1.87502572 -1.92008864 -0.08155382 H-1.07345001 2.28345422 0.04527220 N 0.02068803 -0.23516887 -0.07716454 N 0.83939852 0.71857866 -0.06897728 C 2.20378214 0.34933536 -0.12682138 C 3.11958558 1.40868781 -0.12271739 C 2.67475056 -0.97257631 -0.19420362 C 4.48614263 1.16179533 -0.18146964 H 2.73837064 2.42184047 -0.07604066 C 4.03674171 -1.22002575 -0.25254966 H 1.96156356 -1.78572259 -0.20286986 C 4.94572953 -0.15390451 -0.24958415 H 5.20094288 1.97588932 -0.18947720 H 4.41574060 -2.23349622 -0.31530355 O 6.29232750 -0.40644212 -0.36710276 C 6.99090973 -0.56600283 0.87821563 H 8.03247052 -0.75653488 0.62413034 H 6.92245986 0.34284833 1.48432069 H 6.59168926 -1.41298729 1.44508652

Cis-Nap-azo-phOMe (azo 3) coordinates 01 C 4.94415238 -1.80966167 0.10627280 C 3.83215480 -1.70477876 0.90934418 C 2.88797143 -0.66599617 0.70733290 C 3.11084268 0.27946650 -0.34474634 C 4.27091327 0.14531804 -1.15365018 C 5.16478937 -0.87576948 -0.93398486 H 1.57642112 -1.21507592 2.33965941 H 5.65798542 -2.60917168 0.26814710 H 3.66250506 -2.41793234 1.70902880 C 1.73271435 -0.51784300 1.52345344 C 2.17768163 1.32868122 -0.53360055 H 4.43960312 0.86225571 -1.94997532 H 6.04571778 -0.96958449 -1.55869697 C 1.03810411 1.40994323 0.23806273 C 0.82351033 0.48170563 1.29569291 H 2.35292603 2.07359966 -1.30209195 H -0.04874562 0.58443558 1.92869121 N 0.20427236 2.56208061 0.06260923 N -1.04472595 2.53123988 0.01850929 C -1.82905823 1.34460790 -0.08973579 C -3.09010705 1.39878970 0.51145965 C -1.50044941 0.22772164 -0.87990563 C -3.98440691 0.33906095 0.41029344 H -3.35848659 2.28532967 1.07394077 C -2.40176768 -0.81069635 -1.02219104 H -0.55550641 0.18602028 -1.40421655 C -3.64241268 -0.77781724 -0.36260036 H -4.94044706 0.40161320 0.91087704 H -2.16985776 -1.66689860 -1.64397894 O -4.43878362 -1.85757041 -0.55182931 C -5.72158777 -1.88670727 0.08156993 H -6.16710813 -2.83752433 -0.20213666 H -5.62536503 -1.83852250 1.16981086 H -6.35446577 -1.06737354 -0.27065726 TS-Nap-azo-phOMe (azo 3) coordinates 0 1

C 6.09670760 1.05696766 0.00044997 C 4.86024320 1.66218318 -0.00025544 C 3.67601154 0.88480701 -0.00039111 C 3.78773088 -0.54313276 0.00022083 C 5.07715869 -1.13676868 0.00092218 C 6.20675192 -0.35293244 0.00103899 H 2.30298319 2.55958291 -0.00160040 H 6.99567783 1.66251843 0.00056608 H 4.77851042 2.74358276 -0.00069006 C 2.37955830 1.47773583 -0.00110115 C 2.60204490 -1.31720579 0.00011727 H 5.15609209 -2.21828393 0.00135997 H 7.18795316 -0.81300346 0.00157926 C 1.36807000 -0.70672628 -0.00048876 C 1.24833384 0.70728247 -0.00113716 H 2.65112694 -2.40041679 0.00054879 H 0.26450990 1.15980175 -0.00168057 N 0.24340729 -1.61117911 -0.00037709 N -0.87784707 -1.12395948 -0.00045700 C -2.10298047 -0.60123197 -0.00029746 C -2.77296771 -0.32336670 1.22180027 C -2.77381971 -0.32446945 -1.22217581 C -4.05805603 0.20088539 1.20201376 H -2.27073448 -0.52108993 2.15997122 C -4.05885977 0.19988665 -1.20196446 H -2.27225431 -0.52306619 -2.16052014 C -4.71346630 0.46992285 0.00013069 H -4.55901867 0.41882153 2.13913629 H -4.56046318 0.41703377 -2.13892694 O -5.97760044 1.04284484 0.00030577 C -7.05379493 0.09865126 0.00108504 H -7.97890313 0.67567693 0.00095556 H -7.02299142 -0.53695015 -0.89096375 H -7.02260221 -0.53592561 0.89385132

Trans-Nap-azo-phNMe₂ (azo 4) coordinates 01 C 6.81344850 -0.09875777 -0.00002394 C 5.91087585 0.94099069 0.00012384 C 4.51663663 0.68983687 0.00009307 C 4.05590883 -0.66584692 -0.00009316 C 5.01256523 -1.71597841 -0.00023951 C 6.35968663 -1.43842449 -0.00020554 H 3.90160484 2.76563007 0.00038441 H 7.87797601 0.10585605 -0.00000093 H 6.25817106 1.96877524 0.00026622 C 3.55180711 1.73832527 0.00024122 C 2.66168252 -0.91418873 -0.00013100 H 4.66242397 -2.74276034 -0.00037798 H 7.08094342 -2.24771166 -0.00031734 C 1.74688978 0.12203013 0.00000539 C 2.20999902 1.47083269 0.00020493 H 2.29285809 -1.93389021 -0.00027627 H 1.47884318 2.26741595 0.00032163 N 0.38512327 -0.25160715 -0.00003800 N -0.43227929 0.71328851 0.00010039 C -1.78786274 0.37655753 0.00007156 C -2.69862095 1.44548213 0.00005326 C -2.30570889 -0.93411151 0.00009679 C -4.06411682 1.23511128 -0.00003452 H -2.30416433 2.45538963 0.00018504 C -3.66462118 -1.16140020 0.00000906 H -1.61610144 -1.76804624 0.00019830 C -4.59522728 -0.08173674 -0.00019784 H -4.72477271 2.08997373 0.00016887 H -4.02144412 -2.18170445 0.00003577 N -5.94192373 -0.30758371 -0.00065606 C -6.87648102 0.81226986 -0.00048863 H -7.89274413 0.42569804 -0.00254262 H -6.75249956 1.44089006 0.88795014 H -6.74987785 1.44298200 -0.88700971 C -6.46678665 -1.66896703 0.00079082 H -7.55336238 -1.62850594 0.00118721 H -6.14773923 -2.22621204 -0.88647642 H -6.14700368 -2.22461136 0.88880451

Cis-Nap-azo-phNMe₂ (azo 4) coordinates 01 C -5.08924856 1.96245240 0.26741065 C -4.05001318 1.63946720 1.10924298 C -3.16103212 0.58138880 0.79164402 C -3.36084853 -0.15438908 -0.42039977 C -4.44591218 0.20162409 -1.26578843 C -5.28806454 1.23569109 -0.93036155 H -1.94334734 0.74987472 2.57391580 H -5.76114345 2.77505043 0.51892659 H -3.89631873 2.19341290 2.02939558 C -2.08193256 0.21218173 1.64180593 C -2.47971712 -1.22068450 -0.73128660 H -4.59870207 -0.35608612 -2.18367031 H -6.11111816 1.49870181 -1.58519895 C -1.41152860 -1.52014201 0.08764713 C -1.22437953 -0.80087211 1.30292509 H -2.64002372 -1.80505306 -1.63093038 H -0.40892017 -1.07353270 1.96149017 N -0.63589066 -2.68593817 -0.20382779 N 0.61981802 -2.72084386 -0.20798849 C 1.47870107 -1.59909178 -0.16415134 C 2.77916052 -1.86821671 0.29701111 C 1.21816870 -0.31013077 -0.66992801 C 3.75353263 -0.89130910 0.34464051 H 3.00322093 -2.87459268 0.63211162 C 2.19650760 0.66457585 -0.67055584 H 0.25587670 -0.07600189 -1.10316537 C 3.48877805 0.42070008 -0.12976151 H 4.73040968 -1.14661681 0.72924742 H 1.96186160 1.62850079 -1.09908900 N 4.43951419 1.40128860 -0.08755780 C 5.78404883 1.10282629 0.39260926 H 6.36901645 2.01957478 0.39840862 H 5.76233410 0.71039002 1.41376827 H 6.29573535 0.37253242 -0.24555721 C 4.17400086 2.71415834 -0.66540031 H 5.02980958 3.35988207 -0.48288487 H 4.00910625 2.66102778 -1.74819208 H 3.29678400 3.18001053 -0.20677726

TS-Nap-azo-phNMe₂ (azo 4) coordinates 01 C -6.26901152 1.18513863 0.05667436 C -5.50989194 0.56899855 1.02820132 C -4.22588738 0.05266695 0.73500751 C -3.69885076 0.16909599 -0.59515684 C -4.51064919 0.81222360 -1.57563971 C -5.75551269 1.30348646 -1.25675289 H -3.79985236 -0.68600459 2.72673976 H -7.25172056 1.57703466 0.29209506 H -5.89043669 0.47030688 2.04045519 C -3.41700915 -0.58886599 1.71541983 C -2.41952394 -0.33977526 -0.89977852 H-4.12864260 0.90961642 -2.58692770 H -6.35299852 1.78853027 -2.02164086 C -1.64108828 -0.97145116 0.08826239 C -2.17913047 -1.08586208 1.42489766 H -2.02822477 -0.24632749 -1.90562868 H -1.57923782 -1.57183876 2.18435494 N -0.44998741 -1.48382085 -0.16683929 N 0.65741350 -1.96016327 -0.40399533 C 1.80396134 -1.14586279 -0.25110362 C 3.03153090 -1.75476297 -0.54566530 C 1.79249205 0.19595177 0.16745892 C 4.21848005 -1.06011258 -0.43180157 H 3.02901780 -2.79033138 -0.86647116 C 2.96773527 0.90267723 0.28701612 H 0.84936893 0.67732191 0.39876460 C 4.22580236 0.29789089 -0.01055446 H 5.14521153 -1.56320599 -0.66591114 H 2.92672033 1.93253127 0.61131766 N 5.38722643 0.99893240 0.10607650 C 6.66661319 0.36333276 -0.19532490 H 7.46299378 1.09169457 -0.06464563 H 6.86338399 -0.48295081 0.47152611 H 6.70027087 0.00328355 -1.22849914 C 5.37637560 2.38625022 0.56255089 H 6.39772029 2.75774335 0.58450837 H 4.79603317 3.02593578 -0.10995400 H 4.95921197 2.47590117 1.57095624

Triplet-Nap-azo-phNMe₂ (azo 4) coordinates 03 C -6.20356039 0.92480137 0.87568900 C -5.13471317 0.38693198 1.56175860 C -3.95697856 0.00268684 0.88136218 C -3.88413170 0.17666696 -0.54059323 C -5.00410345 0.73328109 -1.21835421 C -6.13520720 1.09828039 -0.52582503 H -2.89330291 -0.69943830 2.63343883 H -7.10058939 1.21683053 1.40942532 H -5.18605282 0.25267344 2.63712952 C -2.83301623 -0.56037553 1.55886883 C -2.71144552 -0.21158172 -1.22192867 H -4.95109241 0.86549742 -2.29371281 H -6.98151805 1.52193784 -1.05449396 C -1.61430425 -0.74870494 -0.53693701 C -1.70205525 -0.92321849 0.88673784 H -2.64265692 -0.09040643 -2.29714942 H -0.85869735 -1.35620055 1.40944666 N -0.51041773 -1.07884097 -1.27383315 N 0.51618735 -1.65897836 -0.69318486 C 1.68482269 -1.00632515 -0.47855409 C 2.78644157 -1.74308052 0.03262796 C 1.88660546 0.37868984 -0.72862574 C 3.99660152 -1.14247531 0.29139760 H 2.65207566 -2.80178765 0.22258971 C 3.10071972 0.97989642 -0.47838628 H 1.07000739 0.96223731 -1.13582565 C 4.19989110 0.24576794 0.04726972 H 4.80212704 -1.74695049 0.68389575 H 3.20930560 2.03338260 -0.69590884 N 5.40352435 0.84658502 0.30075237 C 6.52747974 0.06662168 0.80559517 H 7.38331154 0.72404281 0.93906348 H 6.29726282 -0.39162482 1.77327613 H 6.81428031 -0.72879873 0.10883929 C 5.59169317 2.26662657 0.02840054 H 6.60129679 2.55160049 0.31431347 H 5.46042149 2.49667762 -1.03495652 H 4.89032823 2.88203067 0.60146951

TD-DFT tables (FC states)

Excited	Energy	Wavelength	Oscillator	Transiti	Transition
States	(eV)	(nm)	Strength	on	Contribution
1	2.5901	478.68	f=0.0000	60 -> 62	0.70161
2	3.1998	387.48	f=0.5450	59 -> 62	-0.17545
				61 -> 62	0.67419
3	3.5612	348.15	f=0.6421	59 -> 62	0.66837
				61 -> 62	0.19249
				61 -> 63	-0.10188
4	4.0233	308.17	f=0.0225	58 -> 62	0.68872
				61 -> 64	0.10087
5	4.3160	287.27	f=0.1460	57 -> 62	0.31520
				59 -> 62	0.12979
				61 -> 63	0.59471
6	4.4150	280.83	f=0.0000	60 -> 63	0.69938
7	4.4899	276.14	f=0.0263	57 -> 62	0.58613
				59 -> 63	-0.19509
				59 -> 65	0.10353
				61 -> 63	-0.30360
8	4.7893	258.88	f=0.1378	57 -> 63	-0.11036
				59 -> 63	0.52583
				61 -> 63	-0.12554
				61 -> 64	0.22988
				61 -> 65	0.34671
9	5.0218	246.89	f=0.0009	56 -> 62	0.68063
				61 -> 66	0.12586
10	5.1453	240.96	f=0.0000	60 -> 64	0.69933
11	5.2176	237.63	f=0.1489	58 -> 62	-0.12092
				58 -> 65	-0.12109
				59 -> 63	-0.13663
				61 -> 64	0.61361
				61 -> 65	-0.21373
12	5.2829	234.69	f=0.0004	60 -> 65	0.69145
13	5.3982	229.68	f=0.0960	57 -> 63	0.45781
				58 -> 63	0.20645
				59 -> 63	0.29490
				59 -> 65	0.17799
				61 -> 65	-0.28148
14	5.5258	224.38	f=0.0002	57 -> 63	-0.16450

Table S1. 30 TDDFT singlet excitations of azo 1 from *trans-*S0 geometry, B3LYP/6-311G(d.p)/PCM(ACN)

				58 -> 63	0.65463
				61 -> 65	0.10134
15	5.6795	218.30	f=0.0898	57 -> 63	0.14496
				58 -> 63	-0.10939
				58 -> 65	-0.16572
				59 -> 64	0.58597
				61 -> 65	0.24149
16	5.8269	212.78	f=0.2539	55 -> 62	-0.12571
				57 -> 62	-0.13664
				57 -> 63	0.24002
				58 -> 64	0.19793
				59 -> 63	-0.17554
				59 -> 64	-0.18603
				59 -> 65	0.34974
				61 -> 64	0.16961
				61 -> 65	0.34156
17	5.8522	211.86	f=0.0377	56 -> 63	-0.34842
				59 -> 66	-0.13786
				61 -> 66	0.55971
18	5.8846	210.69	f=0.0003	54 -> 62	0.68102
19	5.9417	208.67	f=0.0660	55 -> 62	0.61904
				57 -> 63	-0.11458
				59 -> 65	0.16824
				61 -> 67	-0.22536
20	6.0069	206.40	f=0.0002	52 -> 62	0.10534
				53 -> 62	0.56734
				60 -> 66	0.15063
				60 -> 67	-0.35224
21	6.0241	205.81	f=0.3113	55 -> 62	-0.12852
				57 -> 63	-0.33910
				59 -> 64	0.16042
				59 -> 65	0.49103
				61 -> 65	-0.14338
				61 -> 6/	0.19245
22	6.1157	202.73	f=0.0004	53 -> 62	0.38110
				60 -> 66	-0.310/2
		100 55	0.0.0140	60 -> 6/	0.49031
23	6.2065	199.//	I=0.0140	56 -> 63	0.25239
				50 -> 65	0.12537
				5/ -> 64	-0.26394
				58 -> 65	0.23043
				59 -> 64	0.14008
				39 -> 66	0.38133

				61 -> 66	0.21772
				61 -> 67	0.20768
24	6.2124	199.57	f=0.0000	60 -> 66	0.60518
				60 -> 67	0.34070
25	6.2460	198.50	f=0.0047	56 -> 63	-0.21873
				57 -> 64	-0.34110
				57 -> 65	0.12020
				58 -> 65	0.35161
				59 -> 64	0.16781
				59 -> 65	-0.10076
				59 -> 66	-0.27248
				61 -> 66	-0.19361
26	6.3136	196.38	f=0.0000	51 -> 62	0.14837
				52 -> 62	0.65799
				53 -> 62	-0.12321
27	6.3306	195.85	f=0.0676	55 -> 62	0.18356
				57 -> 63	0.13722
				57 -> 64	0.21576
				58 -> 64	-0.25393
				61 -> 66	-0.13031
				61 -> 67	0.51742
28	6.4144	193.29	f=0.0002	48 -> 62	0.11374
				51 -> 62	0.66040
				52 -> 62	-0.16221
29	6.5264	189.97	f=0.1340	50 -> 62	0.12980
				56 -> 63	-0.19765
				57 -> 64	0.10390
				57 -> 65	0.23058
				58 -> 64	0.49302
				59 -> 65	-0.10975
				59 -> 66	0.15473
				59 -> 67	-0.14984
				61 -> 66	-0.14182
				61 -> 67	0.12760
30	6.5447	189.44	f=0.0130	56 -> 63	0.40684
				57 -> 64	0.19405
				57 -> 65	0.30939
				58 -> 64	0.10494
				58 -> 65	0.11217
				59 -> 66	-0.33946
				61 -> 66	0.15080

Table S2. 30 TDDFT triplet excitations of azo 1 from *trans*-S₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)

Excited	Energy	Wavelength	Oscillator	Transiti	Transition
States	(eV)	(nm)	Strength	on	Contribution
1	1.8577	667.41	f=0.0000	60 -> 62	0.68555
				60 -> 67	-0.14866
2	2.0660	600.13	f=0.0000	59 -> 62	0.23927
				59 -> 63	0.10098
				61 -> 62	0.62761
				61 -> 63	-0.11905
3	2.8976	427.89	f=0.0000	57 -> 62	0.19759
				59 -> 62	0.52136
				59 -> 63	-0.11289
				61 -> 62	-0.14934
				61 -> 63	0.33740
				61 -> 65	-0.10936
4	3.1415	394.66	f=0.0000	57 -> 62	0.11033
				59 -> 62	-0.33778
				59 -> 63	-0.27860
				59 -> 65	-0.10987
				61 -> 62	0.25198
				61 -> 63	0.44158
5	3.5253	351.69	f=0.0000	57 -> 62	0.20176
				58 -> 62	0.61071
				58 -> 64	-0.14768
				59 -> 62	-0.10879
				59 -> 63	0.10197
6	3.6224	342.27	f=0.0000	57 -> 62	0.53689
				58 -> 62	-0.29592
				59 -> 62	-0.13608
				59 -> 63	0.15767
				59 -> 65	-0.11299
				61 -> 63	-0.12585
				61 -> 65	-0.13983
7	4.0159	308.73	f=0.0000	57 -> 63	-0.22003
				59 -> 63	0.54899
				61 -> 63	0.34467
8	4.1405	299.44	f=0.0000	55 -> 62	0.13713
				56 -> 62	0.38372
				56 -> 63	-0.28159
				57 -> 62	-0.10821
				57 -> 63	0.11510

				57 -> 65	-0.12395
				58 -> 64	-0.19114
				61 -> 66	-0.33606
9	4.3430	285.48	f=0.0000	56 -> 62	0.14910
				56 -> 63	-0.12898
				57 -> 62	0.20621
				58 -> 64	0.52099
				58 -> 65	-0.22008
				61 -> 65	0.15582
				61 -> 66	-0.12670
10	4.3572	284.55	f=0.0000	60 -> 63	0.68872
11	4.5992	269.58	f=0.0000	56 -> 63	0.12203
				57 -> 62	0.12864
				57 -> 65	-0.14080
				59 -> 64	0.16234
				61 -> 64	0.50461
				61 -> 65	0.32004
				61 -> 67	0.14374
12	4.6838	264.71	f=0.0000	56 -> 63	0.11845
				57 -> 64	-0.21853
				58 -> 64	-0.15746
				59 -> 64	-0.27260
				59 -> 65	0.11823
				61 -> 64	-0.25594
				61 -> 65	0.45598
12	4 7505	260.00		61 -> 6/	0.11188
13	4./505	260.99	I=0.0000	55 -> 62	0.114/0
				50 -> 62	0.42748
				50 - 203	0.27832
				57 - 202	-0.12001
				50 - 204	0.13397
				59 - 200	-0.19493
				61 - 65	-0.10782
				61 - 67	0.22033
14	1 9155	252.23	f=0.0000	12 -> 62	0.10242
14	4.9155	252.25	1-0.0000	42 -> 02 50 -> 62	-0.14527
				50 - 02 55 -> 67	0 35088
				55 -> 62	-0 18585
				50 -> 62	-0 13128
				57 -> 65	-0 18643
				57 -> 64	0 13474
				59_>65	0.24305
I		1	I	05 05	0.27373

				59 -> 67	0.26373
				61 -> 64	-0.10133
				61 -> 65	-0.10907
				61 -> 67	0.16600
15	5.0575	245.15	f=0.0000	55 -> 62	-0.13063
				56 -> 62	0.27744
				57 -> 62	0.11155
				57 -> 63	-0.19792
				57 -> 67	-0.12220
				58 -> 64	-0.11869
				59 -> 63	-0.15828
				59 -> 64	0.23175
				59 -> 65	0.42284
				61 -> 67	-0.17086
16	5.1141	242.43	f=0.0000	60 -> 64	0.70185
17	5.1812	239.30	f=0.0000	60 -> 65	0.68649
18	5.2797	234.83	f=0.0000	55 -> 63	-0.19697
				57 -> 63	0.51429
				57 -> 66	0.10019
				59 -> 64	0.14933
				59 -> 65	0.21458
				59 -> 66	-0.18799
				61 -> 63	0.10275
19	5.4870	225.96	f=0.0000	58 -> 63	0.59834
				58 -> 65	-0.15453
				59 -> 64	-0.12111
				61 -> 64	0.15677
				61 -> 66	0.11469
20	5.5329	224.09	f=0.0000	56 -> 63	0.15555
				57 -> 63	-0.21043
				57 -> 64	0.10006
				57 -> 65	-0.11229
				58 -> 63	0.29451
				59 -> 64	0.27070
				59 -> 65	-0.16671
				59 -> 66	-0.13333
				61 -> 64	-0.24829
				61 -> 65	0.12254
				61 -> 66	-0.28176
21	5.5677	222.68	f=0.0000	56 -> 63	-0.13792
				57 -> 63	0.17334
				57 -> 64	0.13853
				57 -> 66	-0.14605

				59 -> 64	0.30812
				59 -> 65	-0.18060
				59 -> 66	0.19905
				61 -> 64	-0.23030
				61 -> 65	0.16925
				61 -> 66	0.33691
22	5.6629	218.94	f=0.0000	55 -> 62	0.47398
				57 -> 63	-0.11448
				57 -> 64	0.17269
				57 -> 65	0.25075
				58 -> 65	0.13590
				59 -> 67	-0.19106
				61 -> 67	-0.19825
23	5.7089	217.18	f=0.0000	48 -> 62	0.10525
				49 -> 62	-0.15130
				51 -> 62	0.18731
				54 -> 62	0.51964
				60 -> 67	0.32197
24	5.7521	215.54	f=0.0000	51 -> 62	-0.14106
				52 -> 62	-0.14526
				53 -> 62	-0.31155
				54 -> 62	-0.19856
				60 -> 62	0.12054
				60 -> 66	-0.10620
				60 -> 67	0.50990
25	5.8373	212.40	f=0.0000	57 -> 65	-0.12000
				58 -> 63	0.16887
				58 -> 64	0.22026
				58 -> 65	0.47894
				58 -> 66	0.10929
				58 -> 67	-0.32232
				59 -> 64	-0.14558
26	5.8810	210.82	f=0.0000	50 -> 62	-0.10732
				56 -> 63	0.43440
				57 -> 63	0.12963
				57 -> 65	0.18876
				57 -> 66	-0.12333
				59 -> 66	0.37408
				61 -> 66	-0.23467
27	5.9257	209.23	f=0.0000	53 -> 62	0.55693
				54 -> 62	-0.31195
				60 -> 67	0.22128
28	5.9995	206.66	f=0.0000	42 -> 62	-0.14012
				50 -> 62	0.31942
----	--------	--------	----------	----------	----------
				55 -> 62	0.16119
				55 -> 65	0.13290
				56 -> 63	0.12255
				56 -> 65	0.11547
				57 -> 64	-0.19331
				57 -> 65	-0.27501
				57 -> 67	-0.16898
				59 -> 65	-0.11487
				59 -> 66	0.27282
				61 -> 74	0.10957
29	6.0968	203.36	f=0.0000	48 -> 62	0.15079
				51 -> 62	0.45892
				52 -> 62	0.30924
				53 -> 62	-0.21937
				54 -> 62	-0.24687
				60 -> 66	-0.11686
30	6.1368	202.03	f=0.0000	50 -> 62	0.14222
				55 -> 63	-0.24035
				56 -> 63	-0.13881
				57 -> 65	0.16875
				59 -> 65	0.11153
				59 -> 66	0.18968
				59 -> 67	-0.13200
				61 -> 65	-0.10199
				61 -> 67	0.47531
				61 -> 74	0.12679

Table S3. 30 TDDFT singlet excitations of azo 2 from *trans*-S₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)

Excited	Energy	Wavelength	Oscillator	Transiti	Transition
States	(eV)	(nm)	Strength	on	Contribution
1	2.6587	466.33	f=0.0000	64 -> 66	0.70116
2	3.1739	390.64	f=1.0204	63 -> 66	-0.11004
				65 -> 66	0.69253
3	3.4846	355.81	f=0.2441	62 -> 66	-0.10025
				63 -> 66	0.66528
				65 -> 66	0.12937
				65 -> 67	-0.14970
4	4.1693	297.37	f=0.0606	61 -> 66	0.14451
				62 -> 66	0.33353
				63 -> 66	0.17815
				65 -> 67	0.54849
5	4.2009	295.13	f=0.0217	61 -> 66	0.53885
				62 -> 66	0.25296
				65 -> 67	-0.30154
				65 -> 68	-0.19132
6	4.3106	287.63	f=0.0074	61 -> 66	-0.34594
				62 -> 66	0.51236
				63 -> 67	-0.15601
				65 -> 67	-0.24572
				65 -> 69	0.11680
7	4.3750	283.39	f=0.0000	64 -> 67	0.69903
8	4.7366	261.76	f=0.1638	62 -> 67	-0.10467
				63 -> 67	0.55965
				65 -> 68	-0.21121
				65 -> 69	0.31599
9	4.9325	251.36	f=0.2406	61 -> 66	0.21332
				63 -> 67	0.21795
				65 -> 68	0.59958
10	4.9952	248.21	f=0.0000	64 -> 68	0.70511
11	5.0745	244.33	f=0.0122	60 -> 66	0.60509
				62 -> 67	0.24454
				63 -> 67	0.10580
				63 -> 69	0.10002
				65 -> 70	-0.14899
12	5.1207	242.12	f=0.0093	60 -> 66	-0.29394
				62 -> 67	0.45470
				63 -> 67	0.18976
				63 -> 69	0.21859

					65 -> 68	-0.10317
					65 -> 69	-0.24811
	13	5.3345	232.42	f=0.0004	64 -> 69	0.69678
	14	5.4450	227.70	f=0.0329	63 -> 68	0.62270
					65 -> 69	-0.27384
	15	5.6089	221.05	f=0.1554	59 -> 66	-0.13916
					61 -> 67	-0.23784
					61 -> 68	-0.13613
					62 -> 66	-0.10452
					62 -> 67	0.17907
					63 -> 67	-0.15142
					63 -> 68	0.20985
					63 -> 69	0.32133
					65 -> 69	0.40020
	16	5.6951	217.70	f=0.0060	61 -> 67	0.64553
					62 -> 67	0.13947
					63 -> 68	0.11696
					65 -> 69	0.12167
				_	65 -> 70	-0.11293
	17	5.7791	214.54	f=0.0090	60 -> 66	0.13387
					60 -> 67	0.29738
					61 -> 67	0.11209
					63 -> 70	-0.18579
		• • • • •			65 -> 70	0.56934
	18	5.8467	212.06	f=0.2033	59 -> 66	0.56990
					62 -> 67	-0.17039
					63 -> 69	0.29596
	10	C 0010	207.27	6 0 0002	65 -> 71	-0.14120
	19	5.9819	207.27	f=0.0003	54 -> 66	-0.10812
	20	C 0022	206.07	6 0 2550	58 -> 66	0.68566
	20	5.9933	206.87	I=0.3558	59 -> 66	-0.29196
					60 -> 6/	0.15/94
					62 -> 6/	-0.29899
					63 -> 69	0.3/6/8
					63 -> /0	-0.18559
					03 -> 09	-0.13409
					03 - 2/0	-0.1/9/9
	21	6 0726	204.14	f=0.0806	03 - 2/1	0.13/99
	∠ 1	0.0730	204.14	1-0.0090	62 - 60	-0.101/1
ļ					62 - 200	0.33370
					63 - 60	0 17257
					63 - 70	0.1/33/
				I	05 - 2 /0	0.19/03

				65 -> 70	0.11359
				65 -> 71	0.13341
22	6.0936	203.46	f=0.0327	60 -> 67	-0.31093
				62 -> 68	-0.35298
				63 -> 69	0.18925
				63 -> 70	0.35597
				65 -> 70	0.22378
				65 -> 71	0.12402
23	6.1358	202.07	f=0.0000	57 -> 66	0.44526
				64 -> 70	0.43349
				64 -> 71	-0.30166
24	6.1682	201.01	f=0.0005	57 -> 66	-0.41944
				64 -> 70	0.53946
				64 -> 71	0.13493
25	6.2628	197.97	f=0.0004	57 -> 66	0.31749
				64 -> 71	0.61174
26	6.2660	197.87	f=0.0436	59 -> 66	0.14111
				61 -> 68	0.29805
				62 -> 67	0.11108
				62 -> 69	0.17541
				65 -> 71	0.55564
27	6.4133	193.32	f=0.0000	56 -> 66	0.68680
28	6.4413	192.48	f=0.0001	62 -> 72	0.12967
				63 -> 72	0.20522
				65 -> 72	0.65978
29	6.4838	191.22	f=0.0227	55 -> 66	0.13793
				60 -> 67	-0.33780
				61 -> 68	-0.13617
				62 -> 69	0.44566
				63 -> 70	-0.32742
30	6.5282	189.92	f=0.0376	55 -> 66	-0.34134
				60 -> 67	0.25325
				61 -> 68	-0.30431
				62 -> 69	0.34393
				63 -> 70	0.21482

Table S4. 30 TDDFT triplet excitations of azo 2 from *trans*-S₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)

Excited	Energy	Wavelength	Oscillator	Transiti	Transition
States	(eV)	(nm)	Strength	on	Contribution
1	1.9333	641.30	f=0.0000	64 -> 66	0.68446
				64 -> 71	-0.13988
2	1.9772	627.07	f=0.0000	63 -> 67	0.12350
				65 -> 66	0.67059
3	2.8371	437.01	f=0.0000	62 -> 66	0.17266
				63 -> 66	0.51038
				63 -> 67	-0.24374
				65 -> 67	0.33617
				65 -> 69	-0.13267
4	3.1913	388.51	f=0.0000	62 -> 66	-0.11447
				63 -> 66	0.43841
				63 -> 67	0.37271
				65 -> 66	-0.16425
				65 -> 67	-0.30860
5	3.5486	349.39	f=0.0000	62 -> 66	0.61800
				63 -> 67	0.19468
				65 -> 67	-0.13637
				65 -> 69	-0.13290
6	3.8002	326.26	f=0.0000	61 -> 66	0.66267
				61 -> 68	0.13296
				65 -> 68	0.12081
7	3.8746	319.99	f=0.0000	62 -> 67	-0.29165
				63 -> 67	0.40937
				65 -> 67	0.46500
8	4.0956	302.73	f=0.0000	61 -> 66	-0.10522
				61 -> 68	-0.14607
				62 -> 68	0.14484
				63 -> 68	0.24507
				65 -> 68	0.57699
				65 -> 69	0.16973
9	4.1536	298.50	f=0.0000	59 -> 66	-0.12565
				60 -> 66	0.38910
				60 -> 67	-0.30333
				62 -> 67	-0.12494
				63 -> 69	0.13833
				63 -> 70	-0.21462
				65 -> 69	-0.13520
				65 -> 70	0.28917

					65 -> 71	-0.10349
	10	4.2546	291.41	f=0.0000	61 -> 66	-0.13870
					61 -> 68	0.51883
					61 -> 69	0.14163
					62 -> 66	-0.17601
					62 -> 68	0.10179
					65 -> 68	0.15336
					65 -> 69	-0.24570
					65 -> 71	0.12685
	11	4.3163	287.25	f=0.0000	64 -> 66	-0.10638
					64 -> 67	0.68753
	12	4.5768	270.90	f=0.0000	59 -> 66	0.14953
					60 -> 67	-0.20162
					61 -> 68	0.21575
					62 -> 68	0.12700
					62 -> 69	-0.14234
					63 -> 70	-0.14360
					65 -> 68	-0.11359
					65 -> 69	0.46419
					65 -> 70	0.15863
	10	1 72 (1	0.(1.77	6 0 0000	65 -> //1	0.15894
	13	4.7364	261.77	f=0.0000	59 -> 66	-0.23913
					60 -> 66	0.30364
					60 -> 6/	0.22024
					61 -> 68	0.18875
					62 -> 66	0.11/26
					03 - > /0	0.22192
					03 - 209	0.20298
					03 - 70 65 > 71	-0.12903
	1/	1 8/12	256 10	f=0.0000	59 -> 66	-0.23494
	17	7.0712	230.10	1-0.0000	59 -> 67	-0.15691
					57 = 07 67 = 267	0 40272
					62 > 69	0.15641
					63 -> 67	0.19618
					63 -> 68	0.12314
					63 -> 69	-0.28584
					63 -> 70	-0.11710
					63 -> 71	-0.15478
					65 -> 67	0.10781
	15	4.9345	251.26	f=0.0000	59 -> 66	0.25683
			-		60 -> 66	0.43782
					60 -> 67	0.11238
н			-			

1	1	1	1	I	1
				61 -> 68	-0.10073
				62 -> 67	0.29873
				62 -> 69	-0.13587
				63 -> 67	0.11059
				63 -> 71	0.12488
				65 -> 67	0.11148
				65 -> 71	0.17406
16	4.9692	249.51	f=0.0000	64 -> 68	0.70448
17	5.0928	243.45	f=0.0000	60 -> 66	-0.13781
				61 -> 68	0.11774
				62 -> 67	0.32010
				63 -> 68	-0.24017
				63 -> 69	0.46977
				65 -> 67	0.10149
				65 -> 71	-0.17707
18	5.2242	237.33	f=0.0000	64 -> 69	0.68503
19	5.3566	231.46	f=0.0000	59 -> 67	0.11551
				62 -> 68	0.15074
				62 -> 70	-0.10728
				63 -> 68	0.48028
				63 -> 69	0.18841
				65 -> 68	-0.26513
				65 -> 69	-0.11610
				65 -> 70	0.20067
20	5.4360	228.08	f=0.0000	59 -> 67	0.14440
				60 -> 67	0.13507
				62 -> 68	-0.11290
				62 -> 69	0.16833
				62 -> 70	-0.23888
				63 -> 68	-0.23257
				63 -> 69	-0.17119
				63 -> 70	0.16184
				65 -> 68	0.10804
				65 -> 70	0.41822
21	5.5288	224.25	f=0.0000	59 -> 66	0.43195
				59 -> 67	-0.10195
				61 -> 68	0.13784
				62 -> 68	-0.14940
				62 -> 69	0.33390
				62 -> 70	0.10451
				63 -> 71	-0.12838
				65 -> 70	-0.13050
				65 -> 71	-0.20769

22	5.6698	218.67	f=0.0000	61 -> 67	0.68048
23	5.7636	215.12	f=0.0000	55 -> 66	-0.28426
				59 -> 66	0.13994
				59 -> 69	0.13036
				60 -> 67	0.29668
				61 -> 67	0.10567
				62 -> 69	-0.24146
				62 -> 71	-0.10566
				63 -> 69	-0.11729
				63 -> 70	-0.15935
				63 -> 71	-0.11137
				65 -> 69	-0.11969
				65 -> 70	0.24318
				65 -> 71	-0.14847
24	5.8050	213.58	f=0.0000	54 -> 66	-0.28327
				58 -> 66	0.53959
				64 -> 71	-0.27824
25	5.8610	211.54	f=0.0000	59 -> 66	-0.14997
				60 -> 67	0.36318
				62 -> 68	-0.26997
				62 -> 70	0.11238
				63 -> 69	0.15621
				63 -> 70	-0.33283
				65 -> 69	0.10621
				65 -> 71	0.22780
26	5.9221	209.36	f=0.0000	54 -> 66	-0.11287
				57 -> 66	-0.31116
				58 -> 66	0.18139
				64 -> 66	0.11393
				64 -> 71	0.55377
27	5.9358	208.88	f=0.0000	55 -> 66	0.13609
				59 -> 68	0.13905
				60 -> 67	0.15937
				62 -> 68	0.49995
				62 -> 69	0.20463
				63 -> 68	-0.22018
				63 -> 70	-0.18147
28	6.0362	205.40	f=0.0000	54 -> 66	0.16201
				57 -> 66	0.52138
				58 -> 66	0.32286
	<pre>c c ===</pre>			64 -> 71	0.21349
29	6.0577	204.67	t=0.0000	55 -> 66	0.35251
				59 -> 67	0.22830

				62 -> 69	-0.23808
				63 -> 69	-0.15970
				63 -> 70	-0.20365
				65 -> 71	-0.34167
30	6.1412	201.89	f=0.0000	57 -> 66	0.11501
				64 -> 70	0.67490

Table S5. 30 TDDFT singlet excitations of azo 3 from *trans*-S₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)

Excited	Energy	Wavelength	Oscillator	Transiti	Transition
States	(eV)	(nm)	Strength	on	Contribution
1	2.6481	468.20	f=0.0000	68 -> 70	0.70118
2	3.1354	395.43	f=1.1190	69 -> 70	0.69816
3	3.4603	358.30	f=0.1732	66 -> 70	-0.10445
				67 -> 70	0.66856
				69 -> 71	-0.15312
4	4.1302	300.19	f=0.0412	65 -> 70	0.27224
				66 -> 70	0.46949
				67 -> 70	0.15260
				69 -> 71	0.37119
				69 -> 72	0.14261
5	4.1702	297.31	f=0.0528	65 -> 70	-0.39024
				66 -> 70	-0.19229
				67 -> 70	0.10897
				69 -> 71	0.51381
				69 -> 72	-0.12805
6	4.2853	289.32	f=0.0054	65 -> 70	0.45329
				66 -> 70	-0.42993
				67 -> 71	0.14201
				69 -> 71	0.22697
				69 -> 72	0.10715
				69 -> 73	-0.12215
7	4.3654	284.01	f=0.0000	68 -> 71	0.69909
8	4.7222	262.56	f=0.1667	66 -> 71	-0.10057
				67 -> 71	0.56475
				69 -> 72	0.23529
				69 -> 73	0.28942
9	4.9151	252.25	f=0.2653	65 -> 70	-0.19090
				66 -> 70	-0.10341
				66 -> 71	-0.13123
				67 -> 71	-0.24456
				69 -> 72	0.58240
10	5.0151	247.22	f=0.0000	68 -> 72	0.70460
11	5.0600	245.03	f=0.0234	64 -> 70	0.47766
				66 -> 71	0.37288
				67 -> 71	0.14366
				67 -> 72	0.11328
				67 -> 73	0.15328
				69 -> 72	0.10620

					69 -> 73	-0.14826
					69 -> 74	-0.11967
	12	5.0882	243.67	f=0.0033	64 -> 70	0.47076
					66 -> 71	-0.34073
					67 -> 71	-0.11942
					67 -> 73	-0.16395
					69 -> 72	-0.10788
					69 -> 73	0.23540
					69 -> 74	-0.11551
	13	5.3347	232.41	f=0.0004	68 -> 73	0.69688
	14	5.4347	228.13	f=0.0446	67 -> 72	0.55989
					69 -> 73	0.36885
	15	5.5766	222.33	f=0.1150	63 -> 70	0.21496
					65 -> 71	0.22073
					65 -> 72	-0.12852
					66 -> 71	-0.17494
					67 -> 71	0.11898
					67 -> 72	0.32176
					67 -> 73	-0.31925
					69 -> 72	-0.11868
					69 -> 73	-0.31468
	16	5.6619	218.98	f=0.0091	63 -> 70	-0.15966
					65 -> 71	0.63310
					66 -> 71	0.18185
	. –				67 -> 72	-0.12093
	17	5.7463	215.76	f=0.0654	63 -> 70	0.49955
					64 -> 70	-0.13386
					64 -> 71	-0.11719
					67 -> 73	0.20807
					69 -> 73	0.10020
					69 -> 74	-0.34044
	10		214.05	0.0.0104	69 -> 75	-0.12457
	18	5.7702	214.87	f=0.0124	63 -> 70	0.28283
					64 -> 71	0.26630
					65 -> 71	0.16657
					67 -> 73	0.1887/8
					67 -> 74	-0.16988
	10	E 00 ()	200.05	C 0 0002	69 -> 74	0.47025
ļ	19	5.9364	208.85	t=0.0003	58 -> 70	0.13730
					61 -> 70	0.11836
		- 0.60-			62 -> 70	0.66474
	20	5.9697	207.69	t=0.4394	63 -> 70	-0.21404
ļ					64 -> 71	0.18095

					66 -> 71	-0.31296
					67 -> 73	0.39461
					67 -> 74	-0.19256
					69 -> 73	-0.14654
					69 -> 74	-0.20667
					69 -> 75	0.11240
	21	5.9846	207.17	f=0.0002	61 -> 70	0.67468
					62 -> 70	-0.11115
	22	6.0639	204.46	f=0.1198	64 -> 71	0.24927
					66 -> 71	0.10924
					66 -> 72	0.41588
					67 -> 72	-0.10830
					67 -> 73	-0.22328
					67 -> 74	-0.29404
					69 -> 74	-0.16483
					69 -> 75	-0.18186
	23	6.0840	203.79	f=0.0257	64 -> 71	-0.24247
					66 -> 72	0.50486
					66 -> 73	-0.10345
					67 -> 73	0.15447
					67 -> 74	0.27286
					69 -> 74	0.16267
	24	6.1435	201.81	f=0.0002	68 -> 74	0.67982
		6 8 0 0 -	100.00	2	68 -> 75	-0.15051
	25	6.2087	199.69	f=0.0720	60 -> 70	0.21368
					63 -> 70	0.11125
					65 -> 72	-0.23445
					66 -> /1	0.11076
					66 -> 73	0.13620
	26	(2201	100.04	6 0 0000	69 -> 75	0.56709
	26	6.2291	199.04	f=0.0000	62 -> /0	-0.10558
					68 -> /4	0.15/0/
	27	()51(105 11	£ 0.0005	68 -> /5	0.66443
	27	0.3340	195.11	1=0.0005	58 -> 70	-0.11286
	20	6 2022	102.06	£_0.0020	59 -> 70	0.67208
	28	0.3922	193.90	1=0.0020	00 -> /0	0.03372
					04 - 7/1	0.12/41
					60 -> 75	-0.1290/
	29	6 4620	191.87	f=0.0324	64 => 71	-0.15009
	<i>L</i> J	0.7020	171.07	1 0.0324	65 -> 77	0.10853
					66 -> 72	0.13380
					66 -> 73	0.13300
ļ			I	I	00 13	0.5++00

				67 -> 74	-0.23305
30	6.5344	189.74	f=0.0762	60 -> 70	0.10602
				64 -> 71	0.40328
				65 -> 72	0.29517
				66 -> 72	0.10565
				66 -> 73	0.17498
				67 -> 74	0.37040

Table S6. 30 TDDFT triplet excitations of azo 3 from *trans*-S₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)

Excited	Energy	Wavelength	Oscillator	Transiti	Transition
States	(eV)	(nm)	Strength	on	Contribution
1	1.9247	644.19	f=0.0000	68 -> 70	0.68450
				68 -> 75	-0.14062
2	1.9628	631.66	f=0.0000	67 -> 71	0.12340
				69 -> 70	0.67279
3	2.8225	439.27	f=0.0000	66 -> 70	0.16317
				67 -> 70	0.51737
				67 -> 71	-0.25299
				69 -> 71	0.32226
				69 -> 73	-0.12558
4	3.1900	388.67	f=0.0000	66 -> 70	-0.12315
				67 -> 70	0.43749
				67 -> 71	0.38509
				69 -> 70	-0.14805
				69 -> 71	-0.29734
5	3.5221	352.02	f=0.0000	66 -> 70	0.62243
				67 -> 71	0.19413
				69 -> 71	-0.13766
				69 -> 73	-0.11097
6	3.7782	328.16	f=0.0000	65 -> 70	0.66586
				65 -> 72	-0.13270
				69 -> 72	-0.10968
7	3.8582	321.35	f=0.0000	66 -> 71	-0.30242
				67 -> 71	0.38720
				69 -> 71	0.47567
8	4.1009	302.34	f=0.0000	65 -> 70	0.13109
				66 -> 72	0.14654
				67 -> 72	0.23574
				69 -> 72	0.58258
				69 -> 73	-0.16353
9	4.1482	298.88	f=0.0000	63 -> 70	-0.11268
				64 -> 70	0.39132
				64 -> 71	-0.29175
				66 -> 71	-0.10109
				66 -> 73	0.10222
				67 -> 73	0.13899
				67 -> 74	-0.22222
				69 -> 72	-0.16333
				69 -> 73	-0.15773

				69 -> 74	0.26368
10	4.2382	292.54	f=0.0000	65 -> 72	0.50620
				65 -> 73	-0.19002
				66 -> 70	0.15557
				69 -> 73	0.27976
				69 -> 75	-0.15162
11	4.3070	287.87	f=0.0000	68 -> 70	-0.10524
				68 -> 71	0.68775
12	4.5633	271.70	f=0.0000	63 -> 70	0.15655
				64 -> 71	-0.20465
				65 -> 72	-0.21446
				65 -> 73	0.10208
				66 -> 72	-0.16133
				66 -> 73	-0.12869
				67 -> 72	-0.11434
				67 -> 74	-0.15391
				69 -> 72	0.14972
				69 -> 73	0.42581
				69 -> 74	0.15819
				69 -> 75	0.16329
13	4.7162	262.89	f=0.0000	63 -> 70	-0.26336
				64 -> 70	0.28945
				64 -> 71	0.20336
				65 -> 72	-0.17678
				66 -> 70	0.10677
				67 -> 74	0.21305
				69 -> 73	0.28079
				69 -> 74	-0.11518
				69 -> 75	-0.23737
14	4.8045	258.06	f=0.0000	63 -> 70	-0.16129
				63 -> 71	-0.16308
				66 -> 71	0.44263
				66 -> 73	0.12177
				67 -> 71	0.21597
				67 -> 72	-0.12955
				67 -> 73	-0.24729
				67 -> 74	-0.11971
				6' -> 75	-0.13096
1.5	4.0165	0.50.10		69 -> 71	0.13849
15	4.9165	252.18	t=0.0000	63 -> 70	0.28997
				64 -> 70	0.43183
				64 -> 71	0.13334
				66 -> 71	0.26018

				66 -> 73	-0.14245
				67 -> 75	0.13001
				69 -> 71	0.10776
				69 -> 75	0.15163
16	4.9865	248.64	f=0.0000	68 -> 72	0.70363
17	5.0692	244.58	f=0.0000	64 -> 70	-0.16374
				65 -> 72	-0.13177
				66 -> 71	0.28327
				67 -> 72	0.27453
				67 -> 73	0.45659
				69 -> 75	-0.19335
18	5.2271	237.19	f=0.0000	68 -> 73	0.68541
19	5.3578	231.41	f=0.0000	63 -> 70	-0.13379
				63 -> 71	-0.14401
				64 -> 71	-0.12207
				66 -> 73	-0.19217
				66 -> 74	0.17340
				67 -> 72	0.36723
				67 -> 73	-0.12844
				67 -> 74	-0.11426
				69 -> 72	-0.18260
				69 -> 73	0.10329
				69 -> 74	-0.30302
				69 -> 75	0.10789
20	5.4300	228.33	f=0.0000	63 -> 70	0.19916
				65 -> 72	-0.15130
				66 -> 72	0.21216
				66 -> 73	0.22209
				66 -> 74	-0.12828
				67 -> 72	0.35544
				67 -> 73	-0.24165
				69 -> 72	-0.16710
				69 -> 73	0.11630
				69 -> 74	0.21713
21	5.4758	226.42	f=0.0000	60 -> 71	0.11769
				63 -> 70	0.35737
				63 -> 71	-0.12706
				65 -> 72	-0.12032
				66 -> 73	0.23672
				66 -> 7/4	0.19677
				67 -> 72	-0.11632
				67 -> 73	0.10388
				67 -> 74	-0.10492

4			1			1
					67 -> 75	-0.10941
					69 -> 74	-0.30424
					69 -> 75	-0.20830
	22	5.6389	219.87	f=0.0000	65 -> 71	0.66409
					66 -> 71	0.11694
	23	5.7350	216.19	f=0.0000	60 -> 70	0.36339
					63 -> 70	-0.11325
					63 -> 73	-0.11390
					64 -> 71	-0.26712
					65 -> 71	-0.15286
					66 -> 73	0.17633
					66 -> 75	0.10805
					67 -> 73	0.10066
					67 -> 74	0.12754
					67 -> 75	0.12332
					69 -> 73	0.12030
					69 -> 74	-0.23542
					69 -> 75	0.16528
	24	5.7957	213.93	f=0.0000	57 -> 70	0.14858
					58 -> 70	0.26798
					61 -> 70	0.44989
					62 -> 70	0.36265
					68 -> 75	-0.15975
	25	5.8103	213.39	f=0.0000	61 -> 70	-0.23967
					62 -> 70	0.48945
	a (5 0 0 01	212.25	0 0 0 0 0 0	68 -> 75	0.39507
	26	5.8381	212.37	f=0.0000	63 -> 70	-0.13992
					64 -> /1	0.32197
					66 -> /2	0.30600
					66 -> /3	0.11113
					6/ -> /3	0.21304
					6/ -> /4	-0.26239
					69 -> /3	0.11958
	27	5 007 2	210.24	C 0 0000	69 -> /5	0.28928
	27	5.89/3	210.24	I=0.0000	60 -> /0	0.41338
					64 -> /1	0.26796
					00 -> 12	-0.2328/
ļ					00 -> /4 66 \> 75	0.155//
					00 -> /3	0.1090/
ļ					0/ -> /3	0.1231/
	20	5 0604	207 70	f-0.0000	0/ -> /4	-0.291/0
	20	3.9094	207.70	1-0.0000	00 - 2 / 0	0.20/31
					03 -> 12	0.11/33

			1	(5 > 70	0 1 1 2 1 2
				65 -> /2	-0.11313
				65 -> 73	0.14171
				66 -> 72	0.38863
				66 -> 73	-0.35639
				67 -> 72	-0.19019
				69 -> 75	-0.16937
29	5.9728	207.58	f=0.0000	61 -> 70	0.38194
				62 -> 70	-0.23356
				68 -> 75	0.50486
30	6.1169	202.69	f=0.0000	55 -> 70	0.13959
				57 -> 70	0.11725
				58 -> 70	0.22562
				59 -> 70	-0.21387
				61 -> 70	-0.13647
				62 -> 70	-0.14588
				68 -> 73	-0.10702
				68 -> 74	0.52518
				68 -> 75	0.11684

Table S7. 30 TDDFT singlet excitations of azo 4 from *trans*-S₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)

Excited	Energy	Wavelength	Oscillator	Transiti	Transition
States	(eV)	(nm)	Strength	on	Contribution
1	2.6910	460.74	f=0.0000	72 -> 74	0.70046
2	2.8285	438.33	f=1.3883	73 -> 74	0.70633
3	3.4335	361.10	f=0.0058	70 -> 74	0.13825
				71 -> 74	0.57863
				73 -> 75	0.36247
4	3.7700	328.87	f=0.0499	71 -> 74	-0.35410
				73 -> 75	0.59997
5	4.0847	303.53	f=0.0712	69 -> 74	0.14937
				70 -> 74	0.62028
				71 -> 74	-0.14119
				71 -> 75	0.15039
				73 -> 76	0.17036
				73 -> 77	0.11151
6	4.1562	298.31	f=0.0149	69 -> 74	0.52802
				70 -> 74	-0.18197
				73 -> 76	0.38860
				73 -> 77	-0.15091
7	4.2616	290.93	f=0.0000	72 -> 75	0.69874
8	4.4767	276.96	f=0.0850	69 -> 74	-0.42080
				71 -> 75	-0.11598
				73 -> 76	0.53980
9	4.5796	270.73	f=0.2581	69 -> 74	-0.10185
				71 -> 75	0.59195
				73 -> 77	-0.33410
10	4.8244	257.00	f=0.0165	68 -> 74	0.11499
				70 -> 74	-0.17549
				70 -> 75	-0.40695
				71 -> 75	0.20817
				71 -> 76	0.11152
				71 -> 77	0.18465
				73 -> 77	0.41685
11	5.0193	247.01	f=0.0000	72 -> 76	0.70385
12	5.0331	246.34	f=0.0975	68 -> 74	0.49754
				70 -> 75	0.30619
				71 -> 76	-0.11820
				71 -> 77	-0.13505
				73 -> 77	0.21067
				73 -> 78	-0.20756

13	5.1556	240.49	f=0.0360	67 -> 74	-0.21359
				68 -> 74	0.32798
				70 -> 75	-0.23248
				71 -> 75	-0.18437
				71 -> 76	0.19406
				71 -> 77	0.24980
				73 -> 77	-0.32440
				73 -> 78	-0.15948
14	5.2709	235.22	f=0.0003	72 -> 77	0.69648
15	5.2977	234.03	f=0.0277	67 -> 74	0.45737
				68 -> 74	0.28688
				73 -> 78	0.38927
				73 -> 79	0.10012
16	5.4604	227.06	f=0.0067	67 -> 74	-0.38973
				71 -> 76	-0.30147
				73 -> 78	0.47240
17	5.4829	226.13	f=0.0261	67 -> 74	-0.22461
				71 -> 76	0.54738
				71 -> 77	-0.26914
				73 -> 78	0.19811
18	5.5752	222.38	f=0.0054	69 -> 75	0.70308
19	5.7727	214.78	f=0.0200	73 -> 80	0.69828
20	5.7928	214.03	f=0.2482	67 -> 75	-0.11010
				68 -> 75	0.34820
				70 -> 75	-0.27951
				71 -> 77	-0.34905
				71 -> 78	0.27420
				73 -> 79	0.20346
21	5.8665	211.34	f=0.0481	68 -> 75	-0.17803
				69 -> 76	-0.10220
				70 -> 77	0.11002
				71 -> 78	-0.15926
				73 -> 79	0.61831
22	5.9861	207.12	f=0.0618	68 -> 75	-0.10098
				70 -> 76	0.63063
				70 -> 77	-0.10983
				/1 -> //7	-0.14857
	C 0150	206.12	6.0.4502	/1 -> //8	-0.15008
23	6.0150	206.13	1=0.4582	66 -> 74	-0.11072
				67 -> 75	-0.21897
				68 -> 75	0.14071
				/0 -> 75	0.24958
				70 -> 76	0.25480

				71 -> 76	0 10754
				71 -> 77	0.32025
				71 -> 78	0.35505
				73 -> 79	0.14476
2.4	6.0298	205.62	f=0.0001	64 -> 74	0.21323
	0.0220			65 -> 74	0.38456
				72 -> 78	0.53019
25	6.0564	204.72	f=0.0007	64 -> 74	0.21525
				65 -> 74	0.48110
				72 -> 78	-0.45314
26	6.1206	202.57	f=0.0000	64 -> 74	0.58411
				65 -> 74	-0.30192
				72 -> 79	-0.21247
27	6.2540	198.25	f=0.0449	66 -> 74	0.57032
				67 -> 75	-0.10729
				68 -> 75	-0.14032
				69 -> 76	-0.13682
				70 -> 77	0.30847
				71 -> 78	0.12054
28	6.2740	197.61	f=0.0003	64 -> 74	0.22376
				72 -> 79	0.65922
29	6.2887	197.15	f=0.1035	66 -> 74	0.27650
				67 -> 75	0.12027
				68 -> 74	-0.11656
				68 -> 75	0.41406
				70 -> 77	-0.20248
				71 -> 77	0.20208
				71 -> 78	-0.28522
				71 -> 79	-0.11870
30	6.3695	194.65	f=0.0012	71 -> 81	0.12957
				73 -> 81	0.63531
				73 -> 83	0.25176

Table S8. 30 TDDFT triplet excitations of azo 4 from *trans*-S₀ geometry, B3LYP/6-311G(d.p)/PCM(ACN)

Excited	Energy	Wavelength	Oscillator	Transiti	Transition
States	(eV)	(nm)	Strength	on	Contribution
1	1.7291	717.04	f=0.0000	73 -> 74	0.68457
2	1.9977	620.63	f=0.0000	72 -> 74	0.68226
				72 -> 79	-0.13709
3	2.7098	457.55	f=0.0000	70 -> 74	-0.16693
				71 -> 74	0.50401
				71 -> 75	-0.32659
				73 -> 75	-0.26317
				73 -> 77	0.10290
4	3.2218	384.83	f=0.0000	71 -> 74	0.43174
				71 -> 75	0.42420
				73 -> 75	0.30935
5	3.4062	364.00	f=0.0000	70 -> 74	0.58834
				70 -> 75	0.12110
				71 -> 74	0.17351
				73 -> 75	-0.23356
6	3.5476	349.49	f=0.0000	70 -> 74	0.23873
				70 -> 75	-0.24883
				71 -> 75	-0.32559
				73 -> 75	0.46234
				73 -> 76	-0.18625
7	3.6586	338.89	f=0.0000	69 -> 74	0.16658
				70 -> 74	0.10853
				73 -> 75	0.11779
				73 -> 76	0.59769
				73 -> 77	-0.22462
8	3.7929	326.88	f=0.0000	69 -> 74	0.61740
				69 -> 76	-0.18702
				73 -> 76	-0.21572
9	3.9955	310.31	f=0.0000	68 -> 74	-0.29412
				69 -> 74	0.22093
				69 -> 76	0.22044
				69 -> 77	-0.10697
				/0 -> 77	-0.12109
				/1 -> 77	0.11/55
				/1 -> 78	-0.10//08
				73 -> 74	0.10217
				73 -> 76	0.11/19
				73 -> 77	0.42941

10	4.1631	297.82	f=0.0000	67 -> 74	-0.12403
				67 -> 75	0.16235
				68 -> 74	0.27386
				68 -> 75	-0.21649
				69 -> 76	0.20368
				70 -> 75	-0.20582
				71 -> 77	-0.14707
				71 -> 78	0.24589
				73 -> 77	0.15515
				73 -> 78	0.21869
				73 -> 79	-0.22340
11	4.2018	295.07	f=0.0000	72 -> 74	-0.11479
				72 -> 75	0.68617
12	4.4387	279.32	f=0.0000	67 -> 74	-0.24299
				67 -> 75	0.14445
				68 -> 74	-0.20365
				69 -> 76	0.24656
				70 -> 75	0.33442
				71 -> 75	-0.13051
				71 -> 78	0.19699
				73 -> 75	0.13838
				73 -> 77	-0.25451
				73 -> 79	0.11690
13	4.4659	277.62	f=0.0000	67 -> 74	0.21483
				67 -> 75	-0.10078
				68 -> 74	0.16722
				68 -> 75	0.18095
				69 -> 76	0.32695
				69 -> 77	-0.11904
				70 -> 75	0.16577
				70 -> 76	0.10685
				70 -> 77	0.15578
				71 -> 75	-0.10152
				71 -> 78	-0.18781
				73 -> 77	-0.12707
				73 -> 78	-0.11590
				73 -> 79	-0.29602
14	4.5039	275.28	f=0.0000	67 -> 75	0.13341
				68 -> 74	0.21678
				69 -> 76	-0.22996
				70 -> 75	0.42104
				71 -> 75	-0.17921
				73 -> 75	0.12928

				73 -> 76	0.11381
				73 -> 77	0.26847
15	4.8975	253.16	f=0.0000	66 -> 75	-0.10770
				67 -> 74	0.33447
				67 -> 75	0.19360
				69 -> 76	0.13558
				70 -> 75	-0.12531
				70 -> 78	0.10244
				71 -> 76	0.21823
				71 -> 77	0.36649
				71 -> 78	0.18002
				71 -> 79	0.12502
16	4.9786	249.04	f=0.0000	67 -> 74	-0.27939
				68 -> 74	0.38507
				69 -> 76	0.17075
				71 -> 76	0.16197
				71 -> 77	0.28440
				71 -> 78	-0.11565
				73 -> 78	-0.10887
				73 -> 79	0.25503
17	4.9853	248.70	f=0.0000	72 -> 76	0.70167
18	5.1574	240.40	f=0.0000	72 -> 77	0.68312
19	5.1574	240.40	f=0.0000	66 -> 74	-0.12633
				67 -> 74	-0.13333
				67 -> 75	-0.15978
				68 -> 74	-0.11763
				69 -> 76	-0.11137
				70 -> 77	0.21036
				70 -> 78	-0.18568
				71 -> 76	0.19970
				71 -> 77	0.21713
				73 -> 77	-0.10607
				73 -> 78	0.39294
				73 -> 79	-0.19050
20	5.1839	239.17	f=0.0000	66 -> 74	0.14303
				66 -> 75	0.11514
				67 -> 74	0.31857
				67 -> 75	-0.10355
				69 -> 76	0.11849
				70 -> 76	-0.12871
				70 -> 77	-0.18214
				70 -> 78	-0.15568
				70 -> 79	-0.10076

				73 -> 78	0.40446
				73 -> 79	0.20627
21	5.3700	230.89	f=0.0000	70 -> 76	-0.29034
				70 -> 77	-0.12057
				71 -> 76	0.50382
				71 -> 77	-0.22477
				73 -> 77	-0.11959
				73 -> 79	-0.17857
22	5.4299	228.34	f=0.0000	66 -> 74	-0.14857
				68 -> 77	0.11281
				70 -> 77	0.36654
				71 -> 76	0.19240
				71 -> 77	-0.25622
				73 -> 76	0.10274
				73 -> 77	0.16181
				73 -> 79	0.31155
23	5.5638	222.84	f=0.0000	69 -> 75	0.69308
24	5.6020	221.32	f=0.0000	66 -> 74	0.48027
				66 -> 75	-0.13364
				67 -> 74	-0.14213
				68 -> 75	0.25352
				70 -> 75	-0.10073
				70 -> 76	0.13208
				70 -> 77	0.17902
				70 -> 78	0.11084
				71 -> 77	-0.13098
				71 -> 79	0.10888
25	5.6896	217.91	f=0.0000	73 -> 80	0.69208
26	5.7514	215.57	f=0.0000	66 -> 74	-0.27467
				66 -> 75	-0.16197
				68 -> 75	0.44754
				70 -> 77	-0.11969
				70 -> 78	0.19427
				71 -> 78	0.22414
				73 -> 78	0.10824
				73 -> 79	0.11061
27	5.8349	212.49	t=0.0000	62 -> 74	0.28768
				64 -> 74	0.27403
				65 -> 74	0.51776
				72 -> 79	0.17016
28	5.8458	212.09	t=0.0000	67 -> 76	-0.13017
				68 -> 76	-0.17138
				70 -> 76	0.51624

				70 -> 77	-0.28415
				71 -> 76	0.23075
29	5.9161	209.57	f=0.0000	66 -> 75	0.20731
				67 -> 75	-0.29817
				67 -> 77	-0.10669
				68 -> 77	0.10815
				70 -> 78	-0.11253
				71 -> 77	0.10513
				71 -> 78	0.45697
				71 -> 88	-0.11147
				73 -> 78	-0.18935
30	5.9253	209.25	f=0.0000	64 -> 74	-0.38885
				72 -> 74	0.11719
				72 -> 79	0.55246

Azo 1 and 4 PECs

∠ CNNC	S ₀	S ₁	S ₂	S ₃	S ₄	T ₁	T ₂	T ₃
0	0.6663	3.3144	4.0862	4.5866	4.7494	2.51406	3.2731	3.8548
12.5	0.64208	3.17168	4.00338	4.51338	4.66048	2.3799	3.23648	3.78248
20	0.66461	3.02141	3.94311	4.46951	4.59221	2.22431	3.23061	3.74261
40	0.84949	2.70399	3.89629	4.46129	4.52429	1.8738	3.29099	3.74819
60	1.21804	2.40344	3.97004	4.53754	4.60044	1.55233	3.41754	3.87784
80	1.73256	2.07566	4.16366	4.69526	4.78996	1.34623	3.59416	4.12066
100	1.78436	1.92616	4.14226	4.67896	4.78486	1.28726	3.56126	4.08316
120	1.08976	2.18636	3.79826	4.37776	4.46926	1.33757	3.18656	3.65146
140	0.51092	2.32702	3.51822	4.03042	4.22882	1.51442	2.77852	3.28082
160	0.13203	2.49103	3.31343	3.71473	4.07953	1.75641	2.39573	3.01173
180	0	2.5901	3.1998	3.5612	4.0233	1.95612	2.066	2.8976

Table S9. TDD	FT Energies of 1 a	long the torsional A	∠ CNNC of the	S ₀ trans-cis
isomerization.				

Table S10.	TDDFT	Energies of 1	along the in	version ∠ ^{Naj}	PCNN of the	S ₀ trans-cis
isomerizati	ion.					

∠ CNN	S ₀	S ₁	S ₂	S ₃	S ₄	T ₁	T ₂	T ₃
115.31275	0	2.5901	3.1998	3.5612	4.0233	1.95612	2.066	2.8976
125.31275	0.143	2.3563	3.3868	3.7309	4.1617	1.76337	2.2295	3.0461
135.31275	0.49874	2.30834	3.76624	4.09654	4.11444	1.7505	2.59164	3.40294
145.31275	0.96298	2.37868	4.19988	4.23518	4.55158	1.84885	3.04778	3.85908
155.31275	1.29596	2.68756	4.41256	4.65906	5.07046	2.02201	3.80246	4.05316
165.31275	1.55932	2.70242	4.62462	4.78412	5.12972	2.13361	3.94552	4.38262
175.31275	1.69346	2.71876	4.73116	4.84436	5.17076	2.19867	4.02606	4.56286
185.70759	1.68164	2.77164	4.73704	4.85564	5.19434	2.23471	4.03154	4.54404
195.70759	1.5329	2.8411	4.6436	4.8113	5.1955	2.23832	3.9622	4.3701
205.70759	1.3215	2.8245	4.4719	4.7035	5.2075	2.19083	3.8004	4.1355
215.70759	1.02312	2.92782	4.29392	4.56312	4.94642	2.16057	3.57342	3.95622
225.70759	0.75291	3.02061	4.11771	4.51431	4.68671	2.23982	3.32741	3.81341
235.70759	0.64208	3.17168	4.00338	4.51338	4.66048	2.3799	3.23648	3.78248

∠CNNC	S ₀	S ₁	S ₂	S ₃	S ₄	T ₁	T ₂	T ₃
0	0.70521	3.35865	4.04125	4.30095	4.37695	2.60808	3.02625	3.39515
11.8	0.67873	3.14503	3.93753	4.16893	4.28413	2.3822	3.05123	3.34563
20	0.69318	3.00593	3.90103	4.10463	4.24373	2.22763	3.04673	3.33733
40	0.8512	2.68245	3.89925	4.03335	4.21885	1.85745	3.03765	3.38805
60	1.17673	2.37866	3.98386	4.13726	4.29866	1.54501	3.08026	3.51366
80	1.5929	2.04181	4.06391	4.41951	4.54991	1.41921	3.09761	3.70961
100	1.59467	1.94654	4.00034	4.35374	4.55034	1.32541	3.07074	3.63914
120	1.0176	2.16728	3.82248	3.88688	4.16998	1.31377	2.87198	3.30998
140	0.48662	2.31049	3.44969	3.61399	3.92369	1.46226	2.56479	3.00289
160	0.12564	2.49175	3.08845	3.47715	3.79165	1.68999	2.23945	2.78285
180	0	2.69088	2.82838	3.43338	3.76988	1.92257	1.99758	2.70968

Table S11. TDDFT Energies of 4 along the torsional \angle CNNC of the S₀ trans-cis isomerization.

Table S12. TDDFT Energies of 4 along the inversion $\angle {}^{Nap}CNN$ of the S₀ trans-cis isomerization.

∠ CNN	S ₀	S ₁	S ₂	S ₃	S ₄	T ₁	T ₂	T ₃
114.92501	0	2.69088	2.82838	3.43338	3.76988	1.92257	1.99758	2.70968
124.92501	0.14087	2.45597	2.94457	3.58057	3.90817	2.06522	2.25477	2.79817
134.92501	0.49808	2.39808	3.27028	3.93798	3.98688	1.87429	2.22688	3.19738
144.92501	0.9724	2.4667	3.7056	4.0828	4.4033	1.97403	2.6846	3.6594
154.92501	1.45703	2.60243	4.14693	4.25933	4.86913	2.12862	3.14353	4.12333
164.92501	1.50093	2.81313	4.54833	4.76003	4.88703	2.28981	3.53753	3.78893
174.92501	1.63494	2.85574	4.64544	4.89074	4.95794	2.35321	3.66254	3.88444
185.56884	1.62937	2.90577	4.65627	4.88857	4.97597	2.39178	3.67167	3.89287
195.56884	1.49138	2.95618	4.58388	4.77398	4.92718	2.40375	3.56648	3.81648
205.56884	1.25657	3.01597	4.43567	4.56487	4.81367	2.39011	3.36407	3.70547
215.56884	0.99172	3.07082	4.24592	4.39562	4.64252	2.40419	3.14022	3.55832
225.56884	0.77757	3.05847	4.00357	4.22837	4.40457	2.34187	2.98397	3.41337
235.56884	0.67873	3.14503	3.93753	4.16893	4.28413	2.3822	3.05123	3.34563

Spin orbit coupling

Table S13. Spin-orbit coupling constants between $S_0 - S_3$ and $T_1 - T_3$ states of azo 1 - 4 based on *trans*- S_0 geometry, B3LYP/6-311G(d.p)/PCM(ACN)

Azo		<s0 t1></s0 t1>	<s0 t2></s0 t2>	<s0 t3></s0 t3>	<s1 t1></s1 t1>	<s1 t2></s1 t2>	<s1 t3></s1 t3>	<s2 t1></s2 t1>	<s2 t2></s2 t2>	<s2 t3></s2 t3>	<s3 t1></s3 t1>	<s3 t2></s3 t2>	<s3 t3></s3 t3>
	1	38.26853	0.09466	0.23341	0.67005	0.97773	3.19222	1.8607	0.30888	0.09256	0.08139	0.34362	0.30296
	2	38.01036	0.15433	0.24275	0.64448	0.99501	4.46293	0.56808	0.18619	0.14342	2.81501	0.373	0.3607
	3	38.00044	0.27693	0.22314	0.64169	1.03517	4.49483	0.98353	0.14815	0.12537	2.93505	0.38605	0.36101
	4	0.07262	37.20543	0.23629	4.08464	0.5765	4.96978	0.03365	4.88025	0.09716	0.38383	2.62068	0.44084

Figure S41. Schematic demonstration of spin-orbit coupling constants between $S_0 - S_3$ and $T_1 - T_3$ states of azo 1 - 4 at the Franck-Condon geometry (*trans*-ground state).

CNNC <S0|T3> <S2|T1> (°) <S0|T1> <S0|T2> <S1|T1> <S1|T2><S1|T3> <S2|T2><S2|T3> <S3|T1> < S3 | T2 ><S3|T3> 0.30888 180 38.26853 0.09466 0.23341 0.67005 0.97773 3.19222 1.8607 0.09256 0.08139 0.34362 0.30296 2.01376 0.94756 29.76165 19.93581 6.32374 0.17817 2.99342 1.76323 0.55536 1.04043 0.52897 0.52168 160 27.60733 1.27318 140 18.99826 11.24501 0.85671 3.2107 3.4154 2.12832 0.45221 1.47445 0.67358 1.45162 25.04813 0.54922 120 15.87024 15.2875 1.60865 4.31955 4.58588 2.64562 1.38318 1.53405 0.45099 0.95396 0.78023 20.86065 11.96904 17.24155 2.6265 5.87262 6.27925 3.05994 2.74762 0.34002 0.85845 1.55173 100 24.47178 0.79992 1.12796 80 9.73717 17.24687 0.9538 6.33755 5.88554 4.74192 3.13587 0.37657 1.00401 11.27016 16.55502 0.32751 4.78686 4.16332 4.21915 0.71428 1.23107 0.43888 1.07313 60 26.2458 0.90959 28.06824 11.78501 15.39994 0.17961 4.05822 3.92862 4.06215 0.70358 0.9604 1.79006 0.2287 1.50276 40 0.31356 4.03273 0.347 1.51667 30.66432 14.29074 3.40881 3.9588 0.71192 1.28636 2.35203 20 11.77563 34.38816 3.56275 0.99983 1.90088 0 10.28769 11.48083 0.50132 2.96497 4.12195 2.20827 0.54525 1.37712 NapCNN <S1|T2> <S1|T3> <S2|T1> <S3|T1> <S3|T2> <S3|T3> <S0|T1> <S0|T2> <S0|T3> <S1|T1> <S2|T2> < S2|T3>0.23341 0.67005 0.97773 3.19222 0.30888 0.09256 0.08139 0.34362 0.30296 115.3128 38.26853 0.09466 1.8607 37.92442 0.55547 1.16276 3.37046 0.33835 0.46302 0.38426 0.29908 125.3128 0.17421 0.18694 1.68705 0.07776 135.3128 37.59851 0.49367 1.58774 3.59581 1.68217 0.35619 1.01027 0.82279 0.25657 0.13692 0.06377 0.2298 3.82099 0.33141 145.3128 37.21648 0.08903 0.46749 1.92031 0.31351 1.09461 0.78591 1.75021 0.36475 0.03902 1.68494 0.77882 155.3128 34.80173 9.36614 5.75043 2.10293 6.0304 2.86412 4.04917 0.36173 1.9257 0.32439 5.98885 4.90486 1.38755 0.36616 2.19716 0.61815 165.3128 34.9655 3.71309 1.71791 6.68535 2.80294 0.38 0.93823 5.51875 1.27667 0.52537 2.81592 0.07703 175.3128 34.6055 0.74236 0.57021 6.63687 0.89013 0.36445 5.0824 1.25364 0.54052 2.69652 185.7076 34.01675 1.95527 0.89422 6.38416 5.0684 1.06222 0.43947 0.40055 4.57189 0.44236 2.29585 4.97537 5.92891 2.38189 1.34539 0.38241 195.7076 33.40299 6.65892 1.61027 0.63854 205.7076 3.01864 1.34403 4.33939 6.20149 1.74249 1.49701 0.47924 2.18254 0.80042 0.26309 34.1628 5.59615 215.7076 32.39563 12.37359 5.29632 0.86535 1.8974 3.92717 3.14122 1.3472 0.95387 0.5935 0.64597 0.49431 32.37944 12.58835 9.27322 0.50035 2.16556 4.2598 1.26809 0.29921 0.90111 225.7076 3.40549 1.02143 0.69279 235.7076 32.37474 11.35447 13.27777 0.40494 3.16142 3.8134 4.06409 0.80459 1.56505 2.32742 0.45139 1.44046

Table S14. Spin-orbit coupling constants between $S_0 - S_3$ and $T_1 - T_3$ states of azo 1 at various CNNC dihedral angles and ^{Nap}CNN angles B3LYP/6-311G(d.p)/PCM(ACN)

Figure S42. Schematic demonstration of spin-orbit coupling constants between $S_0 - S_1$ and $T_1 - T_3$ states of azo 1 at various CNNC dihedral angles and ^{Nap}CNN angles.

Table S15. Spin-orbit coupling constants between $S_0 - S_3$ and $T_1 - T_3$ states of azo 4 at various CNNC dihedral angles and ^{Nap}CNN angles B3LYP/6-311G(d.p)/PCM(ACN)

CNNC												
(°)	<s0 t1></s0 t1>	<s0 t2></s0 t2>	<s0 t3></s0 t3>	<s1 t1></s1 t1>	<s1 t2></s1 t2>	<s1 t3></s1 t3>	<s2 t1></s2 t1>	<s2 t2></s2 t2>	<s2 t3></s2 t3>	<s3 t1></s3 t1>	<s3 t2></s3 t2>	<s3 t3></s3 t3>
180	0.07262	37.20543	0.23629	4.08464	0.5765	4.96978	0.03365	4.88025	0.09716	0.38383	2.62068	0.44084
160	20.97426	28.71118	3.37856	1.28086	4.92155	4.01877	4.86398	1.39457	2.99872	1.88838	1.77235	0.53163
140	22.96585	22.95739	7.17869	1.37022	6.68291	3.64392	6.25411	0.32433	3.02427	2.53153	1.40323	0.63056
120	21.71902	16.66638	9.77983	2.35578	8.91772	2.66325	1.45618	1.69665	1.08819	8.14765	0.65306	2.4317
100	20.5708	8.53591	9.55238	4.53304	11.00805	1.0262	1.59435	2.22757	0.59533	7.41776	1.12853	1.33446
80	23.35337	8.40656	8.4031	4.29068	10.57117	2.20989	3.73725	2.25777	0.46267	7.63071	1.00574	0.90185
60	23.09291	14.03125	10.24722	1.88268	8.67356	1.62842	5.46689	1.57004	0.53508	7.86242	1.74226	2.42852
40	24.21625	16.63193	11.35538	0.95742	7.27051	1.88897	7.47433	0.55094	0.69324	3.88876	2.01117	2.59714
20	25.88871	18.39885	11.50543	0.68984	6.3175	2.03086	7.41927	0.29705	1.04786	2.46793	1.86852	2.41901
0	30.40518	16.29199	7.81824	1.07698	5.98472	2.10861	7.44944	0.55831	0.91451	2.77865	2.0945	2.00636
NapCNN	<s0 t1></s0 t1>	<s0 t2></s0 t2>	<s0 t3></s0 t3>	<s1 t1></s1 t1>	<s1 t2></s1 t2>	<s1 t3></s1 t3>	<s2 t1></s2 t1>	<s2 t2></s2 t2>	<s2 t3></s2 t3>	<s3 t1></s3 t1>	<s3 t2></s3 t2>	<\$3 T3>
114.925	0.07262	37.20543	0.23629	4.08464	0.5765	4.96978	0.03365	4.88025	0.09716	0.38383	2.62068	0.44084
124.925	36.83882	0.15284	0.23878	0.49899	4.27413	5.14552	5.23446	5.1E-04	0.06891	2.28768	0.45232	0.44524
134.925	36.4901	0.23069	0.24175	0.46172	4.5012	5.31798	5.50469	0.03194	0.04693	2.16449	0.50446	0.44217
144.925	36.10599	0.30657	0.24178	0.45191	4.69549	5.47142	5.68235	0.06286	0.02683	0.29433	0.67403	0.68277
154.925	35.61546	0.37327	9.10039	0.47001	4.81316	0.5333	5.76907	0.09036	0.71976	0.35845	0.73651	0.04403
164.925	33.8479	0.61434	1.59502	0.8159	6.76944	7.913	6.40808	0.14188	0.29588	9.25661	0.75342	0.63163
174.925	32.99525	0.36497	0.719	0.40983	6.49419	7.8549	5.85659	0.08972	0.25724	10.22959	0.15192	0.32196
185.5688	32.61781	0.51879	1.07268	0.56131	6.41617	7.68868	5.86189	0.06106	0.2951	9.43972	0.50607	0.38794
195.5688	32.71702	0.83645	2.2959	0.87049	6.58577	7.29332	6.49856	0.08187	0.38369	7.94824	0.83693	0.58029
205.5688	32.40254	2.08104	6.07795	1.15448	7.06653	5.80551	8.17897	0.58989	0.41686	4.05137	1.23724	1.01471
215.5688	32.35567	4.64817	7.4981	1.05957	6.96522	4.24366	8.72259	1.15913	0.47432	0.4256	0.89425	1.47338
225.5688	30.19055	11.56339	9.79797	1.04454	6.65192	2.1029	7.92871	0.87261	0.45727	1.94888	0.8615	2.14579
235.5688	27.113	18.6357	10.61734	0.7346	6.04925	2.08904	7.3546	0.40443	1.04731	2.27751	1.80673	2.32099

Figure S43. Schematic demonstration of spin-orbit coupling constants between $S_0 - S_1$ and $T_1 - T_3$ states of azo 4 at various CNNC dihedral angles and ^{Nap}CNN angles.

References

- (1) Lakowicz, J. R. *Principles of Fluorescence Spectroscopy*; Springer US: Boston, MA, 1999.
- (2) Fujino, T.; Tahara, T. Picosecond Time-Resolved Raman Study of Trans -Azobenzene. *J. Phys. Chem. A* **2000**, *104* (18), 4203–4210.
- Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. *J. Chem. Phys.* 1971, 54 (2), 724–728.
- Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent Molecular Orbital Methods. XXIII. A Polarization-type Basis Set for Second-row Elements. J. Chem. Phys. 1982, 77 (7), 3654–3665.
- (5) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56 (5), 2257–2261.
- (6) Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. *Theor. Chim. Acta* **1973**, *28* (3), 213–222.
- Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652.
- (8) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37* (2), 785–789.
- (9) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. *Can. J. Phys.* **1980**, *58* (8), 1200–1211.
- (10) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Phys. Chem.* 1994, *98* (45), 11623–11627.
- (11) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2: Optimized Auxiliary Basis Sets and Demonstration of Efficiency. *Chem. Phys. Lett.* **1998**, *294* (1–3), 143–152.
- (12) R. Dennington, T. Keith, J. M. GaussView, Version. 6. Semichem Inc.: Shawnee Mission 2016.
- (13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16. Gaussian, Inc.: Wallingford CT 2016.

- (14) Ogata, Y.; Takagi, Y. Kinetics of the Condensation of Anilines with Nitrosobenzenes to Form Azobenzenes. *J. Am. Chem. Soc.* **1958**, *80* (14), 3591–3595.
- (15) Li, G.-Q.; Gao, H.; Keene, C.; Devonas, M.; Ess, D. H.; Kürti, L. Organocatalytic Aryl–Aryl Bond Formation: An Atroposelective [3,3]-Rearrangement Approach to BINAM Derivatives. *J. Am. Chem. Soc.* **2013**, *135* (20), 7414–7417.