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After the publication of the final results, we revisited the procedure for obtaining the frequen-

cies using the ∆-learning approach,1 referred to as LS2 in the main manuscript. This was primarily

motivated by the observation that the predictions from ∆−learning were unexpectedly inferior to

all other similar approaches. For the rest of the document, we will distinguish three data sets: a) the

”training” data set for which anharmonic experimental frequencies are provided for given struc-

tures in the Hydra challenge, see Table 1; b) the ”challenge” data set for which structures are given

but no frequencies; predicting the (anharmonic) frequencies for these molecules is the task; c) the

”harmonic” dataset with frequencies for molecules from the GDB-11 dataset which are referred to

as the ”harmonic” dataset. This set contains 213 molecules, and the frequencies are used to train a

first model to predict harmonic frequencies for molecules with given structure.

In the following, two models are required which are referred to as “Model 1” (M1) and “Model

2” (M2). The first model uses harmonic frequencies determined at the B3LYP/aug-cc-pVTZ+D3

level of theory for 213 molecules taken from GDB-11 and the “training” set form the challenge.

The second model carries out the ∆−learning step using the ”training” data provided in the hydra

challenge.
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Model 1: For training the first model, all frequencies ωi of the ”harmonic” dataset were first

normalized (standardized) according to

ω̂i =
ωi −µ

σ
(1)

The values ω̂i were used in fitting the kernel, ωi is the frequency of the i-th molecule, µ = ∑ωi/N

is the average frequency, and σ their standard deviation. For the ’harmonic’ set, the corresponding

values were µharm = 3633.8 cm−1 and σharm = 76.7 cm−1. These harmonic frequencies ω̂i need to

be transformed to anharmonic frequencies according to

ν j = σν ω̂ j +µν (2)

This is necessary in order to have the values on a scale that corresponds to the anharmonic exper-

imental frequencies which are known to be at lower wavenumbers compared with the harmonic

frequencies. In the original submission, the values used for this inversion were µharm and σharm in-

stead of σν and ων , which is incorrect. With the known experimental anharmonic frequencies from

the ”training” set, the values are µν = 3557.3 cm−1 σν = 59.1 cm−1. Using these values in equa-

tion 2, makes the predicted values for the kernel comparable with the experimental results, which

otherwise will be systematically overestimated (See Figure 1) due to neglecting anharmonicity.

Model 2: Based on the anharmonic frequencies ν
(M1)
tset from evaluating ”model 1” for the ”train-

ing” dataset and the given experimental values ν
(Exp)
tset from the hydra challenge, a second model is

trained on the difference ∆ = ν
(M1)
tset −ν

(Exp)
tset , which is the ∆−learning step.

For predicting anharmonic frequencies for molecules j from the ”challenge” dataset, first ”model

1” is evaluated to yield ω̂ j from which ν
(M1)
j is obtained and ”model 2” provides the correction

due to ∆−learning. In other words, both models need to be evaluated to obtain a prediction. The
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final prediction will be:

ν j = ν
(M1)
j +∆

(M2) (3)

where ν
(M1)
j corresponds to the predicted anharmonic frequency from harmonic frequencies ac-

cording to Eq. 2 (model 1), and ∆(M2) is the correction from ∆−learning (model 2).
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Figure 1: Scatter plot of the experimental frequencies vs the predicted frequencies (see Table 1) for
the training set of the hydra challenge. The trend line corresponds to the linear regression for the
provided points. Meanwhile, the individual points are individual values. The MAE was 96 cm−1

and 23 cm−1 for initial and corrected submissions respectively. Orange: original submission; blue:
corrected procedure as outlined here. The black diagonal line is the 1:1 correlation between exper-
iment and prediction. Note that the blue and orange trend lines diverge towards higher frequency
which correctly indicates increasing anharmonicity and the blue line is considerably closer to the
1:1 correlation.

Using the correct normalization values (µν and σν ) the new results for the training set of the chal-

lenge are shown in Table 1 and Figure 1 (blue). This considerably reduces the MAE between
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predicted and experimentally measured frequencies from 96 cm−1 (original submission, orange)

to 23 cm−1 (present work) because the correct normalization scale was used.

Table 1: Frequencies for the molecules in the training set of the hydra challenge. All the values are
in cm−1.

Molecule Exp ωinit. ∆ωinit νnew ∆νnew
288-32-4 3458 3575.9 -117.9 3512.7 -54.7
67-64-1 3538 3621.7 -83.7 3548.2 -10.2
98-86-2 3536 3608.6 -72.6 3538.0 -2.0
62-53-3 3524 3598.8 -74.8 3530.4 -6.4
98-85-1 3620 3768.8 -148.8 3662.0 -42.0

2406-25-9 3484 3481.4 2.6 3439.6 44.4
327-54-8 3647 3782.7 -135.7 3672.8 -25.8

1191-95-3 3548 3630.6 -82.6 3555.1 -7.1
132-64-9 3623 3756.5 -133.5 3652.5 -29.5
611-20-1 3595 3698.8 -103.8 3607.8 -12.8

MAE 96 23

The values for the challenge set follow a similar trend. Using Eq. 2 the MAE reduces to 37 cm−1

compared with 55 cm−1 from the original submission and the RMSE improves to 54 cm−1 com-

pared with 74 cm−1, see Table 2.

Table 2: Predicted anharmonic frequencies for the molecules from the challenge set. Values for
’model 1’ and the final prediction are also shown. All the values are in cm−1.

Molecule ν(Exp) ωinit ∆ωinit ν
(M1)
new νFinal

new ∆νnew
125132-75-4 3597 3547.6 49.4 3620.7 3585.4 11.6

434-45-7 3611 3587.2 23.8 3603.0 3589.4 21.6
110-01-0 3507 3594.6 -87.6 3616.7 3585.5 -78.5
50-0-0 3591 3586.6 4.4 3602.3 3570.3 20.7

547-64-8 3524 3425.4 98.6 3510.3 3479.7 44.3
75-89-8 3649 3482.6 166.4 3578.9 3524.0 125.0
110-86-1 3454 3388.7 65.3 3440.7 3405.5 48.5
502-49-8 3503 3542.9 -39.9 3514.5 3541.6 -38.6
80-73-9 3492 3506.5 -14.5 3548.8 3509.0 -17.0
109-99-9 3491 3492.4 -1.4 3543.9 3511.6 -20.6

MAE 55 37
RMSE 74 54
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Up to this point the kernel was trained on the ’training’ set of the challenge and the information

from the 213 molecules from GDB-11. A final model was trained by adding the harmonic fre-

quencies for the molecules of the ’challenge’ set to the pool of molecules used to obtain the kernel.

This is akin to method LS3 (Transfer Learning). For this case, the values for σν and µν used for

the anharmonic frequency prediction were the same as in the previous test; on the other hand, the

values of the harmonic dataset were µharm = 3634.1 cm−1 and σharm = 77.0 cm−1. It was observed

that the predictions (see Table 3 for molecules in the ’challenge’ dataset) improved by reducing

the MAE from 37 cm−1 to 26 cm−1 and the RMSE from 54 cm−1 to 49 cm−1 with respect to the

experimental values compared with an RMSE of ∼ 12 cm−1 for the predictions from LS3.

Table 3: Predicted anharmonic frequencies for the molecules in the challenge set considering all
the molecules (’harmonic’, ’training’, and ’challenge’). All the values are in cm−1.

Molecule Exp ωinit. ∆ωinit νnew ∆νnew
125132-75-4 3597 3547.6 49.4 3568.0 29.0

434-45-7 3611 3587.2 23.8 3601.8 9.2
110-01-0 3507 3594.6 -87.6 3492.9 14.1
50-0-0 3591 3586.6 4.4 3596.4 -5.4

547-64-8 3524 3425.4 98.6 3532.6 -8.6
75-89-8 3649 3482.6 166.4 3500.7 148.3

110-86-1 3454 3388.7 65.3 3446.8 7.2
502-49-8 3503 3542.9 -39.9 3470.5 32.5
80-73-9 3492 3506.5 -14.5 3503.4 -11.4

109-99-9 3491 3492.4 -1.4 3480.1 10.9
MAE 55 26

RMSE 74 49

As a final comment on the present application it should be mentioned that we used the hyper-

parameters of FCHL192 that were optimized for predicting total energies. This implies that the

hyperparameters are best suited for fitting energy functions. Further improvements of the present

approach may be obtained by re-optimizing the hyperparameters of the representation used for

training harmonic frequencies. Re-optimization of hyperparameters for the particular application

at hand is likely to yield further improvements also because the original FCHL model had predic-

tion errors of the order of 50 cm−1 to 300 cm−1 for the highest harmonic frequency.3 Additional
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improvements can also be expected from using operator-based machine learning.4 Therefore, it

must be stated that the used ∆-learning method needs to be adjusted for the specific problem at

hand.
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