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1 Computational Details

Different approaches including DVR3D, kernel, and neural network (NN) based methods were explored for

the study of the hydrogen-bonded OH stretching vibration ωOHb . This document summarizes the efforts from

the Meuwly Research group of the University of Basel.

1.1 Data generation - Eric D. Boittier & Silvan Käser

The structures of the mono-hydrates (i.e. a molecule and hydrogen-bonded water) given in the HyDRA

training and test sets were optimized followed by a frequency calculation at the B3LYP[1]/aug-cc-pVTZ[2] +

D3[3] level of theory using Gaussian09[4]. Starting from the 20 molecules given in the HyDRA data set, a

possible extension to the data set was considered which would include new, chemically similar molecules to

the test and training data while adding unseen chemical information to supplement training data for machine

learning models. To this end, using the GDB11 database[5, 6] of molecules between 5 and 10 heavy atoms,

a filter that only included molecules with the hydrogen–bonding motifs present in the training and test set (i.e.

-OH, -NH, etc.) was applied, and a similarity search was performed in the RDKit[7]. A total of approximately

200 molecules were extracted using this procedure. For each of these molecules, a water molecule was

positioned at the anticipated hydrogen bonding site, before an optimization and frequency calculation as

previously described was performed.

The Tanimoto measure was used as the similarity metric and was calculated as implemented in RDKit[7]

and using the canonical SMILES of the host molecule. Identical structures (those with a similarity index

equal to one) were ignored. To achieve a suitable guess for the water orientation (before optimization),

two consecutive alignments using the Kabsch algorithm[8] are performed. First, between the selected

hydrogen-bonding motif, and secondly, using the maximum common substructure[7] for the query and the

molecule identified in GDB11. The coordinates for the guest water molecule, taken from the initial optimized

complex, were appended to the end of the file.
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1.2 Neural Network + Transfer Learning - Silvan Käser

This approach was based on a combination of neural network and transfer learning (NN + TL) strategies. It

included obtaining a NN model capable of predicting the harmonic frequency ωOHb followed by TL based on

the experimental frequencies given in the HyDRA training set. The training of a base NN model for predicting

the harmonic frequency ωOHb was assumed to benefit from an extended data set (see Sec. 1.1) as ∼ 20

molecules are likely insufficient to obtain a robust machine learning model. The power of such an approach

is that it can be systematically improved (e.g. by adding further ab initio and experimental data, optimizing

the descriptor used for training and the size of the NN, or choosing a more sophisticated NN architecture).

Neural Network: A base NN able to predict the harmonic frequency ωOHb was trained on the extended

data set (i.e. optimized geometries and its ab initio ωOHb . Note that the frequencies were standardized,

i.e. ω → (ω − µ)/σ , before training). The descriptor/feature vector used in this work is based on the

FCHL descriptor[9, 10], as implemented in the QML Python toolkit[11]. As is common in machine learning,

a principal component analysis was performed to obtain a concise descriptor starting from the FCHL

representation giving a descriptor of length 193.

A feed-forward neural network was then used, consisting of 5 hidden layers with [193, 193, 193, 193,

24] nodes each. After the final layer a linear transformation was used to obtain the final output. The

shifted-softplus function was used as activation function and the parameters of the NN were optimized using

the Adam optimizer[12]. The NN was written using Tensorflow’s Keras module[13]. It is to note that the

molecules from the HyDRA training and test set are all in the training set of the base NN. A generalization to

other molecules can be advantageous but is not mandatory as, in principle, new target molecules (for which

an estimate for the experimental frequency is needed) can be added.

Transfer learning: Starting from the original model, TL was carried out using the experimental frequencies

given in the HyDRA challenge set, to account for the anharmonicities. Therefore, the parameters from the

original model were loaded and the parameters from all but the last two layers were frozen. Then, in the

actual TL step, the parameters of the last two layers were re-optimized based on 9 experimental points (Note

that the molecule 2406-25-9 was not included in the training and evaluation because, contrary to the other

molecules, it is a radical). TL was repeated multiple times on different splits of the experimental data (i.e.

different molecules were used as validation set) and the average of the predictions was determined.
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1.3 Reproducing Kernel Hilbert Space + DVR3D - Kai Töpfer

QM+Kernel approach: The internal potential of an adsorbed water molecule is most important in determin-

ing the eigenvalue of the symmetric stretch vibration. As such, a 3-dimensional potential energy surface

(PES) was computed from quantum electronic methods, along waters degrees of freedom, and the vibrational

eigenstates were obtained from the Discrete Variable Representation (DVR) method.[14] Using the optimized

structures at the B3LYP/aug-cc-pVTZ + D3 level of theory as reference the internal degrees of freedom of the

water molecule were sampled by 9 points along both OH bonds equilibrium value req
1 , req

2 (∆r =±0.21 Å) and

7 points along the HOH equilibrium angle θ eq (∆θ = ±24◦). The center of mass and the axes of inertia of

water kept fixed. In total, 567 data points were obtained at the B3LYP/aug-cc-pVTZ + D3 level of theory. A

3-dimensional PES VPES was then constructed by the sum of 3 Morse potentials VMorse along each internal

water coordinate (r1, r2, z). Here, z is a transformation of the HOH bond angle with z = 0.5 · (1−cos(θ)) and

a range of z= [0,1] for θ = [0◦,180◦]. Even though the Morse potential is not designated to reproduce the po-

tentials angular dependency but it does fit well around the equilibrium angle of water with θ eq ≈ 104◦. Finally,

a Reproducing Kernel Hilbert Space (RKHS)[15, 16] VRKHS potential was also constructed that contributes a

3-body correction term to fit the reference points.

VPES =VMorse
(
r1;req

2 ,zeq)+VMorse
(
r2;req

1 ,zeq)+VMorse
(
z;req

2 ,req
1

)
+VRKHS (r1,r2,z) (1)

In general, the potential energy function reproduces the reference values on the grid points with a root mean

square error about ⪅ 10−4 Hartree (⪅ 22 cm−1). The parameters of the 1-dimensional Morse potential terms

were optimized to fit the reference points along one internal coordinate, with the remaining two frozen at their

equilibrium values. The PES was used together with the DVR3D program suite[17] to determine the first

vibrational eigenvalues of the vibrational ground state, first and second bending mode, and the symmetric and

asymmetric stretching mode of water. The DVR3D program suite requires the definition of system sensitive

Morse-type parameter that are optimized within reasonable range to fit the water symmetric stretch frequency.

In principle, this ab initio method does not require any further parameters other than the hydrated system

composition. Expecting to optimize to the corresponding optimized structure as measured in the experiments,

it provides an estimation of the vibrational frequencies based on the quantum methods level of theory and

quality of the PES representation. In contrast, it lacks the vibrational coupling with the remaining degrees of

freedom as the frustrated translation, rotation, and vibrations of the molecule adsorbent. It further requires a

significant effort in computational power with respect to the chosen level of theory.

1.4 Kernel Based Prediction - Luis I. Vazquez-Salazar

Here, the predictions of the frequencies were performed using the FCHL19 representation[10] as imple-

mented on the QML Python toolkit[11]. The descriptor parameters were configured as recommended in the

original paper for use on datasets containing only energies. The size of the descriptor was set to 33. The
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width of the kernel was manually adjusted as 1.2. Matrix diagonalization was performed using Cholesky

decomposition with a regularization parameter (L2) of 10−10.

initially a kernel was trained on the harmonic frequencies of the generated molecules selected from the

GDB-11[5, 6] (see Sec. 1.1). The molecules for which there were available experimental values were used to

validate the training kernel. The frequencies were standardized by subtracting the mean of the frequencies

on the training set and then dividing by the standard deviation of those values. The MAE of the predicted

values with respect to the experimental values was 95.6 cm−1.

Next, the difference between the predicted frequencies with the kernel and the experimental values was

learned following the ∆-Learning method[18]. A second kernel was trained with difference between the values

predicted by the kernel method on the first step and the experimental values. As before the FCHL19 descrip-

tor was used for the molecules on the training set of the hydra challenge with the same configuration as on

the previous. Finally, the frequencies obtained for the test molecules with the kernel model trained during

the first step were corrected with the predicted values of the difference(∆ = νexp−ωkernel) on the second step.
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