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1 Phonon statistics

Consider a sample that has a temperature below the Debye limit. This condition allows to neglect acoustic phonons
which are not able to induce significant variations of inter-ion distances, and work only with optical phonons, which are
in fact mutual oscillations of two sub-lattices including different atomic species. Now consider the energy of a specific
optical mode active in a crystal. Here we do not consider phonon-phonon interactions, and ignore also a presence of
impurities/defects:

Etot =
V s

(2π)3

∫
BZ

d3k E(k)D(k) (1s)

where V s is the volume of the sample, E(k) is the phonon dispersion relation, D(k) is the average phonon occupation
number. Applying simplifying assumptions that optical phonons are dispersion-less particles with the energy h̄ω0, and
adopting thermodynamic expression for equilibrium average number of bosons per atomic site at the low temperature
limit (h̄ω0 > kBT ) one can get:

Etot =
V s

(2π)3
N′h̄ω0

e
h̄ω0
kBT −1

∫
BZ

d3k ≈ N′h̄ω0e−
h̄ω0
kBT VsNuc (2s)

where Nuc is the unit cells concentration, and N′ is the number of ions in the unit cell. This means, that on average there
is an exponentially decaying probability to excite the trapped electron out of impurity site by given thermal energy kBT :

Ēimpurity = h̄ω0e−
h̄ω0
kBT (3s)

On the other hand the very same results can be obtained using phonon occupation number (n) introduced in the
following form:

ρ(n) = (1− e−
h̄ω0
kBT )e−

nh̄ω0
kBT , noting that

∞

∑
n=0

ρ(n) = 1 and
∞

∑
n=0

nh̄ω0ρ(n) = h̄ω0e−
h̄ω0
kBT (4s)

Also, we emphasize the following feature of the probability density function: to accumulate any additional energy
higher than the minimum energy of Emin it is needed to host at least:

nmin =
Emin

h̄ω0
− 1

2
(5s)

phonons on an impurity site. One can check that the probability to achieve this condition is:

P(E ≥ Emin) =
∞

∑
n=nmin

ρ(n) = const (6s)

The probability to accumulate more than the minimum required number of phonons is constant for any given phonon
energy h̄ω0.
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Figure S1 The probability density for an electron occupying the localized level to become aligned with the CB states by interaction with phonons.

2 Broadening for phonon occupation number
For feasible numerical integration and demonstration of the general principle, we adopt a cut parabola as shape function
for broadening of the localized level:

ρ(ED) =
3

4δ 3
Eph

(δ 2
Eph

−E2
D) (7s)

Combination of the probability distribution of phonon occupation of the given localized level with the uncertainty
broadening of this level allows to quantitatively assess the thermal probability for activation of the trapped electron into
the CB with varying number of phonons. The trap-site becomes levelled with the CB with probability P(Eph), see Fig. S1.

3 Release rate integration
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Figure S2 The dependence of numerical coefficient on phonon energy and level broadening for approximation of thermal release rate.

In this paragraph we perform the integration of eq. (15) numerically, see eq. (8s). The integration in the formula (8s)
is excellently approximated by the following expression:

Knume−
ET −

δEph
2

kBT
1

4δEph

∞∫
0

e−
Ekin

CB
kBT

√
Ekin

CB dEkin
CB .

The Knum coefficient has no physical meaning being unavoidable contribution resulting from several contributions:
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∫
Ekin

CB≥0

√
Ekin

CB ×dP(n,ET ) =


∞∫

ET+δEph

dEph

+δEph∫
−δEph

dET +

ET+δEph∫
ET−δEph

dEph

+δEph∫
ET−Eph

dET

×

×
(
(1− e−

h̄ω0
kBT )e−

Eph
kBT

1
h̄ω0

){
3

4δ 3
Eph

(δ 2
Eph

−E2
T )

}√
Eph −ET +ED (8s)

γion =
∫

Wres.rel.dP =
2π

h̄
Vsc|Mmodel |2

8π

2

{
2m∗

h2

} 3
2

Knume−
ET −

δEph
2

kBT
1

4δEph

√
π(kBT )

3
2 =

2π

h̄
Vsc|Mmodel|2

1
δEph

KnumNce−
ET −

δEph
2

kBT (9s)

approximation of the broadening function, substitution of summation by integration over the phonon occupation numbers,
and interpolation of the numerical integration of eq. (15). The value of Knum depends on the localized level broadening
δEph and phonon mode energy h̄ω0, see Fig. S2. Typical Knum value for δEph ≈ h̄ω0 (green domain) is close to unity.

The natural value of broadening δEph that can be adopted is δEph ≈ h̄ω0. If it is larger than the phonon energy, then the
phonon occupation number loses its meaning and must be shifted and renormalized. Otherwise, if it is significantly smaller
than h̄ω0 then the probability of thermal excitation cannot be considered as a continuous function (see eqs. (6) and (7)).

Now, after performing numerical integration and estimating the Knum value, we can rewrite the resonant release rate
approximation in the final form, see eq. (9s). Here we have arrived at eqs. (15) and (16) of the main body of the
manuscript.

4 Effective mass limit
Let us consider the fundamental correlation of the presented quantum model with the standard effective mass theory1.
Below we connect them in a formal way.

On the one hand, in the description of the CB-electron as a wave-packet its group velocity is introduced as:

υgr =
1
h̄

∂E
∂k

. (10s)

Assuming parabolic dispersion of a conduction band minimum the group velocity is rewritten via effective mass as:

υgr =
1
h̄

h̄2k
m∗ =

p
m∗ (11s)

where m∗ is the effective mass.
On the other hand, we can write out our capture coefficient in a more transparent way. In subsection “Coulomb

attractive center” we have obtained the capture coefficient in the form of eq. (30):

Ares = 16
√

2π
3
2 κ

2e−κ2 × 1
δEph
Ry∗

× Ry∗

h̄
a∗×πa2

∗ (12s)

the first two terms are dimensionless coefficients describing the overlap of wavefunctions and the uncertainty broadening
of states, the Ry∗

h̄ a∗ term has the units of velocity [cm s−1], and πa2
∗ has the units of geometric cross-section [cm2].

Decomposing Ry∗ as doubled kinetic energy Ry∗ = p2
∗

2me
, h̄ = p∗a∗ where p∗ is the electron momentum on impurity orbital,

me is the electron mass, we obtain:

Ares = D1
1

D2

p∗
me

πa2
∗ (13s)

the first two terms (D1, D2) are repeated dimensionless coefficients, the p∗/me term has the units of velocity [cm s−1], and
πa2

∗ has the units of geometric cross-sections [cm2]. By substituting the electron mass me by a coefficient meff that contains
all the dimensionless terms we write Ares in a short form that is very similar to eq. (11s):
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Ares =
p∗

meff
πa2

∗ = υeffπa2
∗ (14s)

the introduced υeff coefficient in our model is still the description of the CB-electron behavior, and has the same form as
the eq. (11s) for group velocity in the effective mass model.

The direct correlation of the effective mass approach with our proposed model allows us to strengthen some of our
discussion points. In discussion of our model we showed that the frequency factor depends on the overlap of defect- and
CB-states. We suppose that it should lead to lower (higher) frequency factors in ionic (covalent) compounds due to close
(loose) packing of charge density.

Similar conclusion has been drawn for the dependence of the effective mass on the covalency/ionicity of the host2.
In the Ref. 2 the covalency of the host was connected to structural polarizability ( εion

εelectron
≈ εs

ε∞
− 1) of a material and

bandgap-pressure coefficient ( dEg
d p ). Both parameters showed full proportionality to the effective mass of the compound.

The effective mass systematically depends on the covalency of the material2, moreover compounds with higher covalency
have lower effective mass. From eq. (14s) we see that indeed lower effective mass leads to higher capture coefficient and
frequency factor.

Please note that the effective mass model is defined for the regular lattice, thus describing interaction of CB-electrons
and defect with it should be handled with caution. Local distortion of the effective mass next to irregular sites is to be
expected.

Notes and references
1 A. Halperin and A. A. Braner, Phys. Rev., 1960, 117, 408–415.
2 Y. Rakita, T. Kirchartz, G. Hodes and D. Cahen, Type and Degree of Covalence: Empirical Derivation and Implications,

2019, arXiv preprint: ARXIV.1907.03971.

4 |1–4


	Phonon statistics
	Broadening for phonon occupation number
	Release rate integration
	Effective mass limit

