Supporting Information

Development of high refractive index UiO-66 framework derivatives via ligand halogenation

Marvin Treger^{1,2}, Adrian Hannebauer¹, Peter Behrens^{1,2} and Andreas M. Schneider^{1,2}

¹Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167 Hannover, Germany ²Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering – Innovation Across Disciplines), Hannover, Germany

Table of Contents

Section 1 Experimental Details	3
Chemicals	
Synthesis of MOFs	
Characterization of UiO-66-I ₂	5
NMR Spectra	6
UV-Vis Spectra	7
Section 2 Plane wave basis set convergence	8
UiO-66	8
UiO-66-F	
UiO-66-Cl	
UiO-66-Br	10
UiO-66-I	10
UiO-66-I ₂	11
Section 3 XC functional benchmark	12
UiO-66	12
UiO-66-F	12
UiO-66-Cl	13
UiO-66-Br	13
UiO-66-I	14
UiO-66-I ₂	14
Section 4 Details of the DFT models	15
Section 5 Band structures	16
UiO-66	16
UiO-66-F	17
UiO-66-CI	17

UiO-66-Br	
UiO-66-1	
UiO-66-1 ₂	19
Section 6 Refractive Index	
References	

Section 1 Experimental Details

Chemicals

Zirconium (IV) chloride (>99.5%, ZrCl₄, Sigma Aldrich), *N*,*N*-dimethylformamide (99.8%, DMF, Sigma Aldrich), formic acid (>98%, HCOOH, Merck), terephthalic acid (99%, C₈H₆O₄ (H₂BDC), Honeywell), 2-fluoroterephthalic acid (98%, C₈H₅FO₄ (H₂BDC-F), ABCR), 2-chloroterephthalic acid (98%, C₈H₅ClO₄ (H₂BDC-Cl), BLDpharm), 2-bromoterephthalic acid (97%, C₈H₅BrO₄ (H₂BDC-Br), ABCR), 2-iodoterephthalic acid (95%, C₈H₅IO₄ (H₂BDC-I), ABCR), 2,5-iodoterephthalic acid (98%, C₈H₅I₂O₄ (H₂BDC-I₂), AmBeed), Acetone (99.5 %, C₄H₆O Sigma Aldrich), Calcium chloride dehydrate (\geq 99 % , CaCl₂ · 2 H₂O, Sigma Aldrich), deuterated dimethyl sulfoxide for NMR analysis (\geq 99.8 % D, C₂H₆OS, Eurisotop), deuterated water for NMR analysis (99,98 % D, D₂O, Sigma Aldrich), Hydrofluoric acid (40 % in water, HF, Fisherscientific) were used without further purification.

Synthesis of MOFs

<u>UiO-66</u>

Nearly defect-free UiO-66 was synthesized according to Shearer *et al.*, by sequentially adding 0.777 g ZrCl₄ (1 eq), 0.552 mL 37% HCl (2 eq) and 1.104 g H₂BDC (2 eq) to 20 mL DMF (77.5 eq) to a beaker.^[1] After stirring this solution for 30 minutes a clear solution was obtained and transferred to a Teflon liner and sealed in a stainless-steel autoclave, which was heated at 220 °C for 20 h. The resulting white powder was separated via centrifugation, washed with DMF and acetone and dried under vacuum overnight. Afterwards the powder was purified using a Soxhlet-extraction with acetone for 24 h and activated at 150 °C for 20 h.

<u>UiO-66-F</u>

UiO-66-F was synthesized in a 100 mL Pyrex glass vessel by sequentially adding 0.1505 g ZrCl₄ (1 eq), 0.609 mL formic acid (25 eq) and 0.1189 g H₂BDC-F (1 eq) in 25 mL DMF (500 eq). The glass vessel was sealed and heated at 120 °C for 24 h. The resulting powder was separated via centrifugation, washed with DMF and acetone and dried under vacuum overnight. Afterwards the powder was purified using a Soxhlet-extraction with acetone for 24 h and activated at 120 °C for 20 h.

<u>UiO-66-CI</u>

UiO-66-CI was synthesized in a 100 mL Pyrex glass vessel by sequentially adding 0.1505 g ZrCl₄ (1 eq), 0.609 mL formic acid (25 eq) and 0.1295 g H₂BDC-CI (1 eq) in 25 mL DMF (500 eq). The glass vessel was sealed and heated at 120 °C for 24 h. The resulting powder was separated via centrifugation, washed with DMF and acetone and dried under vacuum overnight. Afterwards the powder was purified using a Soxhlet-extraction with acetone for 24 h and activated at 120 °C for 20 h.

<u>UiO-66-Br</u>

UiO-66-Br was synthesized in a 100 mL Pyrex glass vessel by sequentially adding 0.1505 g ZrCl₄ (1 eq), 1.218 mL formic acid (50 eq) and 0.1582 g H₂BDC-Br (1 eq) in 25 mL DMF (500 eq). The glass vessel was sealed and heated at 120 °C for 24 h. The resulting powder was separated via centrifugation, washed with DMF and acetone and dried under vacuum overnight. Afterwards the powder was purified using a Soxhlet-extraction with acetone for 24 h and activated at 120 °C for 20 h.

<u>UiO-66-I</u>

UiO-66-I was synthesized in a 100 mL Pyrex glass vessel by sequentially adding 0.1505 g ZrCl₄ (1 eq), 6.091 mL formic acid (250 eq) and 0.1886 g H₂BDC-I (1 eq) in 25 mL DMF (500 eq). The glass vessel was sealed and heated at 120 °C for 24 h. The resulting powder was separated via centrifugation, washed with DMF and acetone and dried under vacuum overnight. Afterwards the powder was purified using a Soxhlet-extraction with acetone for 24 h and activated at 120 °C for 20 h.

<u>UiO-66-I₂</u>

UiO-66-I₂ was synthesized in a 100 mL Pyrex glass vessel by sequentially adding 0.1505 g ZrCl₄ (1 eq), 2.436 mL formic acid (100 eq) and 0.2669 g H₂BDC-I₂ (1 eq) in 25 mL DMF (500 eq). The glass vessel was sealed and heated at 120 °C for 24 h. The resulting powder was separated via centrifugation, washed with DMF and acetone and dried under vacuum overnight. Afterwards the powder was purified using a Soxhlet-extraction with acetone for 24 h and activated at 120 °C for 20 h.

Characterization of UiO-66-I2

Figure S1. Ar sorption @ 87 K of UiO-66-I₂. The pore volume was evaluated at $p/p_0 = 0.9$.

Figure S2. SEM images of UiO-66-I $_2$ with a magnification of a) 25000 and b) 100000 times.

Figure S3. Thermogravimetric measurement of UiO-66-I₂.

NMR Spectra

The successful non-destructive incorporation of the linkers into the framework and the absence of guest molecules after washing and drying the powders were monitored with ¹H-NMR-spectroscopy on digested samples.

Figure S4. ¹H-NMR-Spectra of digested MOFs compared to the linker. a) UiO-66, b) UiO-66–F, c) UiO-66–CI, d) UiO-66-Br, e) UiO-66-I, f) UiO-66-I₂. The * indicates the presents of formic acid, which is incorporated into the framework. Peaks at 2.5 and 4.75 ppm represent the NMR-solvent DMSO-d₆ and D₂O, respectively.

Figure S5. ¹³C-NMR-Spectrum of 2,5-diiodo-1,4-dibenzoic acid. The presence of four signals underlines the *para* position of the iodine atoms and is in accordance with the literature values (92.99 ppm, 140.02 ppm, 140.66 ppm and 165.94 ppm).^[2]

UV-Vis Spectra

To validate the electronic structure calculations, UV-Vis DRS was performed.

Figure S6. Tauc plot of recorded UV-Vis-Spectra.

Section 2 Plane wave basis set convergence

The kinetic plane wave energy cutoff convergence was tested with respect to the lattice parameter *a* of the primitive cells and the threshold was set to a change of 0.01 Å. The sampling of the Brillouin zone was tested with respect to the total energy and the lattice parameter *a* of the primitive cells. Analogous to the kinetic plane wave energy cutoff convergence, the threshold for the change of the lattice parameter was set to a change of 0.01 Å.

Figure S7. UiO-66: Convergence of a) total energy, b) lattice parameter a, c) lattice parameter a (derivation), d) k points (energy) and e) k points (lattice).

Figure S8. UiO-66-F: Convergence of a) total energy, b) lattice parameter *a* and c) lattice parameter *a* (derivation).

Figure S9. UiO-66-CI: Convergence of a) total energy, b) lattice parameter *a* and c) lattice parameter *a* (derivation), derivation at 900 eV is 0 and not shown.

Figure S10. UiO-66-Br: Convergence of a) total energy, b) lattice parameter *a* and c) lattice parameter *a* (derivation).

Figure S11. UiO-66-I: Convergence of a) total energy, b) lattice parameter *a* and c) lattice parameter *a* (derivation).

Figure S12. UiO-66- I_2 : Convergence of a) total energy, b) lattice parameter *a* and c) lattice parameter *a* (derivation).

Section 3 XC functional benchmark

Figure S13. UiO-66: XC functional benchmark (absolute value black with relative error in red).

Figure S14. UiO-66-F: XC functional benchmark (absolute value black with relative error in red).

UiO-66-Cl

Figure S15. UiO-66-CI: XC functional benchmark (absolute value black with relative error in red).

Figure S16. UiO-66-Br: XC functional benchmark (absolute value black with relative error in red).

UiO-66-I

UiO-66-I₂

Figure S17. UiO-66-I: XC functional benchmark (absolute value black with relative error in red).

Figure S18. UiO-66-l_2: XC functional benchmark (absolute value black with relative error in red).

Section 4 Details of the DFT models

Table S1. Details of the DFT study and generated structural models of halogenated UiO-66 derivatives: space group, plane-wave kinetic energy cutoff, exchange-correlation functional, lattice parameter of the optimized primitive cell compared with the experimental UiO-66 value.

MOF	Space group	E _{cut} / eV	XC functional	a/Å	Deviation / %
UiO-66 (exp.) ^[3]	F-43m			14.668	
UiO-66	F-43m	1000	rSCAN	14.677	0.050
UiO-66-F	<i>R</i> 3	700	PBEsol-TS	14.670	0.018
UiO-66-Cl	<i>R</i> 3	700	PBEsol-TS	14.675	0.049
UiO-66-Br	<i>R</i> 3	700	PBEsol-TS	14.677	0.065
UiO-66-I	<i>R</i> 3	700	PBEsol-TS	14.672	0.032
UiO-66-I ₂	<i>R</i> 3	700	rSCAN	14.648	0.133

Section 5 Band structures

Table S2. Comparison of calculated and experimental band gaps.

MOF	sim. / eV	exp. / eV
UiO-66	4.25	4.05
UiO-66-F	3.96	4.02
UiO-66-Cl	3.76	3.91
UiO-66-Br	3.71	3.84
UiO-66-I	3.16	3.64
UiO-66-I ₂	2.89	3.31

UiO-66

Figure S19. UiO-66 band structure with DOS and PDOS.

Ui0-66-F

Figure S20. UiO-66-F band structure with DOS and PDOS.

UiO-66-Cl

Figure S21. UiO-66-CI band structure with DOS and PDOS.

UiO-66-Br

Figure S22. UiO-66-Br band structure with DOS and PDOS.

UiO-66-I

Figure S23. UiO-66-I band structure with DOS and PDOS.

UiO-66-I₂

Figure S24. UiO-66-I_2 band structure with DOS and PDOS.

Section 6 Refractive Index

Table S3. Comparison of calculated refractive indices at 589 nm.

MOF	n 589
UiO-66	1.373
UiO-66-F	1.375
UiO-66-Cl	1.416
UiO-66-Br	1.433
UiO-66-I	1.488
UiO-66-I ₂	1.585

References

- [1] G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K. P. Lillerud, *Chem. Mater.* **2014**, *26*, 4068-4071.
- [2] Q. Zhou, T. M. Swager, J. Am. Chem. Soc. 1995, 117, 12593.
- [3] S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti, K. P. Lillerud, *Cryst. Growth Des.* **2014**, *14*, 5370.