Electronic Supplementary Information for: The fundamental relation between electrohelicity and molecular optical activity

Marc H. Garner* and Clemence Corminboeuf

Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique federale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

E-mail: marc.garner@epfl.ch

Note on units

In the Gaussian program,¹ the electric and magnetic transition dipoles are reported in atomic units while the rotatory strengths are reported in cgs units. The following unit conversions were applied.^{2,3}

Electric transition dipole moments calculated in velocity-gauge are given in bohr-electron×hartree. This is converted to dipole length units by dividing with the electronic transition energy, and then to cgs units by multiplying with 2.541746×10^{-18} esu cm.^{3,4}

Magnetic transition dipole moments are given in bohr-magnetons. This is converted to cgs units by multiplying with 9.274×10^{-21} erg/Gauss.^{3,4}

Additional figures

Figure S1: Allene described in C_{2v} symmetry. a) Frontier MOs. b) Diagram of electronic transitions. c) Direct products of frontier π -MOs. μ is in 10^{-18} esu·cm.

Figure S2: Overview of the $\pi - \pi^*$ transitions of allene and cycloallenes with their MO contributions, oscillator strengths, and rotatory strengths listed. Only MO contributions over 40% are shown. Note that the transitions are not sorted by energy.

Figure S3: Overview of the $\pi - \pi^*$ transitions of substituted allenes with their MO contributions, oscillator strengths, and rotatory strengths listed. Only MO contributions over 40% are shown. *R*-1,3-diethyallene is shown in its two optimized C_2 symmetry conformers with both C=C-C-C ethyl dihedral angles at ±119°. Note that the transitions are not sorted by energy.

Figure S4: Overview of the B_3 transitions of the allene dimer and bis-allenes with their MO contributions, oscillator strengths, and rotatory strengths listed. Hydrogens are omitted on Bis-allene2 for clarity.

Figure S5: Direct products of the two HOMO \rightarrow LUMO+1 transitions of spiropentadiene in D_2 symmetry viewed from end and side of the molecule. The electric (blue) and magnetic (red) transition dipole moments, and the rotatory strengths is provided for the electronic transitions (right column). $\vec{\mu}$ is given in 10⁻¹⁸ esu·cm. \vec{m} is given in 10⁻²¹ erg/G. R is given in 10⁻⁴⁰ erg·esu·cm/G.

Figure S6: spiropentadiene described in C_{2v} symmetry. a) Frontier MOs. b) Diagram of electronic transitions. c) Direct products of frontier π -MOs.

Figure S7: Overview of the $\pi - \pi^*$ transitions of spiropentadiene and cyclo-spiropentadienes (cyclo-spde) with their MO contributions, oscillator strengths, and rotatory strengths listed.

Figure S8: Rotatory strenghts computed as function of ethyl substituent torsion in 1,4diethylbutatriene (a) and bis(2-ethyl)-tolane (b), similarly to 1,3-diethylallene as computed in the manuscript. The $\pi - \pi^*$ transitions are equivalent to those explored for butatriene and tolane in the manuscript in Figure 7 and 8, which have B₁ symmetry, but are of lower symmetry in the substituted molecules.

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16 Revision A.03. 2016; Gaussian Inc. Wallingford CT.
- (2) Mohr, P. J.; Taylor, B. N.; Newell, D. B. CODATA recommended values of the fundamental physical constants: 2010. *Rev. Mod. Phys.* 2012, 84, 1527–1605.
- (3) Constants | Gaussian.com. https://gaussian.com/constants/.
- (4) Autschbach, J. Computing chiroptical properties with first-principles theoretical methods: Background and illustrative examples. *Chirality* 2009, 21, E116–E152.