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S1. Details of the atomic data used as the training set of the supervised learning 

To prepare the training set of the supervised learning, density functional theory (DFT) calculations were done by using 

Vienna Ab initio Simulation Package (VASP)1 on various systems that may appear in target molecular dynamics (MD) 

simulations. Table S1 shows detailed information on the systems included in the training set. The DFT calculation settings 

are given in the main text. Since our target systems are liquid Na, solid Na2O and their interfaces, first-principles molecular 

dynamics (FPMD) simulations with NVT ensembles were performed on perfect solid Na2O, solid Na2O with vacancies, liquid 

pure Na and liquid Na with various O impurity concentrations. Additionally, liquid Na surfaces were included to prevent the 

formation of unrealistic clusters or voids in liquid Na and liquid Na2O systems were included to avoid the melting of solid 

Na2O at low temperature. FPMD simulations were also performed at interfaces between liquid Na and solid Na2O crystal of 

(100), (110) or (111) orientation, and the data were included in the training set. Except for the interface and surface systems, 

four or five volumes were applied for each temperature in each system to increase the transferability of the ML potential. 

Additionally, for the same reason, simulations at very high temperature such as 2000 and 4000 K were included. In these 

high-temperature simulations, only one volume was applied for each case, since fair accuracy is sufficient for these conditions. 

Lastly, the data of static calculations of isolated Na and O atoms in a vacuum were added. 

 

Table S1. Details of the data computed by the DFT calculation for the use in the supervised learning. 

Reference Data 
Number of 

configurations 

Solid 

Perfect solid Na2O 

✓ Static calculation 

✓ Strain was applied in xx and xy directions. 
203 

1443 
✓ NVT, FPMD 

✓ 300 K, 1200 K 
800 

Solid Na2O containing 

3 vacancies (2V𝑁𝑎1𝑉𝑂) 

✓ NVT, FPMD 

✓ 300 K, 800 K, 1200 K 
440 

Liquid 

Liquid pure Na 
✓ NVT, FPMD 

✓ 600 K, 1000 K, 2000 K, 4000 K 
1250 

5600 

Liquid Na surface 
✓ NVT, FPMD 

✓ 600 K, 1000 K, 1500 K, 2000 K 
1000 

Liquid Na with O 

impurity 

✓ NVT, FPMD 

✓ O impurity concentrations: Na101O1, Na100O2, 

Na98O4, Na96O6, Na94O8, Na92O10 

✓ 600 K, 1000 K, 2000 K, 4000 K 

2150 

Liquid Na2O 
✓ NVT, FPMD 

✓ 600 K, 1000 K, 2000 K, 4000 K 
1200 

Interface 
Interfaces between  

liquid Na and solid Na2O 

✓ NVT, FPMD 

✓ 600 K, 1000 K, 1500 K, 2000 K 

✓ Crystal orientation of Na2O: (100), (110), (111) 

1520 1520 

Particles Na/O atom ✓ Static calculation 2 2 

Total 8565 8565 
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S2. Details of the numerical error correction applied to the DFT data 

Since our target contains chemically and physically different systems, such as metals and insulators, system-specific 

settings were used in the DFT calculation with respect to the plane wave cutoff energy, reciprocal space sampling grid and 

smearing method, as mentioned in Section 2.1.2 of the main text. Thus, different magnitudes of numerical errors might appear, 

and the numerical errors cannot be completely cancelled out between the systems. Details of the settings are listed in Table 

S2. To minimise the numerical errors, we first checked numerical convergence with respect to the plane wave cutoff energy 

and the reciprocal space sampling grid in a liquid Na system with an O impurity and a perfect solid Na2O system. The results 

are shown in Figure S1. The energy in the liquid Na system with an O impurity was not sufficiently converged with the 

2×2×2 Monkhorst-Pack sampling gird,2 and the energy in the perfect solid Na2O system was not sufficiently converged with 

an energy cutoff of 400 eV. The differences between the results obtained by these settings used as our default settings and the 

converged results obtained by more accurate settings were greater than an energy root-mean-square error (RMSE) of our 

MTP, 2.0 meV/atom. According to Figure S1, at least the 5 × 5 × 5 Monkhorst-Pack sampling gird2 should be used for the 

liquid system, and an energy cutoff of 700 eV should be adopted for the solid system to suppress the residual numerical error 

below the MTP fitting error. 

 

 

Figure S1. Energy convergence of DFT calculation in the system of liquid Na containing an O impurity for (a) the plane-

wave energy cutoff and (b) the Monkhorst-Pack reciprocal space sampling grid. (c) and (d) show the energy convergence 

in the solid Na2O system for the plane-wave energy cutoff and the 𝚪-centered reciprocal space sampling grid, respectively. 

The energy difference was calculated by referring to the energy calculated with an energy cutoff of 900 eV and a sampling 

grid of 6×6×6. The red line indicates no difference from the reference, and the error bar denotes standard deviations 

determined from three different configurations for each case. 

 



To remove the numerical errors efficiently, the raw DFT calculation results were empirically corrected by subtracting 

quantified numerical errors from the energy and the diagonal elements of the stress tensor calculated by the default settings. 

The energy/stress numerical errors were quantified from the differences between the default and correction settings, and five 

configurations were used in each system to average the differences and estimate their standard deviations. For the correction 

settings, more accurate Fast Fourier Transform (FFT) settings including denser FFT meshes (PREC=Accurate) and energy 

cutoff of 800 eV were adopted for all systems. As for the reciprocal space sampling grid, 5×5×5 Monkhorst-Pack grids2 were 

used for cubic liquid systems, and 5×5×1 grids were used for liquid Na surface and interface systems, which had a long shape 

in the z-direction. As errors could depend on the volume, temperature, phase and O concentration, a total of 132 different 

systems were evaluated. Figure S2 shows their averages and standard deviations. The range of standard deviation is acceptable 

to correct the errors with this empirical method since the magnitudes are much less than RMSEs of MTP, which were 2.0 

meV/atom for energy and 1.8 kbar for stress. Note that the numerical force error was not corrected, since its size is usually 

small because the force is calculated as a derivative of energy, by which the numerical error in the energy can be largely 

cancelled out. Off-diagonal elements of stress tensors were also not corrected, because Pulay stress, which is the stress error 

due to a small energy cutoff, is usually small for off-diagonal elements. All static calculations were performed with accurate 

settings that were used to calculate the reference energy/stress in the numerical error correction. Thus, the numerical 

corrections were not applied to static calculation data. 

 

Table S2. Default settings used in FPMD calculations and correction settings used to calculate the reference energy/stress 

in the numerical error correction. 

Reference Data 
Default setting Correction setting 

PREC ENCUT KPOINTS PREC ENCUT KPOINTS 

Solid 

Perfect solid Na2O Normal 400 eV 
Γ-centered 

3×3×3 
Accurate 800 eV 

Γ-centered 

3×3×3 

Solid Na2O 

containing 

3 vacancies 

(2V𝑁𝑎1𝑉𝑂) 

Normal 400 eV 
Γ-centered 

3×3×3 
Accurate 800 eV 

Γ-centered 

3×3×3 

Liquid 

Liquid pure Na Normal 400 eV 

Monkhorst-

Pack 

2×2×2 

Accurate 800 eV 

Monkhorst-

Pack 

6×6×6 

Liquid Na surface Normal 400 eV 

Monkhorst-

Pack 

2×2×1 

Accurate 800 eV 

Monkhorst-

Pack 

5×5×1 

Liquid Na 

with O impurity 
Normal 400 eV 

Monkhorst-

Pack 

2×2×2 

Accurate 800 eV 

Monkhorst-

Pack 

6×6×6 

Liquid Na2O Normal 400 eV 
Γ-centered 

3×3×3 
Accurate 800 eV 

Γ-centered 

5×5×5 

Interface 

Interfaces between 

liquid Na and solid 

Na2O 

Normal 400 eV 
Γ-centered 

3×3×1 
Accurate 800 eV 

Γ-centered 

5×5×1 

 



 

 

Figure S2. Numerical errors and their standard deviations in (a) the energy and (b) the diagonal elements of the stress 

tensor. All standard deviations are less than the RMSEs of the present MTP, which were 2.0 meV/atom for energy and 1.8 

kbar for stress. 

 

S3. Moment Tensor Potential (MTP) and hyperparameter optimisation 

In this study, MTP was constructed using the MLIP package.3 In MTP4, the energy contribution of a local environment 

of each atom, V(𝑛𝑖), is expressed by a linear combination of basis functions as follows: 

 

V(𝑛𝑖) = ∑ 𝜉𝛼Bα(𝑛𝑖)𝛼 , (S1) 

 

where 𝑛𝑖 is the local atomic environment of ith atom, {𝜉𝛼} is a parameter set, optimised by training through the reference 

database (training set) and {Bα} is a set of basis functions. The basis functions are formed as contractions of one or more 

moment tensor descriptors 𝑀𝜇,𝜈, named moments, which are consisted of radial and angular parts as  

 

𝑀𝜇,𝜈(𝑛𝑖) = ∑ 𝑓𝜇(|𝑟𝑖𝑗|, 𝑧𝑖 , 𝑧𝑗)𝑗 𝑓𝑣(𝒓𝑖𝑗), (S2) 

 

where 𝑓𝜇(|𝑟𝑖𝑗|, 𝑧𝑖 , 𝑧𝑗) is the radial part, 𝑓𝑣(𝒓𝑖𝑗) is the angular part, 𝜇 and 𝜈 are the indices of the radial and angular parts, 

respectively, 𝒓𝑖𝑗 is the position of the jth atom relative to the ith atom and 𝑧𝑖 and 𝑧𝑗 are the atomic types of the ith and jth 

atoms, respectively. All contractions of one or more moments 𝑀𝜇,𝜈 whose levels are less than a hyperparameter levmax, called 

maximum level or level of MTP, are included as the basis functions, {Bα}. The level of 𝑀𝜇,𝜈 is defined as  

 

 𝑙𝑒𝑣 𝑀𝜇,𝜈 = 2 + 4𝜇 +  𝜈.   (S3) 

 

The radial part of 𝑀𝜇,𝜈 has the form of a linear combination of radial basis functions, 𝑄(𝛽), as  

𝑓𝜇(|𝑟𝑖𝑗|, 𝑧𝑖 , 𝑧𝑗) =∑𝑐𝜇,𝑧𝑖,𝑧𝑗
(𝛽)

 𝑄(𝛽)(|𝑟𝑖𝑗|)

𝑁𝑄

𝛽

, (S4) 

 

where 𝑐𝜇,𝑧𝑖,𝑧𝑗
(𝛽)

 is a set of radial parameters, 𝛽 is the index of the radial basis function, and NQ is the number of the radial 

basis functions. As the radial basis functions, Chebyshev polynomials multiplied by a damping function in the spatial range 

from the minimal cutoff (Rmin) to the maximal cutoff (Rmax) were used.  

The angular part is a tensor using outer products of 𝒓𝑖𝑗 as 

𝑓𝑣(𝒓𝑖𝑗) = 𝒓𝑖𝑗⊗ … ⊗⏟    
𝜈 𝑡𝑖𝑚𝑒𝑠

𝒓𝑖𝑗 (S5) 

 

  



where ⊗ denotes the outer product and 𝜈 is the number of outer products.  

The three hyperparameters, levmax, Rmax and NQ, are highly related to the accuracy and computational speed of an MTP. 

The larger hyperparameters could decrease training errors while slowing down MD simulations. Therefore, the 

hyperparameters need to be determined considering a balance between calculation accuracy and speed. The accuracy is about 

the reproductivity of the DFT calculations, not the reproductivity of experimental data and was defined as the energy root-

mean-square error (RMSE) of the MTP for the training database. The speed was quantified by the MD computational speed 

of MTP for LAMMPS5 calculations. Since an MTP is trained by non-linear iterative optimisation in the MLIP package, the 

performance is also affected by initial model coefficients, which are randomly generated. To account for this effect, the 

training error with each hyperparameter set was determined with five MTPs of different initialization of model coefficients. 

The computational speed was measured by performing MD simulations on the interfacial system containing 189 atoms 

between liquid Na and solid Na2O of (100) orientation using a calculational server of two Intel® Xeon® Gold 6130 CPUs 

(32 cores in total). For each hyperparameter set, the computational speed was determined by averaging the results of five MD 

simulations with different initial velocities. As shown in Figure S3, increasing the hyperparameters improves accuracy while 

slowing down MD simulations. Consequently, we selected levmax = 16, Rmax = 6 Å and NQ = 8, which can achieve a training 

error of 2 meV/atom at an affordable computational cost.  

 

Figure S3. Training error and computational speed of the MTPs as a function of (a) level of MTP (levmax), (b) maximal 

cutoff (Rmax) and (c) the number of radial basis (NQ). The default values were set to levmax = 16, Rmax = 6 Å and NQ = 8 in 

these tests, and only one parameter was changed in each test. The blue dashed lines indicate 2 meV/atom in the training 

error.  

 

S4. Definition of extrapolation grade 

This section describes the concept and definition of extrapolation grade with reference to what is reported in Ref. 

[3]. The extrapolation grade is a measure of how much a given configuration is extrapolated. In the MLIP package,3 the 

extrapolation grade is calculated based on the D-optimality criterion. The criterion assumes that the submatrix with the greatest 

determinant contains the most extreme and diverse information out of all possible submatrices that can be created from the 

training set. The energy of a system in MTP Emtp is determined as expressed in the equation below, 

 

Emtp(𝑐𝑓𝑔; 𝜉) =∑V(𝑛𝑖)

𝑛

𝑖=1

=∑∑𝜉𝛼Bα

𝑚

𝛼=1

(𝑛𝑖)

𝑛

𝑖=1

= ∑𝜉𝛼∑Bα(𝑛𝑖)

𝑛

𝑖=1

𝑚

𝛼=1

=∑𝜉𝛼𝑏𝛼(𝑐𝑓𝑔)

𝑚

𝛼=1

, 

 

(S6) 

 

where {𝑏𝛼(𝑐𝑓𝑔)} is a set of basis function of a system, 𝑛 is the number of atoms in a system and 𝑚 is the number of MTP 

parameters.  

Since the number of configurations included in the training set (represented by 𝑘) is generally much greater than the 

number of MTP parameters (represented by 𝑚), the system of equations is overdetermined as follows:   

 

(𝐸𝑚𝑡𝑝(𝑐𝑓𝑔1) … 𝐸𝑚𝑡𝑝(𝑐𝑓𝑔𝑘)) = (𝜉1 … 𝜉𝑚) (
𝑏1(𝑐𝑓𝑔1) ⋯ 𝑏1(𝑐𝑓𝑔𝑘)

⋮ ⋱ ⋮
𝑏𝑚(𝑐𝑓𝑔1) ⋯ 𝑏𝑚(𝑐𝑓𝑔𝑘)

). 

 

(S7) 

 

The method of determining the extrapolation grade involves selecting a set of 𝑚 representative configurations from 

the training set, called the active set. The active set, which is based on D-optimality, contains configurations with the largest 

determinant and is considered to be the most informative submatrix among all submatrices that can be constructed from the 

training set.  



When a new configuration is generated by classical molecular dynamics, the extrapolation can be judged by whether 

the determinant increases as the configuration replaces a row in the active set. The extrapolation grade, denoted by γ(cfg), is 

defined as 

 

γ(cfg) = max
1≤𝑗≤𝑚

|𝑐𝑗| , 𝑤ℎ𝑒𝑟𝑒 (𝑐1 ⋯ 𝑐𝑚) = (𝑏1 ⋯ 𝑏𝑚)𝐀
−1, (S8) 

 

where (𝑏1 ⋯ 𝑏𝑚) is a set of basis functions of the new configuration and 𝐀−1 is the inverse matrix of active set. Thus, 

γ(cfg) greater than 1.0 indicates the active set can be extended by replacing the row of index jmax with the row of the newly 

generated configuration. The jmax can be determined as  

 

jmax = argmax1≤j≤m|𝑐𝑗|.  (S9) 

 

If the number of configurations in the active set is equal to that of the training set, MTP parameters can be obtained 

by solving the determined system and as 

 

𝝃 = (𝐸𝑞𝑚(𝑐𝑓𝑔1) … 𝐸𝑞𝑚(𝑐𝑓𝑔𝑚))𝐀
−1,  (S10) 

 

where 𝐸𝑞𝑚(𝑐𝑓𝑔𝑖) is energy calculated by quantum mechanical simulation on the ith configuration.  

The MTP energy of any configuration can be expressed as a linear combination between a parameter set {𝑐} and a 

set of quantum computational energy contained in the training set {𝐸𝑞𝑚} as  

 

Emtp(𝑐𝑓𝑔; 𝜉) =∑∑𝜉𝛼Bα(𝑛𝑖)

𝑚

𝛼=1

𝑛

𝑖=1

=∑𝑐𝑗𝐸
𝑞𝑚(𝑐𝑓𝑔𝑗)

𝑚

𝑗=1

. (S11) 

 

From the above equation, if any c parameter of a new configuration is larger than 1.0, the configuration is considered 

an extrapolation from quantum mechanical calculations. Otherwise, it is considered interpolated. Therefore, in the MLIP 

package, they interpreted γ(cfg) as the extrapolation grade. 

 

S5. Effects of active learning on MTP performance in this study 

We obtained 16 configurations through active learning and then used them to retrain the MTP. Although this number 

is small compared to the size of the initial training set (8565 configurations), the extrapolation grade of the interface systems 

was significantly reduced. As explained in section S4, the grade is determined by referring only to the active set, which 

consists of a subset of the training set with the number of configurations equal to the number of MTP parameters. In this study, 

the MTP had 211 parameters with levmax = 16 and NQ = 8, so 211 configurations were chosen for the active set. Table S3 

shows the number and percentage of Na(l)–Na2O(s) interface systems selected as components of the active set before and after 

active learning. The addition of the 16 configurations increased the proportion of the interface systems in the active set by 

about 3 %, decreasing the extrapolation grades of the interface systems. In the 2nd iteration of active learning, all configurations 

held extrapolation grades less than 2.1, so we stopped active learning. 
 

Table S3. The number and proportion of configurations of Na(l)–Na2O(s) interfaces in the active set before and after 

active learning. The percentage in parentheses represents the proportion of the selected interface configurations in 

the active set relative to the total of 211 configurations. 

Orientation of Na2O(s) at 

Na(l)–Na2O(s) interfaces 

MTP before active 

learning 

MTP after active 

learning 

(100) 7 (3.3%) 10 (4.7%) 

(110) 7 (3.3%) 6 (2.8%) 

(111) 2 (0.9%) 7 (3.3%) 

Total 16 (7.6%) 26 (10.9%) 

 

Table S4 shows the extrapolation grades of the 16 selected configurations and the energy error of MTP before and 

after active learning compared to the DFT calculations. The selected configurations had extrapolation grades of 2.1 or 

higher as designed, with a maximum and average value of 2.42 and 2.18, respectively. The energy errors of MTP for the 

selected configurations were comparable to the maximal energy training error of the initial MTP obtained by the supervised 

learning, 2.19 eV/system (or 21.45 meV/atom). This indicates that active learning successfully identified the atomic 



environments that were not included in the initial MTP training set. In fact, by adding these selected configurations to the 

training set and rebuilding the MTP, the energy errors of the selected configurations were reduced. 

Strictly speaking, even after active learning, we cannot conclusively judge whether all relevant atomic environments 

were thoroughly included in the training set. Nevertheless, as confirmed in this section, active learning successfully worked 

as designed, and no additional configurations were selected in the 2nd cycle of active learning, as mentioned in the main text. 

In addition, the MTP trained with supervised and active learning achieved good reproductivity of DFT calculations, as 

presented in the main text. Therefore, we concluded that no additional active learning with a stricter criterion, such as 1.5 as 

the threshold for new configurations selection, would not be needed for the purpose of the present study. 
 

Table S4. Extrapolation grades of the configurations selected through active learning and the energy errors of MTP 

before and after active learning by reference to the DFT calculations  

The ID of 

selected 

configurations 

γ(cfg) 

MTP before active learning MTP after active learning 

Absolute per-

system energy 

error 

(eV/system) 

Absolute per-

atom energy 

error 

(meV/atom) 

Absolute per-

system energy 

error 

(eV/system) 

Absolute per-

atom energy 

error 

(meV/atom) 

1 2.10 3.47 18.38 2.18 11.54 

2 2.10 3.41 18.06 2.20 11.63 

3 2.42 3.22 17.03 2.02 10.70 

4 2.14 3.02 15.99 2.04 10.77 

5 2.15 2.80 14.84 1.59 8.43 

6 2.12 3.29 17.39 2.24 11.85 

7 2.10 3.10 16.38 1.68 8.88 

8 2.12 2.59 13.68 1.70 8.97 

9 2.32 1.99 17.49 1.40 12.25 

10 2.22 1.58 13.82 0.99 8.66 

11 2.11 1.94 17.03 1.33 11.69 

12 2.11 1.44 12.66 0.75 6.60 

13 2.17 1.70 14.91 1.04 9.14 

14 2.13 1.18 10.33 0.83 7.26 

15 2.33 1.40 12.31 0.79 6.93 

16 2.19 1.66 14.56 1.10 9.62 

Mean 2.18 2.36 15.30 1.49 9.68 

 

 

S6. MD simulation details 

In this study, fundamental material properties of liquid Na and solid Na2O as well as the diffusion coefficients of Na 

and O and Na2O solution enthalpy in liquid Na were calculated by using the constructed MTPs. Detailed calculation settings 

are provided below. 

Density, isothermal compressibility and radial distribution function (RDF) of liquid pure Na were calculated with cubic 

simulation cells composed of 816 Na atoms. All quantities were determined after reaching the equilibrium. The average 

density and its standard error of the mean (SEM) were determined from 20 NPT simulations of different initial velocities for 

each temperature. The isothermal compressibilities were calculated from a second-order polynomial fit to pressure–volume 

relation. To derive the relation at each temperature, for five different volumes, the average pressure at each volume was 

determined from 10 NVT simulations of different initial velocities. The RDF was determined by averaging RDF profiles for 

10 ps.  

Bulk Na2O properties at room temperature, such as bulk modulus and lattice constant, were determined by fitting the 

pressure–volume relation to the third-order Birch–Murnaghan (BM) equation of state (EOS). To obtain the pressure–volume 

relation, NVT simulations were performed with 3×3×3 supercells (Na216O108). For direct comparison with experimental data, 

volumes consistent with that of experimentally reported pressure–volume relation were applied. For each volume, five 

samples were prepared with different initial velocities, and then the average pressure was determined. The properties of solid 

Na2O at 0 K were obtained by geometry optimization calculations and static calculations. 

Self-diffusion coefficient of Na and diffusion coefficient of O in liquid Na were calculated at 500, 600 and 1000 K. As 

mentioned in Section 2.2.3 of the main text, various system sizes were used. To obtain the three-dimensional coefficients 

using the Einstein relation from mean square displacement (MSD), 100 NPT simulations starting with different initial atomic 



velocities were performed. In each NPT simulation, MSD was calculated every 1 ps for 20 ps after reaching the equilibrium. 

From these 100 data, the average value and its SEM of diffusion coefficient were calculated at each temperature. 

Solution enthalpy was calculated by Eq. (8) of the main text using enthalpies of liquid pure Na system, liquid Na 

containing O impurities system and perfect solid Na2O system. The enthalpy for each system was averaged for dozens of 

independent samples before calculating the solution enthalpy. The number of samples for each temperature was determined 

so that comparable SEMs can be achieved for all conditions. To be specific, 20, 40, 60 and 80 samples were employed at 

400–500 K, 600–700 K, 800–900 K and 1000 K, respectively. Similarly, the enthalpies of perfect solid Na2O were averaged 

over 5, 10, 15 and 20 samples, respectively.   

 

S7. Equilibrium simulation for solubility calculation using the direct coexisting method (DCM) 

Since kinetics becomes faster at higher temperatures, different equilibrium times were applied depending on the 

temperature to efficiently calculate the solubility by DCM. Specifically, equilibrium simulations were performed for 15, 11 

and 7 ns at 800, 900 and 1000 K, respectively, and the solubility was estimated for 1 ns after reaching the equilibrium at each 

temperature. As mentioned in Section 2.2.4 of the main text, the solubility was determined based on the averaged Na and O 

densities over the z coordinate [75 Å, 175 Å], where Na atoms were liquid and O atoms were solutes. Figure S4 shows the 

number of O atoms in this region as a function of simulation time for three samples during equilibrium simulations at each 

temperature. The green curve indicates the averaged values over the three samples. It is confirmed that the number of solute 

O atoms reasonably converged within 15, 11 and 7 ns at 800, 900 and 1000 K, respectively.  

 

 

Figure S4. The number of dissolved O atoms in liquid Na region where the z coordinate is [75 Å,175 Å] as a function of 

simulation time at (a) 800 K, (b) 900 K and (c) 1000 K in the DCM calculations using C0035. 

 

S8. Derivation of the thermodynamic model of dilute solution 

To derive Eqs. (11)–(13) used in Section 2.2.5 of the main text, we consider two systems in which liquid Na is in contact 

with solid Na2O as shown in Figure S5. One is a liquid Na system with O dissolved to the solubility limit, and the other is a 

system with one additional O atom (or, more precisely, one additional unit of Na2O) dissolved. Both systems contain the same 

number of Na and O atoms. The former and the later systems are referred to as system-1 and system-2 in the following.  

 

Figure S5. Equilibrium condition for a solution where O solubility limit is reached. 𝑮𝟏 and 𝑮𝟐 denote the Gibbs free 

energies of system-1 and system-2, respectively. 

 



The Gibbs free energy difference between system-1 and system-2 should be zero at equilibrium where the O 

concentration reaches the solubility limit. Here, the Gibbs energy difference can be written down by the enthalpy difference 

and entropy difference as follows: 

 

𝛥𝐺𝑠𝑜𝑙(𝑇) = 𝐺2(𝑇) − 𝐺1(𝑇) = 𝛥𝐻𝑠𝑜𝑙(𝑇) − 𝑇 (Δ𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.(𝑇) + Δ𝑆𝑠𝑜𝑙

𝑤/𝑜 𝑐𝑜𝑛𝑓.(𝑇)) = 0, (S12) 

 

where 𝐺1(𝑇) is the Gibbs free energy of system-1 and 𝐺2(𝑇) is the Gibbs free energy of system-2. 𝛥𝐻𝑠𝑜𝑙(𝑇) is the 

enthalpy difference, Δ𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.(𝑇)  is the configurational entropy difference and Δ𝑆𝑠𝑜𝑙

𝑤/𝑜 𝑐𝑜𝑛𝑓.
 is the entropy difference, 

excluding the configurational entropy term, between system-1 and system-2.  

In a thermodynamic model, interface effects are usually ignored assuming that both liquid Na and solid Na2O are 

infinitely large. Accordingly, the Gibbs free energies of system-1 and system-2 can be described as 

 

𝐺1 = 𝐺𝑁𝑎𝑛𝑂𝑚(𝑙) + 𝑝𝐺𝑁𝑎2𝑂(𝑠), (S13) 

 

G2 = 𝐺𝑁𝑎𝑛+2𝑂𝑚+1(𝑙) + (𝑝 − 1)𝐺𝑁𝑎2𝑂(𝑠), (S14) 

 

where 𝐺𝑁𝑎𝑛𝑂𝑚(𝑙) is the Gibbs free energy of a solution containing 𝑛 Na and 𝑚 O atoms, 𝐺𝑁𝑎𝑛+2𝑂𝑚+1(𝑙) is the Gibbs free 

energy of a solution containing 𝑛 + 2 Na and 𝑚+ 1 O atoms, and 𝐺𝑁𝑎2𝑂(𝑠) is the Gibbs free energy of a unit of solid 

Na2O.  

Substituting Eqs. (S13) and (S14) to Eq. (S12), the differences in the Gibbs free energy, enthalpy and entropies can be 

represented as follows: 

 

𝛥𝐺𝑠𝑜𝑙 = 𝐺𝑁𝑎𝑛+2𝑂𝑚+1(𝑙) − 𝐺𝑁𝑎𝑛𝑂𝑚(𝑙) − 𝐺𝑁𝑎2𝑂(𝑠), (S15) 

 

𝛥𝐻𝑠𝑜𝑙 = 𝐻𝑁𝑎𝑛+2𝑂𝑚+1(𝑙) −𝐻𝑁𝑎𝑛𝑂𝑚(𝑙) −𝐻𝑁𝑎2𝑂(𝑠),  (S16) 

 

𝛥𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.

= 𝑆𝑁𝑎𝑛+2𝑂𝑚+1(𝑙)
𝑤/𝑜 𝑐𝑜𝑛𝑓.

− 𝑆𝑁𝑎𝑛𝑂𝑚(𝑙)
𝑤/𝑜 𝑐𝑜𝑛𝑓.

− 𝑆𝑁𝑎2𝑂(𝑠)
𝑤/𝑜 𝑐𝑜𝑛𝑓.

,  (S17) 

 

𝛥𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.

= 𝑆𝑁𝑎𝑛+2𝑂𝑚+1(𝑙)
𝑐𝑜𝑛𝑓.

− 𝑆𝑁𝑎𝑛𝑂𝑚(𝑙)
𝑐𝑜𝑛𝑓.

− 𝑆𝑁𝑎2𝑂(𝑠)
𝑐𝑜𝑛𝑓.

,  (S18) 

 

where 𝐻𝑁𝑎𝑛+2𝑂𝑚+1(𝑙) , 𝑆𝑁𝑎𝑛+2𝑂𝑚+1(𝑙)
𝑤/𝑜 𝑐𝑜𝑛𝑓.

 and 𝑆𝑁𝑎𝑛+2𝑂𝑚+1(𝑙)
𝑐𝑜𝑛𝑓.

 are respectively the enthalpy, entropy excluding configurational 

entropy, and configurational entropy of the solution containing 𝑛 + 2 Na and 𝑚 + 1 O atoms, 𝐻𝑁𝑎𝑛𝑂𝑚(𝑙), 𝑆𝑁𝑎𝑛𝑂𝑚(𝑙)
𝑤/𝑜 𝑐𝑜𝑛𝑓.

, and 

𝑆𝑁𝑎𝑛𝑂𝑚(𝑙)
𝑐𝑜𝑛𝑓.

 are those of the solution containing 𝑛 Na and 𝑚 O atoms, and 𝐻𝑁𝑎2𝑂(𝑠), 𝑆𝑁𝑎2𝑂(𝑠)
𝑤/𝑜 𝑐𝑜𝑛𝑓.

 and 𝑆𝑁𝑎2𝑂(𝑠)
𝑐𝑜𝑛𝑓.

 are those of 

a unit of solid Na2O.  

To describe 𝛥𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.

 based on Boltzmann’s entropy formula, the following assumptions were applied.  

1. The interaction between O solutes is negligible. This assumption is reasonable since the O solubility limit in liquid 

Na is low (χ𝑂 ≤ 0.03  at 1000 K, based on the thermodynamic model with the optimal correction value, C003) so it 

can be considered a dilute solution, approximately. In addition, the segregation of solute O atoms was rarely 

observed in the MD simulations performed in this study. 



2. The configurational entropy of Na2O(s) is negligible compared to those of the solutions. Since the target 

temperatures are sufficiently lower than the melting point of Na2O(s) (𝑇𝑚 = 1405 K), defect concentration is 

expected to be kept low. 

3. O solute atoms were treated in equivalent with Na atoms in a liquid state when calculating the configurational 

entropy. 

Under these assumptions, 𝛥𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.

 can be expressed as 

 

𝛥𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.

= 𝑆𝑁𝑎𝑛+2𝑂𝑚+1(𝑙)
𝑐𝑜𝑛𝑓.

− 𝑆𝑁𝑎𝑛𝑂𝑚(𝑙)
𝑐𝑜𝑛𝑓.

= 𝑘𝐵 𝑙𝑛 𝑛+𝑚+3∁𝑚+1 − 𝑘𝐵 𝑙𝑛 𝑛+𝑚∁𝑚. (S19) 

 

Since our solutions are dilute solutions (𝑛 ≫ 𝑚 and 𝑛 ≫ 1), 𝛥𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.

 can be further developed using Starling’s 

approximation and finally expressed as a function of the mole fraction of O, χ𝑂(𝑇), as 

 

Δ𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.(𝑇) ~ 𝑘𝐵 𝑙𝑛  

𝑛 + 𝑚

𝑚
= 𝑘𝐵 𝑙𝑛  

1

χ𝑂(𝑇)
. (S20) 

 

Subsequently, we can relate χ𝑂(𝑇) with 𝛥𝐻𝑠𝑜𝑙(𝑇) and 𝛥𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.

(𝑇) by combining Eqs. (S12) and (S20):  

 

𝑙𝑛 χ𝑂(𝑇) = −
𝛥𝐻𝑠𝑜𝑙(𝑇) − 𝑇Δ𝑆𝑠𝑜𝑙

𝑤/𝑜 𝑐𝑜𝑛𝑓.(𝑇)

𝑘𝐵𝑇
. (S21) 

 

In the present study, MD simulations were performed in the solutions of 812 Na atoms and 4 O atoms to approximately 

obtain Na2O solution enthalpy, 𝛥𝐻𝑠𝑜𝑙: 

 

𝛥𝐻𝑠𝑜𝑙 = 𝐻𝑁𝑎𝑛+2𝑂𝑚+1(𝑙) −𝐻𝑁𝑎𝑛𝑂𝑚(𝑙) −𝐻𝑁𝑎2𝑂(𝑠) 

≈ (𝐻𝑁𝑎812𝑂4(𝑙) −𝐻𝑁𝑎816(𝑙) − 4𝐻𝑁𝑎2𝑂(𝑠)) 4⁄ . 
(S22) 

 

Although 𝛥𝐻𝑠𝑜𝑙 obtained by Eq. (S22) is of the specific case (812 Na and 4 O), this 𝛥𝐻𝑠𝑜𝑙 can be applied to Eq. 

(S21), approximately. This approximation is accurate if the O concentration is dilute enough to ignore interactions between 

solute O atoms. In such conditions, 𝛥𝐻𝑠𝑜𝑙 is expected to be hardly dependent on 𝑚 if 𝑛 is reasonably large and the O 

concentration is sufficiently small (~0.005 in the atomic fraction in our calculation). Figure S6 shows 𝛥𝐻𝑠𝑜𝑙 calculated as a 

function of the number of O atoms (𝑚) in the solution used in MD simulations, keeping the total number of atoms in the 

solution to be 816, as 𝑛 +𝑚 = 816 where 𝑛 is the number of Na atoms. 𝛥𝐻𝑠𝑜𝑙 of all conditions show nearly the same 

value within the statistical precision. This confirms that 𝛥𝐻𝑠𝑜𝑙 obtained by Eq. (S22) can be applied to Eqs. (S16) and (S21) 

without considering the dependence on 𝑛 and 𝑚. 

 



 

Figure S6. Calculated 𝜟𝑯𝒔𝒐𝒍 as a function of the number of O atoms (𝒎) in the solution used in MD simulations. All 

solutions were composed of 𝒏 Na and 𝒎 O atoms with the total number of atoms to be 816 as 𝒏 +𝒎 = 816. The data 

point and error bar at each 𝒎 are the average value of 𝜟𝑯𝒔𝒐𝒍 and its SEM. The red-colored data and its SEM were 

obtained from 40 samples in the solution and 10 samples in solid Na2O (𝒎 = 𝟏) and the others were obtained from 20 

samples in the solution and 5 samples in solid Na2O.  

 

The O solubility limit at a reference temperature 𝑇0, 𝑥𝑜(𝑇0), was calculated by the DCM as described in the main 

text. Subsequently, with ∆𝐻𝑠𝑜𝑙(𝑇0) obtained by Eq. (S22), we can determine Δ𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.

 at 𝑇0 as 

 

Δ𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.(𝑇0) = 𝑘𝐵 𝑙𝑛 𝑥𝑂(𝑇0) +

∆𝐻𝑠𝑜𝑙(𝑇0)

𝑇0
. (S23) 

 

To determine the O solubility limit at an arbitrary temperature 𝑇1 , 𝑥𝑂(𝑇1), using Eq. (S21), we need to obtain 

∆𝐻𝑠𝑜𝑙(𝑇1) and Δ𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.

(𝑇1). ∆𝐻𝑠𝑜𝑙(𝑇1) can be calculated by Eq. (S22) based on MD simulation results. To obtain the 

entropy term, we first obtain the heat capacity of the solution of solid Na2O in liquid Na, ∆𝐶𝑝
𝑠𝑜𝑙(𝑇), by partial derivative of 

the solution enthalpy as 

 

∆𝐶𝑝
𝑠𝑜𝑙 =

𝜕∆𝐻𝑠𝑜𝑙(𝑇)

𝜕𝑇
. (S24) 

 

Here, ∆𝐻𝑠𝑜𝑙(𝑇) obtained from 400 K to 1000 K with 100 K interval in MD simulations was first fitted to a linear function 

and its partial derivative for temperature was analytically evaluated.   

Using thermodynamic relation, the total solution entropy at 𝑇1, which is the summation of the non-configurational term 

and configurational term, is expressed as  

 

{Δ𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.(𝑇1) + Δ𝑆𝑠𝑜𝑙

𝑐𝑜𝑛𝑓.(𝑇1)} = {Δ𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.(𝑇0) + Δ𝑆𝑠𝑜𝑙

𝑐𝑜𝑛𝑓.(𝑇0)} + ∫
∆𝐶𝑝

𝑠𝑜𝑙(𝑇)

𝑇
𝑑𝑇

𝑇1

𝑇0

. (S25) 

 

Here, it is reasonable to assume that non-configurational entropy and solution enthalpy are independent of the O concentration, 

approximately, if the solution is dilute, as we confirmed above that 𝛥𝐻𝑠𝑜𝑙 is hardly dependent on the composition. Thus, in 

Eq. (S25), if ∆𝐶𝑝
𝑠𝑜𝑙(𝑇) is derived from ∆𝐻𝑠𝑜𝑙(𝑇) obtained with a fixed composition, the configurational entropy terms will 

disappear because the configurational entropy is dependent only on the composition, not on the temperature, i.e., 

Δ𝑆𝑠𝑜𝑙
𝑐𝑜𝑛𝑓.(𝑇1) = Δ𝑆𝑠𝑜𝑙

𝑐𝑜𝑛𝑓.(𝑇0) . In the present study, ∆𝐻𝑠𝑜𝑙(𝑇)  was obtained by Eq. (S16) with fixing the composition. 



Consequently, with predetermined Δ𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.(𝑇0) and ∆𝐶𝑝

𝑠𝑜𝑙(𝑇), we can obtain Δ𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.

(𝑇1) in dilute solution as 

follows: 

 

Δ𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.(𝑇1) = Δ𝑆𝑠𝑜𝑙

𝑤/𝑜 𝑐𝑜𝑛𝑓.(𝑇0) + ∫
∆𝐶𝑝

𝑠𝑜𝑙(𝑇)

𝑇
𝑑𝑇.

𝑇1

𝑇0

 (S26) 

 

Eqs. (S21), (S24) and (S26) are the same with Eqs. (11)–(13) of the main text.  

 

S9. Optimisation of function form to fit solution enthalpy 

In this work, we estimated the temperature dependence of O solubility from temperature-dependent solution enthalpy 

calculated by MD. The solution enthalpy was calculated from 400 to 1000 K with 100 K intervals and fitted to a linear 

equation. Since the heat capacity of the solution was determined by Eq. (12) in the main text and the solution entropy was 

calculated by Eq. (13) in the main text, these quantities as well as the temperature dependence of O solubility can be affected 

by the form of the fitting equation used to describe the temperature dependence of solution enthalpy. Therefore, we tested 

three fitting equations, namely, linear, third-order polynomial and logistic functions. In Figure S7, solution enthalpy (∆𝐻𝑠𝑜𝑙), 

heat capacity of solution (∆𝐶𝑝
𝑠𝑜𝑙), solution entropy excluding configurational entropy (∆𝑆𝑠𝑜𝑙

𝑤/𝑜 𝑐𝑜𝑛𝑓.
) and Gibbs free energy of 

solution excluding configurational entropy (∆𝐺𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.

), are shown as functions of temperature. The choice of the fitting 

equation significantly affected the temperature dependence of ∆𝐶𝑝
𝑠𝑜𝑙 . However, the effect was greatly reduced on the 

∆𝑆𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.

 and ∆𝐺𝑠𝑜𝑙
𝑤/𝑜 𝑐𝑜𝑛𝑓.

. Consequently, we confirmed that the effect of fitting equations on the O solubility calculation 

was negligible in a temperature range from 400 to 1000 K as shown in Figure S7(d). Since our target is mainly the O solubility 

and partly the enthalpy and entropy of the solution, not the ∆𝐶𝑝
𝑠𝑜𝑙, the choice of the fitting equation is not very important. 

Thus, for simplicity, the linear equation was applied to fit the solution enthalpy in this study.  

 

Figure S7. Thermodynamic quantities as functions of temperature, using linear, third-order polynomial and logistic 

fittings for solution enthalpy: (a) solid Na2O solution enthalpy in liquid Na, (b) heat capacity of solution of solid Na2O in 



liquid Na, (c) solid Na2O solution entropy in liquid Na excluding configurational entropy and (d) Gibbs free energy of 

solution excluding configurational entropy of solid Na2O in liquid Na. In the case of the logistic function, numerical 

integration was applied to determine the solution entropy, as the analytical solution does not exist, 

 

 

a. Reference6 

b. Reference7  

Figure S8. Theoretically predicted solubility curves using three fitting equations for solution enthalpy; (a) comparison 

with all available experimental data, which are called Dataset 1 in the main text and (b) comparison only with 

experimental data measured by vacuum distillation, which are called Dataset 2 in the main text. The dashed lines indicate 

extrapolation, while the solid lines show interpolation (400–1000 K). 

 

 

S10. Effect of energy cutoff on the DFT calculation of the elastic constants of solid Na2O  

In Section 3.2 of the main text, the elastic constants of solid Na2O calculated with the constructed MTPs are compared 

with previously published DFT data. Since our MTPs were fitted to calculation results of DFT–PBE, C11 and C44 were 

obtained consistent with previously reported DFT–GGA data.8,9,10 However, for C12, the reported DFT–GGA data themselves 

exhibited a large variance with a maximum difference of 22.1 GPa. One possible reason for the discrepancy is the plane wave 

energy cutoff, as three publications8,9,10 used different values: 408 eV,8 520 eV9 and 600 eV.10 Therefore, to confirm the 

accuracy of calculated C12 with respect to the energy cutoff, we calculated the elastic constants with an energy cutoff of 400, 

600 or 800 eV. For comparison, all calculations used the same k-point mesh (Γ-centered 5×5×5) and the same smearing 

width of the gaussian smearing method (0.05 eV), and the calculations were performed on the conventional cubic unit cell of 

solid Na2O composed of 12 atoms. Figure S9 shows the calculated stress–strain relations and elastic constants when applying 

the strain in xx and xy directions. It is evident that 400 eV was insufficient and 600 eV was sufficient as the energy cutoff to 

precisely calculate the elastic constants. Therefore, we consider that the DFT calculation results reported in the study of 

Thompson et al.8, which employed 408 eV energy cutoff, are inaccurate. Except for the data of Thompson et al., all previously 

reported DFT–GGA data are in reasonable agreement and our MTP gave elastic constants consistent with these DFT–GGA 

data, as described in the main text. 



 

Figure S9. Stress–strain relations and elastic constants calculated with a planewave energy cutoff of (a) 400e V, (b) 600 eV 

or (c) 800 eV for solid Na2O. Strain was applied in xx and xy directions. 

 

S11. Test results of other correction methods for DFT systemic error  

In addition to the correction presented in the main text, we tested several corrections to suppress the DFT systematic 

error, including (1) Grimme’s D2 dispersion correction, (2) short-range Na–O attractive energy correction and (3) truncated 

Coulomb correction of Na–Na, Na–O and O–O combinations. Since DFT accurately predicts the bulk properties of liquid Na 

and solid Na2O, the DFT systematic error correction should affect the O solubility in liquid Na but not the bulk properties. To 

evaluate the performance of corrections with respect to O solubility, we checked Na2O solution enthalpy in liquid Na, as the 

direct coexistence method for O solubility requires substantial computational effort.  

 

(1) Grimme’s D2 dispersion correction 

Grimme’s D2 dispersion correction11 was selected as an example of general dispersion correction methods. Since the 

D2 correction is pairwise, it can be easily combined with the untrained MTP ad hoc. Modern dispersion correction methods, 

such as Grimme’s D4 dispersion correction,12 may outperform the D2 correction. However, we left their tests for future work 

because modern corrections require entirely new DFT calculations for building the MTP training set.  

Table S5 presents the Na2O solution enthalpy in liquid Na calculated using MTP with the D2 correction at 600 and 

1000 K, and compares them with the results of the uncorrected MTP, C003 and DFT–PBE. In the main text, it is confirmed 

that the solution enthalpy of approximately 0.5 eV/atom at 600 K resulted in consistent O solubility with the experiments. 

Compared with this value, the D2 correction causes an excess correction, resulting in an underestimation of O solubility. 

Therefore, the D2 correction is not suitable for the O solubility correction.  

 

Table S5. Na2O solution enthalpy in liquid Na at 600 and 1000 K, calculated by using Cwo, C003, MTP with Grimme’s D2 

dispersion correction and DFT. 

Solution enthalpy 600 K (eV/O) 1000 K (eV/O) 

Cwo 0.357 ± 0.010 0.492 ± 0.012 

C003 0.524 ± 0.011 0.712 ± 0.011 

MTP with Grimme’s D2 correction 0.780 ± 0.009 0.858 ± 0.011 

DFT–PBE a 0.296 ± 0.059 0.396 ± 0.077 

a. Reference13 

 

The density of liquid Na was also calculated as a representative bulk property of liquid Na using MTP with the D2 

correction and is compared with that of the uncorrected MTP, DFT–PBE and experiments in Figure S10. The MTP with the 

D2 correction exhibited evident density overestimation, while all others were in good agreement with the experiments.    



 

a. Reference14  

b. Reference15 

Figure S10. Density as a function of temperature for liquid Na calculated by using Cwo, MTP with Grimme’s D2 

dispersion correction, DFT–PBE, and experiments. The black dashed line indicates the 0.5 % uncertainty of 

experimental densities. 

 

Finally, the pressure–volume relation of solid Na2O at 300 K was calculated using the MTP with the D2 correction as 

a representative bulk property of solid Na2O and is compared with that of the uncorrected MTP, C003 and experiments. Figure 

S11 shows that the D2 correction results in underestimation. Furthermore, the lattice constant and bulk modulus were 

calculated by fitting the pressure–volume relation to BM–EOS (Table S6), indicating significant errors. 

In summary, Grimme’s D2 dispersion correction is inappropriate for systems composed of liquid Na and solid Na2O. 

Nonetheless, it is still worth considering the application of modern dispersion corrections in the future, particularly with the 

aim of simulating gas phase reactions, which are crucial in liquid Na combustion. 

 

 

 

a. Reference16 

Figure S11. Pressure–volume relation of solid Na2O at 300 K as obtained by using Cwo C003, MTP with Grimme’s D2 

dispersion correction and experiments. The dotted line indicates the BM–EOS derived from experimental data. 

 



Table S6. Lattice constant and bulk modulus of solid Na2O at 300 K obtained from BM–EOS fitting to the pressure–

volume relation established by Cwo, C003, MTP with Grimme’s D2 dispersion correction and experiment. 

 a (Å) 𝐵0 (GPa) 

Cwo 5.60 35.26 

C003 5.56 39.84 

MTP with Grimme’s D2 correction 5.39 59.05 

Expt. 5.568a, 5.55b 44.1a 

a. Reference16 

b. Reference17 

 

(2) Short-range Na–O attractive energy 

Adding short-range Na–O attractive energy can be a possible correction to increase the solution enthalpy by stabilising 

solid Na2O. The tested 2B correction for short-range Na–O attractive energy is expressed as follows,  

 

f2𝐵(𝑟) = {
0.0002(𝑟 − 4.0)3𝑟2.8 𝑟 ≤ 4.0

0 𝑟 > 4.0
, (S27) 

  

where r is the interatomic distance between Na and O atoms.  

The functional form of this correction is depicted in Figure S12. The correction was designed to affect the energy near 

the first-neighbour distance between Na and O atoms in solid Na2O, approximately 2.4 Å.  

 

Figure S12. Potential energy curve of the short-range Na–O attractive correction as a function of the distance 

between Na and O atoms. 

 

Table S7 shows a comparison of the Na2O solution enthalpy in liquid Na using the uncorrected MTP, C003, MTP with 

the short-range Na–O energy correction and DFT–PBE. The Na–O energy correction fails to increase the solution enthalpy 

and induces just a minor change. It is because the O impurity in liquid Na is additionally stabilised in a comparable degree 

with O in solid Na2O as the short-range Na–O interaction per O atom can similarly occur in both cases. In addition, the Na–

O energy correction undermined the reproductivity of the bulk properties of solid Na2O, which are well reproduced by the 

uncorrected MTP. Therefore, the short-range Na–O energy correction is unsuitable for the present study, although there may 

be a better formula that can increase Na2O solution enthalpy.  

 



Table S7. Na2O solution enthalpy in liquid Na calculated by Cwo, C003, MTP with short-range Na–O energy 

correction and DFT at 600 and 1000 K.  

 600 K (eV/O) 1000 K (eV/O) 

Cwo 0.357 ± 0.010 0.492 ± 0.012 

C003 0.524 ± 0.011 0.712 ± 0.011 

MTP with short-range Na–O 

energy correction 
0.354 ± 0.012 0.540 ± 0.016 

DFT–PBE a 0.296 ± 0.059 0.396 ± 0.077 

a. Reference13 

 

(3) Truncated Coulomb interaction of all Na–Na, Na–O and O–O combinations 

Since some of our systems involve Coulomb interactions between ions, we also tested a correction in the form of 

truncated Coulomb interaction for all pairwise combinations. Specifically, the modified version of Wolf summation method18 

proposed by Fennell et al.19 was used: 

 

E = 14.4𝑞𝑖𝑞𝑗 [
𝑒𝑟𝑓𝑐(𝛼𝑟)

𝑟
−
𝑒𝑟𝑓𝑐(𝛼𝑟𝑐)

𝑟𝑐
+ (

𝑒𝑟𝑓𝑐(𝛼𝑟𝑐)

𝑟𝑐
2

+
2𝛼

√𝜋

exp(−𝛼2𝑟𝑐
2)

𝑟𝑐
) (𝑟 − 𝑟𝑐)]        𝑟 < 𝑟𝑐 , (S28) 

where erfc is the complementary error function, 𝛼 is the damping parameter, 𝑟𝑐 is the cutoff radius, 𝑞𝑖 and 𝑞𝑗 are 

the charges of atom type i and j, respectively, and r is the interatomic distance between type i and type j atoms. Here we 

present the results of the correction using 𝛼 = 0.1, 𝑟𝑐  = 6 Å, 𝑞𝑁𝑎 = 0.15 and 𝑞𝑂 = −0.3. Figure S13 shows the functional 

shape of this correction of all Na–Na, Na–O and O–O combinations.  

 

 

Figure S13. Potential energy curve of the truncated Coulomb correction applied to all combinations of Na–Na, Na–O 

and O–O, with the interatomic distance between each combination. 

 

The comparison of the Na2O solution enthalpy in liquid Na calculated using the Cwo, C003, MTP with the truncated 

Coulomb correction and DFT–PBE is presented in Table S8. The truncated Coulomb correction results in further 

underestimation of the solution enthalpy, as Na–O interaction occurs more frequently in “an O impurity in liquid Na” than in 

“O in solid Na2O”. In addition, this correction undermined the reproductivity of the bulk properties of solid Na2O and liquid 

Na, which are well reproduced by the uncorrected MTP. Therefore, the correction is deemed unsuitable.  

 

Table S8. Comparison of Na2O solution enthalpy in liquid Na calculated by Cwo, C003, MTP with truncated Coulomb 

correction and DFT–PBE at 600 and 1000 K. 

 600 K (eV/O) 1000 K (eV/O) 



Cwo 0.357 ± 0.010 0.492 ± 0.012 

C003 0.524 ± 0.011 0.712 ± 0.011 

MTP with truncated Coulomb 

correction 
0.238 ± 0.010 0.434 ± 0.012 

DFT–PBE 10 0.296 ± 0.059 0.396 ± 0.077 

a. Reference13 

 

Based on the test results of various correction methods, including the three methods presented in this section, we finally 

concluded that the O–O attractive energy correction is the most simple and effective correction for systems composed of 

liquid Na and solid Na2O to simultaneously reproduce various bulk properties and O solubility and diffusivity, as presented 

in the main text. Nevertheless, since the O–O attractive energy correction is not a general correction, finding a general 

correction remains a significant challenge for future work to realise accurate simulations of liquid Na combustion, as discussed 

in Section 3.7 of the main text.  

 

S12. Potential model files and implementation of the 2B correction in LAMMPS package 

In LAMMPS package,5 multiple potential models can be combined by using the “hybrid” bond style. To apply the 2B 

correction, we constructed a file that lists energy and force values as a function of interatomic distances in the readable “table” 

bond style. For the use of C003, we combine the two potential models: the uncorrected MTP and the 2B correction potential. 

The following is an example of how to use C003 in LAMMPS.  

 

Elements 1 and 2 represent Na and O, respectively. The following is an example of mlip.ini file. 

 

The uncorrected MTP file (pot16_Na-O.mtp) and the 2B correction table file (2b_003.table) are shared as a part of the 

supporting information to facilitate the reproduction of the present results and future use of the constructed potential model. 

The files are available at https://github.com/Chae-yeongKim/MTP_for_binary_Na-O_system. 

 

S13. MTP validation for reproductivity of DFT–PBE results 

 In the training of MTPs, we utilized the “structures” weighting method of MLIP package3, by which the loss 

function is defined as  

∑[
𝑤𝑒
(𝑁𝑘)

2
(𝐸𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃) − 𝐸

𝑞𝑚(𝑐𝑓𝑔𝑘))
2
+ 
𝑤𝑓

𝑁𝑘
∑ |𝑓𝑖

𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃) − 𝑓𝑖
𝑞𝑚(𝑐𝑓𝑔𝑘)|

2𝑁𝑘

𝑖=1

𝐾

𝑘=1

+
𝑤𝑠
(𝑁𝑘)

2
(𝜎𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃) − 𝜎

𝑞𝑚(𝑐𝑓𝑔𝑘))
2
] → 𝑚𝑖𝑛, 

(S29) 

where 𝐾 is the number of configurations in training set, 𝑁𝑘 is the number of atoms in the kth configuration and 𝑤𝑒, 𝑤𝑓 

and 𝑤𝑠 are weights expressing the relative importance of energy, force and stress data. These weights were set to be 1, 0.01 and 

0.001, which are the default values of MLIP package. 𝐸𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃), 𝑓𝑖
𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃) and 𝜎𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃) are energy, force of 

the ith atom and stress in the kth configuration, obtained by MTP with a set of fitting coefficients 𝜃. 𝐸𝑞𝑚(𝑐𝑓𝑔𝑘), 𝑓𝑖
𝑞𝑚(𝑐𝑓𝑔𝑘) 

and 𝜎𝑞𝑚(𝑐𝑓𝑔𝑘) are energy, force of the ith atom and stress data calculated by DFT–PBE for the same configuration.  

Table S9 shows RMSEs of per-atom energy in the training data used in the supervised learning. The MTP 

reproduced the DFT reference data well with an average training error of 1.84 meV/atom. Although the 12-atom perfect 

solid Na2O and Na/O atom calculations have relatively large energy errors due to the relatively small number of 

configurations contained in them, we consider these errors acceptable for the following reasons. First, as confirmed in Table 

1 of the main text, the MTP reasonably reproduces the DFT results for the lattice and elastic constants of solid Na2O. The 

pair_style hybrid/overlay table linear 1000  mlip mlip.ini 
pair_coeff 2 2  table 2b_003.table TABLE_2B 6.0 
 
pair_coeff * *   mlip mlip.ini 

mtp-filename     pot16_Na-O.mtp 



12-atom solid Na2O data were added to better describe these properties, which was successfully achieved. Next, the error 

for each atomic energy is shown in Table S10. The main properties affected by these errors are Na cohesive energy and O2 

binding energy. The propagation errors are only 0.015 eV and 0.018 eV for Na cohesive and O2 binding energy, 

respectively. In addition, the atomic state does not occur in the systems of interest in the present study. Thus, we also 

consider this error to be acceptable. In conclusion, the MTP (without the 2B correction) reproduced well the DFT results 

used as the training set. 

 

Table S9. RMSEs of energy and force of the systems used in the supervised learning. 

Reference Data 
Number of 

configurations 

Number of 

atoms 

RMSE of 

energy 

(meV/atom) 

RMSE of 

force 

(eV/Å) 

Perfect solid Na2O 

✓ Static calculation 

✓ Strain was applied in xx and xy 

directions. 

203 12 6.82 0.007 

✓ NVT, FPMD 

✓ 300 K, 1200 K 
800 96 0.57 0.020 

Solid Na2O 

containing 3 

vacancies (2V𝑁𝑎1𝑉𝑂) 

✓ NVT, FPMD 

✓ 300 K, 800 K, 1200 K 
440 93 2.52 0.040 

Liquid pure Na 
✓ NVT, FPMD 

✓ 600 K, 1000 K, 2000 K, 4000 K 
1250 102 0.91 0.015 

Liquid Na surface 
✓ NVT, FPMD 

✓ 600 K, 1000 K, 1500 K, 2000 K 
1000 102 1.31 0.019 

Liquid Na with O 

impurity 

✓ NVT, FPMD 

✓ O impurity concentrations: 

Na101O1, Na100O2, Na98O4, Na96O6, 

Na94O8, Na92O10 

✓ 600 K, 1000 K, 2000 K, 4000 K 

2150 102 1.84 0.028 

Liquid Na2O 
✓ NVT, FPMD 

✓ 600 K, 1000 K, 2000 K, 4000 K 
1200 96 1.03 0.047 

Interfaces between 

liquid Na and solid 

Na2O 

✓ NVT, FPMD 

✓ 600 K, 1000 K, 1500 K, 2000 K 

✓ Crystal orientation of Na2O: (100), 

(110), (111) 

1520 

189 for (100) 

interface, 

146 for (110) 

interface, 

118 for (111) 

interface 

1.69 0.042 

Na/O atom ✓ Static calculation 2 1 12.23 0.001 

Total 8565 - 1.82 0.033 

 

Table S10. Energy of Na and O atoms calculated using DFT–PBE and MTP. 

 DFT–PBE (eV/atom) MTP (eV/atom) Difference (eV/atom) 

Na atom -0.226 -0.241 -0.015 

O atom -1.532 -1.540 -0.009 

 

Test error was also checked to evaluate whether the MTP model can reproduce DFT–PBE for configurations that were 

not included in the training data. The following four systems were tested: (1) liquid Na at 800 K, (2) solid Na2O at 300 K, (3) 

solid Na2O at 800 K and (4) interface between liquid Na and solid Na2O at 800 K. The interface is a (100) interface system 

whose initial composition is Na45(l)-Na96O48(s). In each test system, MD simulation using the MTP (without the 2B correction) 

was first performed by LAMMPS code for 100 ps and atomistic configurations were extracted every 1 ps. Subsequently, 

DFT–PBE static calculations were performed on these 100 configurations for each system. The default setting listed in Table 

S2 was utilized in the DFT calculations and the numerical error correction was applied to compare with MTP. Figure S14 



exhibits the energy comparison between MTP and DFT–PBE and demonstrates that MTP can reasonably reproduce DFT–

PBE for four different test cases. The relatively large error in the interface simulation comes from the fact that Na2O 

dissolution occurred significantly, as the 2B correction was not applied in this test to evaluate the performance of the as-

trained MTP. Nevertheless, the error in this chemically complex system is still reasonably small: an RMSE of 3.51 meV/atom 

for per-atom energy.  

Lastly, Figure S15 shows RMSEs of atomic forces in the test calculations. Good agreement between DFT and MTP 

was confirmed. The fact that the force error in the training data is close to that in the test data indicates that overfitting did not 

occur.  

Considering the training and test errors evaluated, we conclude that the MTP achieved DFT accuracy in energy and 

force calculations.  

 

 

Figure S14. Potential energies calculated using MTP and DFT–PBE for atomic configurations selected from MTP-driven 

MD simulations: (a) liquid Na at 800 K, (b) solid Na2O at 300 K, (c) solid Na2O at 800 K and (c) interface at 800 K. The 

RMSE of per-atom energy is shown at the top of each figure. 

 



 

Figure S15. Atomic forces calculated using MTP and DFT–PBE for atomic configurations selected from MTP-driven MD 

simulations: (a) liquid Na at 300 K, (b) solid Na2O at 300 K, (c) solid Na2O at 800 K and (c) interface. The RMSE of force 

is shown at the top of each figure. 

 

S14. Preliminary assessment of the performance of r2SCAN on O solubility calculation 

The 2B correction improves the prediction of O solubility in liquid Na by increasing the stability of Na2O(s), 

indicating that O solubility can be better calculated using an exchange-correlation functional that stabilizes Na2O(s) compared 

to the PBE function. Here, we tested r2SCAN,20 one of the most widely used meta-GGA functionals, which generally 

outperforms PBE in the calculation of metal oxide formation enthalpies21.  

According to our previous study,22 the energy of solid Na2O in reference to an isolated O atom and liquid Na is 

relevant to the accuracy of Na2O solution enthalpy calculation in liquid Na. Since the enthalpy difference between liquid Na 

and solid Na is almost independent of the exchange-correlation functional,23 liquid Na enthalpy can be replaced with solid Na 

enthalpy to simplify the calculation.  

In Table S11, r2SCAN is compared with PBE for the energy of Na2O(s) in reference to solid Na and O atom 

(∆E𝑁𝑎2𝑂) as well as for O2 (g) binding energy, Na2O(s) formation energy and Na(s) atomization energy. r2SCAN generally 

outperforms PBE. The difference in ∆E𝑁𝑎2𝑂 between r2SCAN and PBE indicates that r2SCAN stabilizes Na2O(s) by 0.27 

eV/O atom compared to PBE. 0.27 eV/O atom is comparable with the change due to the C003 correction at 600 K (0.17 

eV/O atom). Hence, with r2SCAN, no correction is needed or a smaller correction may be sufficient. We plan to construct 

an MTP with r2SCAN and evaluate its performance in the future. 

 

Table S11. Comparison between PBE and r2SCAN for energies related to the stability of Na2O(s) solution in liquid 

Na. 

 
PBE r2SCAN Experiment 

Formation energy of Na2O(s) (eV) 3.783 4.375 4.332a 

Binding energy of O2(g) (eV) 6.079 5.431 5.231b 

Atomization energy of Na(s) (eV) 
1.072 1.075 1.113c 

Energy of Na2O(s) in reference to Na(s) and O atom (eV) 6.822 7.091 6.945d 

a. The standard enthalpy of formation at 298.15 K24.  

b. The zero-point vibration effect is excluded so that it can be directly compared to the DFT calculation results13. 

c. Energy required to separate the solid to neutral atoms in ground electronic state at 0 K and 1 atm.25 



d. This value was obtained as 4.332 +
5.231

2
.24 
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