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TEM description

Figure S1: Transmission electron microscopy (TEM) characterization of human-liver ferritin.
(a) TEM image of human-liver ferritin cores. (b) Stained-SEM image of human-liver ferritin
particles allowing the protein shell visualization. The images were acquired with the JEOL
JEM-1400 series 120 kV Transmission Electron Microscope.

Regionprops is a function implemented in MATLAB. In particular, we used the region-
props function implemented for MATLAB2019a. This function detects connected compo-
nents in an image (objects). For each object, the total area, centroids, and many other
properties can be extracted. For detecting the ferritin cores, we first binarized the images
to enhance the contrast between the ferritin cores and the image background, then the cen-
ter and radii of all the circular objects that are detected in the image are calculated. To
separate the ferritin cores from other possible circular objects a threshold parameter (in the
binarization preprocess) is needed to prevent the detection of false positives and minimize
the false negatives (the undetected cores). In the image below, encircled in red are all the
individual ferritin cores that were detected with the algorithm. Encircled in light blue is an
example of a false negative. 7.7% of ferritin cores are undetected. The diameter estimation
has a standard deviation of ± 0.35 nm, which is the uncertainty. A limitation of this al-
gorithm is the assumption that the ferritin cores are spherical, which is not necessarily the
case. Additionally, ferritin cores that are formed by two sub-nanoparticles inside one ferritin
will be detected as two different ferritin cores.
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Figure S2: Transmission electron microscopy (TEM) characterization of human-liver ferritin.
(a) Binarized TEm image. (b) Original image (before binarization). Red circles indicate
detected ferritin cores. Blue circles indicate undetected cores.

.

Ferritin purity assessment
NativeMark Unstained Protein Standard (Cat. No. LC0725) was obtained from Life Tech-
nologies Corporation. The purity and the homogeneity of the protein were assessed by a
7.5% non-denaturing polyacrylamide gels electrophoresis. Gel electrophoresis was run at
4°C and 90 V until samples reached the running gel, then the voltage was increased to 160
V for 3 hours. After electrophoresis, Coomassie blue staining was used to stain proteins.
For iron staining, the gel was immersed in Prussian blue staining solution, which was freshly
prepared by mixing 2% K4Fe(CN)6 and 2% HCl (1g Potassium ferrocyanide + 47,3 ml H2O
+ 2,7 ml HCl) for 1h at RT, then 1h in water, changing water every 15-20 min. Finally, the
gel was incubated in a solution containing 0.025% DAB (3,3’-Diaminobenzidine-Sigma) and
0.05% H2O2 in 1X TBS [12,5mg DAB resuspended in 500 µl DMSO, added to 50 ml TBS
1x, 75-180 µl H2O2 added just before incubation] for 15-30 minutes at RT to enhance the
signal.
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Figure S3: Purity assessment of human-liver ferritin. (a,b) Dynamic light scattering showing
the particle size (hydrodynamic diameter)
distribution: one main Gaussian peak with µ=12.2 nm and σ=4.5 nm. (c) Non-denaturing
polyacrylamide gel electrophoresis of human-liver ferritin (HSF) stained with Coomassie.

The strong band of 500 kDa agrees with ferritin monomers (24-mer protein) while the
weaker bands of 1.048 and 1.236 kDa correspond to ferritin multimers (dimers/trimers) or
aggregates of ferritin protein. Markers refer to NativeMark Unstained Protein Standard

(Cat. No. LC0725).

EPR baseline correction
The baseline correction of the spectra was performed by a home-made script implemented in
Matlab 2019a, which automatically looks for a linear transformation (Fig. S4a), such that
the slope of the baseline correction is the optimal value by which the high magnetic field
values of the second integral of the spectra reach a plateau-like region (Fig. S4c, which is
equivalent to having a zero first integral value at the highest field values (Fig. S4b).
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Figure S4: Automatic baseline correction algorithm. (a) The experimental spectrum (in
blue), the optimal line (red dotted line), and the transformed spectrum (yellow curve). (b)
The first integral of the baseline-corrected spectrum. Its high field values reach zero. (c) The
second integral of the baseline-corrected spectrum. The high field values reach a plateau-like
region.

ICP-MS characterization

Materials:
Nitric acid (65%, Suprapur®, Merck) was used in the digestion process, and further diluted
1% nitric acid was used as a carrying solution throughout the ICP measurements. National
Institute of Standards and Technology (NIST)-traceable 1000 mg/L elemental standards
were used (TraceCERT®, Fluka) for the preparation of calibration and internal standards.
Approximately 18 MΩ cm−1 water (MiliQ) was used in all sample preparation and analysis
steps.

Instrumentation:
Calibration standards were prepared in a Secuflow fumehood (SCALA) to prevent contam-
ination by atmospheric particulates. The standards and samples were analysed for trace
elements using the NexION® 2000 (PerkinElmer) ICP-MS equipped with a concentric glass
nebulizer and peltier-cooled glass spray chamber. An SC2 DX autosampler (PerkinElmer)
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was connected to the ICP-MS for sample introduction. SyngistixTM Software for ICP-MS
(v.2.5, PerkinElmer) was used for all data recording and processing.

Elemental Analysis:
Five trace elemental calibration standards for ICP-MS analysis were prepared using NIST-
traceable 1000 mg/L Fe standard: 0, 1, 5, 20, 100 ug/L. 10 ug/L Rh and In were used as
internal standard. Fe was analyzed in kinetic energy discrimination (KED) mode with 10%
He gas to minimize polyatomic interferences. To check the calibration, samples were analyzed
consisting of a blank measurement and a repeat measurement of one of the calibration
standards. For the calibration curve only to be accepted as correlation coefficient (Cor.Coeff)
was found higher than 0.999.
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EPR simulation with one component
Figure S5 shows an example of one of the best fits obtained by considering a simulation
with only one EPR component. It shows the discrepancy between the data and the model,
indicating the need of two or more EPR components.

Figure S5: Simulation (light-blue line) of EPR spectrum (black line) with single component
only (80 K). The simulation is performed with one spin component of S =15, g = 2.01,
D = −335 MHz, and Hstrain = 6500 MHz.
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EPR simulations, from 20 K to 210 K

Figure S6: Simulations (red dotted lines) of EPR spectra (black lines) for all data recorded
between 20 and 210 K. The simulations are performed with two spin systems, as described
in the main text. The system parameters are shown in Table S1.
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EPR simulations of individual components

Figure S7: Total EPR simulations (red lines) performed at 30 K, 80 K, 130 K and 190 K.
The simulations are performed with two spin systems, as described in the main text. The
first system component is depicted in green. The second component is shown in blue.
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EPR simulations parameters

Table S1: System parameters used for simulations of the EPR spectra. Simulation param-
eters: S = 10, D: axial zero-field splitting, Hstrain: Gaussian broadening parameter. The
parameters at 30 K, 80 K, 130 K, and 190 K were determined first.

Component 1 Component 2
T(K) D (MHz) Hstrain (MHz) Weight (%) D (MHz) Hstrain (MHz) Weight (%)

20 180 6000 7.7 450 11000 92.3
30 170 6000 9.1 400 10500 90.9
40 155 5500 9.5 370 10500 90.5
50 155 4600 10.0 370 10400 90.0
60 175 4500 10.5 300 11000 89.5
80 150 3900 11.1 370 8900 88.9
100 150 3900 15.4 370 8700 84.6
130 150 3900 22.2 350 8500 77.8
160 130 3900 24.4 350 8500 75.6
190 100 3600 26.3 250 8500 73.7
210 100 3500 26.3 250 8300 73.7

The simulation parameters used for all experimental spectra are shown in Table S1.
The total spin for component 1 (E1) and component 2 (E2) is 10. Figure S8 shows the
system-parameters temperature dependence for E1 and E2. A gentle slope is observed for
the D values of both components, with a total decrease of 44% for both of them (Fig. S8a) as
temperature increases. While the weight of E1 increases with the increase of the temperature,
the weight of E2 decreases, although it remains preponderant over all the temperature range
(see Fig. S8b). While decreasing the temperature, a gentle slope is observed for the Hstrain

(Gaussian broadening) of E1 and E2. However, around 50 K a sudden jump is observed in
both cases.

The relative proportion of E1 decreases with temperature, from ∼93% at 20 K to ∼75%
at 210 K (Fig. S8a). Finally, both components display similar temperature dependencies on
D and Hstrain (Fig. S8). The real temperature dependencies of E1 and E2 depend on the
scaling factor given by the ratio between the unknown Sreal, and S = 10 used for the model.
For instance, Sreal = 100 yields n = 10, and, according to the scaling laws of eq. 10 (see
main article), the real temperature in Fig. S8 is 10 times larger than the modeled values.
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Figure S8: Simulation parameters as a function of temperature, for component 1 (green
dots) and component 2 (blue dots). (a) D values. (b) Weights. (c) Broadening (Hstrain).
The parameters are given in Table S1.

Interpretation of D and Hstrain

The temperature dependence of the Hstrain, the Gaussian broadening of both components,
see Fig. S S8, decreases with increasing temperature, revealing an averaging process that
was previously1 interpreted as anisotropy melting. We also observe a slight, though barely
significant trend of D towards smaller values with increasing temperatures. Such a trend
could also be a reflection of a reduction of the anisotropy of the ferritin core by some thermal
averaging process. That the trend in D is not very pronounced suggests that the main effect
of the anisotropy melting reflects itself in the reduction of the broadening parameter of the
line, the Hstrain parameter, in the simulation model we employ.
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EPR simulations with different scaling factors

Figure S9: Simulations (colored lines) of EPR spectra (black lines) recorded at 20 K, 30 K,
80 K, and 130 K. The simulations are performed with two spin systems using different scaling
factors (n). The remaining parameters are shown in Table S1. For the entire temperature
range, the line shape presents negligible changes, confirming the scaling method as a suitable
candidate to reproduce and study the EPR line shape of high-spin systems.
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EPR S-D inverse compensation

Figure S10: Simulations of EPR spectra performed at 80 K. The original simulation is shown
in red. The simulations obtained by considering both components with equal D, The yellow
curve is obtained by simulating both components with equal D.

The parameters S and D are inversely related. That means, an increase (decrease) of S
of one of the components followed by a decrease (increase) of D of the same component by
the same amount, results in a simulation with the same lineshape as the original simulation.
It’s important to mention that a correction in the weight of the component needs to be
applied to preserve the same simulation amplitude. The correcting factor for components 1
(n1) and component 2 (n2) is defined by

n1 = S1orig · (S1orig + 1)
S1new · (S1new + 1) = 10 · 11

4 · 5 = 5.5, (1)

n2 = S2orig · (S2orig + 1)
S2new · (S2new + 1) = 10 · 11

25 · 26 = 0.1692, (2)

where SXorig refers to the S used in the original simulations and SXnew to the change
in S that is being applied and will result in the opposite change in D, by the same factor.
X = 1, 2 refers to EPR components 1 and 2, respectively.
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Sensitivity of EPR parameters

Figure S11: Simulations (colored lines) of EPR spectra (black lines) at 80 K performed by
varying D2. An example of what is considered to be an acceptable simulation is depicted in
red. Examples of rejected simulations are shown in light-blue and yellow.
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Ferritin core and mononuclear Fe(III) EPR intensities
Mononuclear Fe(III) gives a characteristic EPR signal, with a sharp resonance at g′ =4.3,
the so-called g′ =4.3 signal. This signal is also observed in the ferritin EPR spectra and the
temperature dependence of its intensity is that of a paramagnetic species. Here we compare
the amount of these species with respect to the ferritin core signal, the broad g = 2 signal.
The EPR active spin concentration ratio of Fe(III) (g′ =4.3) and the ferritin core spin system
can be determined from2

[Fem]
[core] = AFemRFem(ScanFem)2Gcore · (Bm)core · (gcore)2Score(Score + 1)

AcoreRcore · (Scancore)2GFem · (Bm)Fem · (gFem)2 · SFem(SFem + 1) , (3)

where g is the g factor, S electron spin number of each species and A is the enclosed
area (second integral) that is calculated from the blue (mononuclear Fe(III)) and red (for
the core) curves shown in Fig. S12. ’Scan’ is the sweep range, G is the relative gain of
the signal amplifier, Bm is the modulation amplitude, R is a factor related to the hyperfine
interactions, but for both, Fem and core, the hyperfine interactions are neglected. Scan, G,
Bm, and R are the same for both Fem and core, so they cancel out. Thus, equation 3 becomes

[Fem]
[core] = AFem · (gcore)2 · Score(Score + 1)

Acore · (gFem)2 · SFem(SFem + 1) , (4)

and follows

[Fem]
[core] = 4135 · (2.01539)2 · Score(Score + 1)

6463828 · (1.9825)2 · 5
2(5

2 + 1) = 7.56 · 10−5 · Score(Score + 1), (5)

this expression is solely dependent on the total spin of the ferritin core signal. As an
example, this ratio is 0.8 and 6.8 if the spin number S of the core is 100 and 300, respectively.

In order to compare the calculated EPR active spin concentration ratio [Fem]
[core] to the

number of paramagnetic Fe atoms, normalized by the number of superparamagnetic atoms,
obtained by magnetometry (Np/NFh ) we need to multiply [core] with the number of iron
atoms contributing to the ferrihydrite-like ferritin-core-EPR signal (Nfh). The amount of
iron determined by ICP-MS (NICP) includes both mononuclear (NFem) and ferritin-like iron
ions (Nfh). However, the number of mononuclear Fe-ions that contribute to their EPR signal
is small (2nd integral: 4575) compared to the ones contributing to the ferritin EPR signal
(6778579). Therefore, we approximate the value obtained by ICP-MS to the number of iron
atoms that contribute to the ferritin EPR signal, i.e., Nfh = 1967±78.

The error of [Fem]
[core]·Nfh

was calculated using the following error propagation expression

δ(F ) = ∆(F )
|F |

≈ ∆(M1)
|M1|

+ ∆(M2)
|M2|

+ ∆(M3)
|M3|

, (6)
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Figure S12: Simulations (colored lines) of EPR spectra (black line) at 40 K. In red,
the simulation of the broad signal. In blue, the simulation of the rhombic mononuclear
Fe(III) ion signal located at g′=4.3, using S = 2.5, D = 20.96 GHz, E = 6.97 GHz,
g = [1.9852, 2.0139, 1.9484], gstrain = [0.1328, 0.0242, 0.5009] . In green, the superposition of
both simulations.

where F is [Fem]
[core]·Nfh

, M1 is the second integral of the ferritin-core EPR signal, M2 is
the second integral of the mononuclear Fe EPR signal, M3 is the number of iron atoms in
the ferritin core Nfh. The errors of M1 and M2 were estimated by considering mainly the
associated error of the simulations, using the Montecarlo error propagation with a small
sampling number. Thus, δM1 is 310 and δM2 is 41. Finally, the error of M3 is 78.

Table S2 shows the [Fem]
[core]·Nfh

estimated for both Score of 100 and 300. The largest number
(3.6 · 10−3) is obtained when considering Score = 300. This value is one order of magnitude
smaller than the fraction Np/NFh, found by magnetometry (0.0645). The relative errors in
Table S2 round up to 10%. The difference in [Fem]

[core]·Nfh
for the two different S of a factor of 10

suggests that the uncertainty of [Fem]
[core]·Nfh

is the dominating source of uncertainty and could
be in the range of an order of magnitude.

Table S2: EPR active spin concentration ratio per ferritin particle [Fem]
[core]·Nfh

Score
[Fem]

[core]·Nfh
Abs. error Rel. error (%)

100 4 · 10−4 2 · 10−5 5
300 3.6 · 10−3 2 · 10−4 6

Table S3: Data used in the error propagation calculation of [Fem]
[core]·Nfh

M1 (a.u.) M2 (a.u.) M3 (iron ions)
Abs. value 6463828 4135 1967

∆ 310 41 78
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EPR Model Simulations
In this section, some examples of the large set of spectra that constitute the EPR Model
Simulations (80 K), are provided. The Model Simulations are used to constrain certain EPR
parameters based on the trends seen. Figure S13 shows simulations of one EPR component
with S = 10 by varying the D parameter from 100 to 5000 MHz and considering two different
Gaussian broadening parameters (3000 and 8000 MHz). For the smallest broadening, D
values larger than 500 MHz can not be used to account for the features observed in our
experimental spectrum, this is shown in Fig. S13a where a sharp feature at low field is
visible for the green curve (1000 MHz) and in Fig. S13c where the spectra become distorted.
For the largest broadening, D cannot be greater than 1000 MHz (see Fig. S13d) since the
spectrum starts to get progressively sharp at the lowest fields and flat at higher fields. In
this way, to simulate the experimental spectrum measured at 80 K, figures S13a,b are used
as starting points to inspect all parameters for D, Hstrain and weights considering these two
base components

Figure S13: Model simulations (colored lines) performed at 80 K. The simulation parameters
are S = 10, (a,c) Hstrain = 3000 MHz and (b,d) Hstrain = 8000 MHz. In blue, D = 100 MHz.
In red, D = 500 MHz. In green, D = 1000 MHz. In purple, D = 2000 MHz. In yellow,
D = 5000 MHz.
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EPR alternative fitting approach
Following a different approach, a systematical fit of the spectra recorded at different temper-
atures was performed. First, We determined the S, D, and weight values of each component
by fitting the EPR spectra recorded at 80 K (close to the middle-temperature range). The
fitting was performed with a Matlab (R2019a) script, using the EasySpin package (5.2.4),
using the scaling approach described in the main text.

The optimized scaled S and D values found for both EPR components, g and their
respective weights are given in Table S4. Then, to fit the spectra from 20 to 190 K we
used the scaled S, D and weight of each component determined at 80 K and only the
Gaussian broadening given by an Hstrain parameter was used as the fitting parameter for
both components (see Fig. S16). The spectra between 5 and 15 K were omitted from the
analysis because it was not possible to accurately discriminate the broad signal from the
background noise.

Figure S14: Simulations (red dash lines) of EPR spectra (black lines) using the ’alternative
fitting model’ (see text) for EPR spectra
between 20 and 190 K. The simulations are performed with the automatic fitting routine

with two spin systems. The system parameters are shown in Table S4. The scaled Hstrain of
both systems (fitting parameters) are depicted in figure S16.

The two individual components are shown in figure S15 at 20 K, 80 K, and 190 K. Com-
ponent 2 (blue curve) is narrower and highly contributes to the total intensity of the spectra.
Comparing the lineshape evolution at the different temperatures, it can be noticed that com-
ponent 2 is responsible for the overall lineshape change. Whereas, component 1, being quite
broad and lower in intensity, appears almost temperature independent. This is a sign of a
poor fitting result since component 1 can be hiding many features. D parameter does not
change the simulation shape. The Hstrain changes the lineshape, but in an unsystematic way.
In spite of the good agreement of simulations with the experiment, simulation parameters
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do not give physical insight. Therefore, a different approach was used (see main text).

Figure S15: Total simulations (red lines) of EPR spectra (black lines) performed at 20 K,
80 K, and 190 K. The simulations are performed with two spin systems, as described above.
The first system component is depicted in green. The second component is shown in blue.

Table S4: System parameters used for simulations of the EPR spectra. S is the Spin number
and D the Zero-field axial component. The scaling factor is n = 14.6. The real parameters
can be derived as follows: Dreal = D/n, Sreal = S · n.

S g D (MHz) weight (%)
System 1 20 2.01 -167.2 36
System 2 7 2.01 -489.5 64

Figure S16: Broadening parameters (Hstrain) from ’alternative fitting model’ (see text)
as a function of temperature, for component 1 (green dots) and component 2 (blue dots).
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Other possible approaches to fitting EPR lineshapes and
critical evaluation of the model used
Considering the quantum nature of small nano-particles, a quantum-mechanical model for
the ferritin core is the method of choice. The Giant Spin model makes this computationally
feasible and was shown to be valid also for large spin systems as the ferritin core.3

Before the Giant Spin model, several classical approaches were proposed.1,4–7 These mod-
els are computationally less demanding, and, for example, distributions of magnetic parame-
ters could be introduced more easily than in the Giant Spin model (see below). Usselman et
al.1 showed that the application of these models to the EPR spectra of magnetite nanoparti-
cles lead to inconsistencies, either resulting in unphysical magnetic parameters or did not fit
the lineshape in the low-temperature regime, making quantum mechanical models the more
attractive choice.

To implement the distribution of magnetic parameters, suggested by the analysis of the
magnetometry data, in the Giant Spin model, however, is not straightforward. In the present
study, we use two EPR components, and a significant Gaussian broadening of each of these
components to represent the distribution. This approach leads to good simulations of the
experimental spectra, and, as shown in Table 2 (main text), overall the parameters derived
from of this interpretation agree well with the magnetometry data. Yet, it cannot be excluded
that other representations of magnetic properties could also work, given the broadness of
the experimental spectra.
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Equilibrium magnetization models
The evaluation of eq. 4 requires numerical integration. Standard numerical integration
routines require excessive computation time to evaluate the five-fold integral, while Monte
Carlo integration does not work well, due to the different evaluation points at the numerator
and denominator. Therefore, integrals have been replaced with sums over discrete states for
a finite number of particles, that is

M(B) =

∑
ϕ= j δϕ

sinϕ

∑
ε= i δε

∑
λ= l δλ

∑
ψ= k δψ

∑
θ=n δθ

ζ e−E/kBT sin θ∑
ε= i δε

∑
λ= l δλ

∑
ψ= k δψ

∑
θ=n δθ

e−E/kBT

∑
ϕ= j δϕ

sinϕ
(7)

where δϕ = δλ = δψ = δθ = π/2N are exact dividers of π/2 and δε an exact divider of
the maximum canting angle εmax. The maximum canting angle is defined as the mean root
square of ϵ weighted by e−E/kBT and avoids the evaluation of strongly canted states with
negligible occurrence. As ϵ increases with the applied field, εmax is evaluated iteratively
starting for a series of field values starting from εmax = πB/2BE. The number N + 1 of
samples in each dimension is chosen to be the largest possible for given memory and time
constraints. The numerical procedure has been implemented in Wolfram Mathematica and
compiled in C using the built-in compiler. A PC with 64 GB RAM supports calculations up
to N = 27 for a total of 109 combinations of particle orientations and magnetic states, for
an angular resolution of ∼ 3.3◦ in ϕ, λ, ψ, and θ.
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Figure S17: (a) Initial magnetization curves measured
at temperatures comprised between 3 K (blue circles)
and 200 K (yellow circles), and global fit to the modi-
fied Langevin model with one superparamagnetic com-
ponent without moment distribution. (b) Fit residuals
as a function of the predicted magnetization.

.
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Figure S18: Real µ′ and Imaginary µ′′ parts of the magnetic moment of the human-liver
ferritin (raw data). The legend refers to the frequency of the oscillating B1 field.

.
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Figure S21: Comparison between a direct estimate of the energy barrier distribution, ob-
tained from the blocking temperature distribution of the IRM Component 1, and the energy
barrier distribution expected from Eb = mBa/2 with the incorrect assumption that m and
Ba are independent variables.
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Figure S22: Reconstructed distribution of ηs obtained from the deconvolution of the
magnetic moment and volume distributions (solid line), and best-fit normal distribution
N(log ηs,−1, 0.392).
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Figure S23: Vector conventions for the AF lattice model used in Section 3.2 main text. (a)
Sublattices A and B, and corresponding lattice magnetization vectors ua and ub, respectively.
B is the applied field and e the unit vector pointing to the easy axis direction for uniaxial
anisotropy. The dashed circle represents a defect in sublattice B. (b) Definition of the
auxiliary vectors p and n, which define the canting angle ϵ.

Spontaneous spin canting
Spontaneous canting is generated by an additional energy term proportional to c · (ua × ub),
with c being the unit vector perpendicular to the canting plane. In this case, the total
magnetic energy per unit of volume becomes

E
M0

= BEua · ub +BE tan(2εs) c · (ua × ub) − B(ua + ub)
+Ea(ua,ub, e), (8)

where the term Ea accounts for the combined effect of surface and volume anisotropy. In
the isotropic case (Ea = 0), the total energy is insensitive to the direction n of canting, as
long as it is perpendicular to c. Therefore, Ea = 0 describes an azimuthal dependence of E
with respect to c, which requires an additional degree of freedom with respect to the case of
a defect moment. Given the minor role played by realistic values of the magnetocrystalline
anisotropy in the defect moment simulations of Fig. 4, numerical calculations have been
performed with Ea = 0.
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List of Symbols and Acronyms

B Applied magnetic field. Also B.
B0 Resonance field in EPR spectra.
BEX Exchange field.
Ba Anisotropy field.
Besf Equilibrium spin-flop field.
Bex Exchange coupling field.
Bsf Spin-flop field.
D Zero-field splitting.
Eb Anisotropy energy.
Gpp Amplitude peak to peak of field modulation.
Hstrain Gaussian broadening.
J Exchange constant.
K Anisotropy constant.
KS Surface anisotropy.
KV Uniaxial volume anisotropy.
M0 Sublattice magnetization.
Mτ Remanent magnetization.
Ms Saturation magnetization.
NA Avogadro constant.
Ns Surface spins.
S Total spin of the particle.
T Temperature.
Tb Blocking temperature.
V Particle volume.
χ⊥ Bulk perpendicular susceptibility.
χnc low-field susceptibility.
D Traceless zero-field splitting tensor.
S Electron spin operator.
g g tensor.
µ (1) Magnetic moment in EPR. (2) Mean value of distributions.
µB Bohr magneton.
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εs Zero-field-canting angle.
c Concentration of defects.
g′ Effective g.
kB Boltzmann constant.
m Magnetic moment in magnetometry.
mc Canting moment.
muc Uncompensated moment in magnetometry.
AF Antiferromagnetic.
E1 EPR simulation component 1.
E2 EPR simulation component 2.
EELS Electron Energy-Loss Spectroscopy.
EMR Electron magnetic resonance.
EPR Electron paramagnetic resonance.
FC Field-cooled.
Fh Ferrihydrite.
HuLiFt Human-liver ferritin.
ICP-MS Inductively coupled plasma mass spectrometry.
IRM Isothermal remanent magnetization.
MRI Magnetic resonance imaging.
NMR Nuclear magnetic resonance.
SAXS Small-Angle X-ray Scattering.
SDS-PAGE Sodium dodecyl sulfate–polyacrylamide gel electrophoresis.
SNR Signal-to-noise ratio.
TEM Transmission electron microscopy.
XANES X-ray adsorption near edge spectroscopy.
ZFC Zero-Field-cooled.
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