Supporting Information

Theoretical screening of graphyne-supported single transition metals for the N_2 reduction reaction

Min Li,^a Qinglong Fang,^{a, b, c, *} Xumei Zhao,^{a, *} Caijuan Xia,^{a, b, c} Anxiang Wang,^a You Xie,^d Fei Ma,^{e,} Jianmei She, ^f Zhongxun Deng, ^f

^a School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China

^b Engineering Research Center of Flexible Radiation Protection Technology, University of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China

^c Xi'an Key Laboratory of Nuclear Protection Textile Equipment Technology, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China

^d College of Science, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China

^eState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

^fShenmu Vocational & Technical College, Shenmu, 719300, Shaanxi, China

* Corresponding authors.

E-mail addresses: qinglong_fang@xpu.edu.cn (Qinglong Fang);

20191211@xpu.edu.cn (Xumei Zhao).

Fig. S1 The top views of the (2×2) GY supercell, which *sp*- and *sp*²-hybridized C atoms coexist. The all possible adsorption sites of TM are labeled, i.e. B1, B2, B3, H1, H2, and C.

TM@GY	End-on		Side-on	
-	$L_{ ext{N-N}}$ (Å)	$Q_{ m N2}\left(e ight)$	$L_{\text{N-N}}$ (Å)	$Q_{ m N2}\left(e ight)$
Sc@GY	1.136	0.236	1.164	0.414
Ti@GY	1.131	0.183	1.179	0.489
V@GY	1.131	0.170	1.163	0.361
Cr@GY	1.139	0.303	1.188	0.466
Mn@GY	1.138	0.279	1.172	0.371
Fe@GY	1.138	0.274	1.158	0.302
Co@GY	1.130	0.213	1.115	0.017
Ni@GY	1.115	0.014	1.115	0.019
Cu@GY	1.115	0.005	1.115	0.006
Y@GY	1.141	0.351	1.165	0.480
Zr@GY	1.130	0.185	1.180	0.563
Nb@GY	1.136	0.266	1.166	0.424
Mo@GY	1.149	0.362	1.194	0.490
Tc@GY	1.150	0.377	1.203	0.449
Ru@GY	1.144	0.324	1.174	0.334
Rh@GY	1.134	0.225	1.115	0.014
Pd@GY	1.115	0.010	1.115	0.011
Ag@GY	1.115	0.004	1.115	0.007
Hf@GY	1.135	0.189	1.189	0.559

Table S1. The N-N bond length (L_{N-N}, A) of N₂ adsorbed on TM@GY and the Bader charge $(Q_{N2}, |e|)$ transfer between N and TM@GY.

Ta@GY	1.143	0.315	1.180	0.489
W@GY	1.158	0.462	1.211	0.587
Re@GY	1.158	0.414	1.226	0.542
Os@GY	1.144	0.297	1.188	0.386
Ir@GY	1.136	0.192	1.156	0.233
Pt@GY	1.115	0.010	1.115	0.011
Au@GY	1.115	0.005	1.115	0.005

Fig. S2. NRR free energy diagrams of NRR on (a) Sc@GY, (b) V@GY, (c) Mn@GY,(d) Y@GY, (e) Tc@GY, and (f) Os@GY via the possible pathways.

Fig. S3. Optimized Structures of the possible intermediates on (a) Sc@GY, (b) V@GY, (c) Mn@GY, (d) Y@GY, (e) Tc@GY, and (f) Os@GY via the most favorable pathway.

The corresponding E_{ads} and boYnd length of TM–N and N–N between the Candidate Catalyst and reaction intermediates are also displayed.

Fig. S4. The partial densities of states (PDOS) of (a) Sc@GY, (b) V@GY, (c) Mn@GY, (d) Y@GY, (e) Tc@GY, and (f) Os@GY. The Fermi level is set to zero and indicated by the dotted line.

Fig. S5. The crystal orbital Hamilton populations (COHPs) of the N–N bond in a free N_2 molecule.

Fig. S6. Gibbs free energy of (a) $*N_2 (\Delta G_{*N2})$ and $*H_2O (\Delta G_{*H2O})$, and the difference between them $(\Delta G_{*N2}-\Delta G_{*H2O})$ on Sc, V, Mn, Y, Tc, and Os@GY. (b) $*N_2 (\Delta G_{*H})$ and $*H_2O (\Delta G_{*H2O})$, and the difference between them $(\Delta G_{*H}-\Delta G_{*H2O})$ on Sc, V, Mn, Y, Tc, and Os@GY.