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1 Computational details
Calculations were performed starting from local-minimum structures (those sketched in Fig.
1 of the article) and the related Hessian matrix. These were obtained through the Tinker 8
program package1 using the popular MM3 Force Field (FF)2–4 (see Refs. 5 and 6 for a review
of several FFs for carbohydrates) for DMF and the oligosaccharides, and the CHARMM22 FF7

for GB3. Minimization was performed through Tinker’s minimize tool with a ‘RMS Gradient
per Atom Criterion’ of 0.01 Å. The Hessian matrix was calculated through Tinker’s utility
testhess.

2 Roto-conformational diffusion tensor of the selected oligosaccharides
Figs. 1-5 of the ESI summarize the analysis of the roto-conformational diffusion tensor of the
five oligosaccharides R2R, BGL, GGM, TRI, and GCY that have not been reported in the main
text

In addition, we provide a comparative analysis of the results obtained by changing i) the
physical conditions (temperature, viscosity, hydrodynamic radius), and ii) the choice of the
triplet of reference atoms used to define the molecule-fixed frame. For these tests we decided
to employ the LNF molecule, which is made by five sugar units allowing for a complete, but
compact analysis of the effect of the choice of the triplet of atoms. In particular, the triplet is
chosen to have the 13C-1H NMR probe on C-1 of each of the A-E sugar units (see panel a of
Fig. 5 of the article for units labeling).

Fig. 6 of the ESI shows results for LNF where with respect to the results in the main text,
we lowered the temperature from 303.0 K to 253.0 K, and increased the viscosity from 1.4 cP
to 28.2 cP according to the properties of the solvent (DMSO-d6/D2O 7:3 molar ratio). Fig.
7 of the ESI shows results for the same system considered in the article with effective radius
altered to Reff = 2.0 Å. Figs. 8, 9, 10, and 11 of the ESI show results for the same system
considered in the article with the triplet of atoms on sugar units B, C, D and, E, respectively.
Tab. 1 of the ESI reports the elements of the diagonal rotational block D(RR) of the roto-
conformational diffusion tensor D and the first three eigenvalues of the roto-conformational
diffusion tensor D for the LNF system calculated using the different parameters adopted in
the above mentioned Figs. 6 to 11 of the ESI.

The change of the hydrodynamic radius is, at zero-th order, reflected on a scaling of the
diffusion tensor (Fig. 6), which is inversely proportional to the radius. Since the diffusion
tensor is computed including a hydrodynamic interaction among the atoms [Campeggio, J.;
Polimeno, A.; Zerbetto, M. J. Comput. Chem. 2019, 40, 697], the change of the hydro-
dynamic radius can have higher order contributions, which are not usually relevant in the
typical range of 2 - 4 Å. Changing the viscosity at given temperature (i.e., changing the sol-
vent) implies simply a scaling of the diffusion tensor. Changing the temperature/viscosity
(Fig. 7), has a different effect on the different blocks of the diffusion tensor. The RR part
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scales as T/η , the SS part as T 2/η , and the RS part as T 3/2/η (because of the transforma-
tion to the scaled internal coordinates). Interestingly, reducing the temperature increases the
time scale gap between the overall tumbling and the conformational internal motions, which
become less correlated. This can be observed by comparing panels d of Fig. 5 of the main
text and Fig. 6 of the ESI. In the second plot, the red line shows a lower entity of the coupling
between the rotational motion and the internal motion with the highest frequency.
Changing the triplet of atoms defining the orientation frame (Figs. 8-11), instead, has no
noticeable effect on the internal part of the scaled roto-conformational diffusion tensor, but
results in different values of the elements of the rotational block and, accordingly, of the cou-
pling between the external rotation and the internal motions. In particular, for instance, if
the triplet is chosen on a terminal part of the molecule (sugar units A as in Fig. 5 of the main
text, or E as in Fig. 11 of the ESI) only one normal scaled coordinate is significantly coupled
with the external rotation. However, if the triplet is chosen on an inner part of the molecule
(Figs. 8-10), the rotational motionn results coupled to more normal scaled coordinates, but
with an overall less intense coupling.
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Fig. 1 a) Molecular structure of R2R. b) Color plot of the elements T 2
i j of the matrix diagonalizing the

internal block (SS) of the diffusion matrix. The initial row of the stretchings block (rows 1-45), of the
bendings block (rows 46-88), and of the torsions block (rows 89-132) is labeled with ’S’, ’B’, and ’T’,
respectively. c) Elements D(SS)

i (in fs−1), i.e. eigenvalues of the internal block (SS) of the diffusion matrix.
d) Extent of the coupling between the internal motions (each described by the i the normal mode) and the
overall rotation (note that the abscissa is in logarithmic scale).
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Fig. 2 a) Molecular structure of BGL. b) Color plot of the elements T 2
i j of the matrix diagonalizing the

internal block (SS) of the diffusion matrix. The initial row of the stretchings block (rows 1-47), of the
bendings block (rows 48-92), and of the torsions block (rows 93-138) is labeled with ’S’, ’B’, and ’T’,
respectively. c) Elements D(SS)

i (in fs−1), i.e. eigenvalues of the internal block (SS) of the diffusion matrix.
d) Extent of the coupling between the internal motions (each described by the i the normal mode) and the
overall rotation (note that the abscissa is in logarithmic scale).
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Fig. 3 a) Molecular structure of GGM. b) Color plot of the elements T 2
i j of the matrix diagonalizing the

internal block (SS) of the diffusion matrix. The initial row of the stretchings block (rows 1-68), of the
bendings block (rows 69-134), and of the torsions block (rows 135-201) is labeled with ’S’, ’B’, and ’T’,
respectively. c) Elements D(SS)

i (in fs−1), i.e. eigenvalues of the internal block (SS) of the diffusion matrix.
d) Extent of the coupling between the internal motions (each described by the i the normal mode) and the
overall rotation (note that the abscissa is in logarithmic scale).
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Fig. 4 a) Molecular structure of TRI. b) Color plot of the elements T 2
i j of the matrix diagonalizing the

internal block (SS) of the diffusion matrix. The initial row of the stretchings block (rows 1-68), of the
bendings block (rows 69-134), and of the torsions block (rows 135-201) is labeled with ’S’, ’B’, and ’T’,
respectively. c) Elements D(SS)

i (in fs−1), i.e. eigenvalues of the internal block (SS) of the diffusion matrix.
d) Extent of the coupling between the internal motions (each described by the i the normal mode) and the
overall rotation (note that the abscissa is in logarithmic scale).
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Fig. 5 a) Molecular structure of GCY. b) Color plot of the elements T 2
i j of the matrix diagonalizing the

internal block (SS) of the diffusion matrix. The initial row of the stretchings block (rows 1-167), of the
bendings block (rows 168-332), and of the torsions block (rows 333-498) is labeled with ’S’, ’B’, and ’T’,
respectively. c) Elements D(SS)

i (in fs−1), i.e. eigenvalues of the internal block (SS) of the diffusion matrix.
d) Extent of the coupling between the internal motions (each described by the i the normal mode) and the
overall rotation (note that the abscissa is in logarithmic scale).
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Fig. 6 a) Molecular structure of LNF (T = 253.0 K, η = 28.2 cP). b) Color plot of the elements T 2
i j of the

matrix diagonalizing the internal block (SS) of the diffusion matrix. The initial row of the stretchings block
(rows 1-112), of the bendings block (rows 113-222), and of the torsions block (rows 223-333) is labeled
with ’S’, ’B’, and ’T’, respectively. c) Elements D(SS)

i (in fs−1), i.e. eigenvalues of the internal block (SS)
of the diffusion matrix. d) Extent of the coupling between the internal motions (each described by the i the
normal mode) and the overall rotation (note that the abscissa is in logarithmic scale).
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Fig. 7 a) Molecular structure of LNF (Reff = 2.0 Å). b) Color plot of the elements T 2
i j of the matrix

diagonalizing the internal block (SS) of the diffusion matrix. The initial row of the stretchings block (rows
1-112), of the bendings block (rows 113-222), and of the torsions block (rows 223-333) is labeled with ’S’,
’B’, and ’T’, respectively. c) Elements D(SS)

i (in fs−1), i.e. eigenvalues of the internal block (SS) of the
diffusion matrix. d) Extent of the coupling between the internal motions (each described by the i the normal
mode) and the overall rotation (note that the abscissa is in logarithmic scale).
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Fig. 8 a) Molecular structure of LNF (triplet in residue B (residue labels as in Fig. 5 of the article)). b)
Color plot of the elements T 2

i j of the matrix diagonalizing the internal block (SS) of the diffusion matrix.
The initial row of the stretchings block (rows 1-112), of the bendings block (rows 113-222), and of the
torsions block (rows 223-333) is labeled with ’S’, ’B’, and ’T’, respectively. c) Elements D(SS)

i (in fs−1),
i.e. eigenvalues of the internal block (SS) of the diffusion matrix. d) Extent of the coupling between the
internal motions (each described by the i the normal mode) and the overall rotation (note that the abscissa
is in logarithmic scale).
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Fig. 9 a) Molecular structure of LNF (triplet in residue C (residue labels as in Fig. 5 of the article)). b)
Color plot of the elements T 2

i j of the matrix diagonalizing the internal block (SS) of the diffusion matrix.
The initial row of the stretchings block (rows 1-112), of the bendings block (rows 113-222), and of the
torsions block (rows 223-333) is labeled with ’S’, ’B’, and ’T’, respectively. c) Elements D(SS)

i (in fs−1),
i.e. eigenvalues of the internal block (SS) of the diffusion matrix. d) Extent of the coupling between the
internal motions (each described by the i the normal mode) and the overall rotation (note that the abscissa
is in logarithmic scale).
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Fig. 10 a) Molecular structure of LNF (triplet in residue D (residue labels as in Fig. 5 of the article)). b)
Color plot of the elements T 2

i j of the matrix diagonalizing the internal block (SS) of the diffusion matrix.
The initial row of the stretchings block (rows 1-112), of the bendings block (rows 113-222), and of the
torsions block (rows 223-333) is labeled with ’S’, ’B’, and ’T’, respectively. c) Elements D(SS)

i (in fs−1),
i.e. eigenvalues of the internal block (SS) of the diffusion matrix. d) Extent of the coupling between the
internal motions (each described by the i the normal mode) and the overall rotation (note that the abscissa
is in logarithmic scale).
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Fig. 11 a) Molecular structure of LNF (triplet in residue E (residue labels as in Fig. 5 of the article)). b)
Color plot of the elements T 2

i j of the matrix diagonalizing the internal block (SS) of the diffusion matrix.
The initial row of the stretchings block (rows 1-112), of the bendings block (rows 113-222), and of the
torsions block (rows 223-333) is labeled with ’S’, ’B’, and ’T’, respectively. c) Elements D(SS)

i (in fs−1),
i.e. eigenvalues of the internal block (SS) of the diffusion matrix. d) Extent of the coupling between the
internal motions (each described by the i the normal mode) and the overall rotation (note that the abscissa
is in logarithmic scale).

| 15



i = 1 i = 2 i = 3

LNF
(T = 253.0 K, η = 28.2 cP)

D(RR)
i 1.67×10−7 3.26×10−7 5.05×10−7

(egv[D])i 5.83×10−9 6.09×10−9 9.28×10−9

LNF
(Reff = 2.0 Å)

D(RR)
i 1.03×10−5 2.01×10−5 3.12×10−5

(egv[D])i 2.07×10−7 2.15×10−7 3.61×10−7

LNF
(probe: 13CH on C-1 of residue B)

D(RR)
i 3.97×10−6 7.87×10−6 1.29×10−5

(egv[D])i 1.41×10−7 1.47×10−7 2.27×10−7

LNF
(probe: 13CH on C-1 of residue C)

D(RR)
i 3.99×10−6 7.89×10−6 1.27×10−5

(egv[D])i 1.41×10−7 1.48×10−7 2.24×10−7

LNF
(probe: 13CH on C-1 of residue D)

D(RR)
i 3.97×10−6 7.87×10−6 1.28×10−5

(egv[D])i 1.41×10−7 1.47×10−7 2.19×10−7

LNF
(probe: 13CH on C-1 of residue E)

D(RR)
i 4.02×10−6 7.85×10−6 1.23×10−5

(egv[D])i 1.41×10−7 1.46×10−7 2.22×10−7

Table 1 Elements of the diagonal rotational block D(RR) of the roto-conformational diffusion tensor D and
first three of eigenvalues of the roto-conformational diffusion tensor D for the LNF system calculated using
the same parameters as in Figs. 6-11 of the ESI. Units are fs−1.



3 Fokker-Planck equation in internal coordinates

Table 2 Table of symbols

Symbol Meaning
Ωµ Euler angles of the µ interaction frame µF with respect to the LF
Ω Euler angles of the MF with respect to the LF
Ωµ Euler angle of µF with respect to the MF
n,N = 3n−6 number of atoms, number of internal coordinates
H,K,U total energy, kinetic energy, potential energy
L angular momentum
qµ µ-th internal variable
pµ µ-th conjugate momentum
I inertia tensor
Aµ gauge potential
gµν contravariant metric tensor components
x configuration phase space ΩΩΩ,q
πππ phase space of momenta L,p
Q phase space
ρ(Q, t) conditional probability
Γ Fokker-Planck time evolution operator for ρ(Q, t)
ρ(Q) equilibrium distribution
ξξξ friction tensor
⟨. . .⟩α integration over coordinate α

We sketch some of the conclusions previously reported in refs. 8 and 9, to which the reader
is referred for a detailed and rigorous complete exposition. Our starting point is given by a
simplified version of Eqns. (34-39) of reference 8. The definition of the symbols used for the
main variables and parameters are summarized in Table 2. We make the following hypothe-
ses. First, the molecule, made of n atoms, is described by a conditional probability ρ(Q, t)
where Q are a set of coordinates and momenta Q = (Ω,q;L,p) = (x,πππ): Ω are a set of ori-
entation coordinates (e.g Euler angles) specifying the instantaneous orientation of a generic
molecule-fixed frame (MF) with respect to the laboratory or inertial frame (LF), L is the re-
lated angular momentum; q is the collection N = 3n−6 of internal coordinates specifying its
shape, p is the related set of conjugate momenta; x is the collection of positions and πππ of
momenta. Second, the specific definitions of the MF, i.e. of Ω and q as functions of the native
Cartesian coordinates can be arbitrarily chosen, provided that proper invariance conditions
are considered10. A possible choice is for instance given by Casimir-Eckart conditions11, or
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simply based on the instantaneous position of three (non collinear) atoms. Here we shall
only assume that these functions are known and computable. Finally, we neglect center-of-
mass coordinates and momenta from our description. This is acceptable for a molecule in
a isotropic medium, for which only rotation-dependent correlation functions are considered.
The time evolution equation for ρ(Q, t) is given by8,12

∂ρ(Q, t)
∂ t

=−Γ̂ρ(Q, t)

Γ̂ = P̂r− ∇̂
tr
QJρ(Q)∇̂Qρ(Q)−1

(1)

here ∇̂Q is defined as (M̂, ∇̂L, ∇̂q, ∇̂p)
tr, where M̂ is the generator of infinitesimal rotations for

a rigid body, acting on Ω; 2(N +3)×2(N +3) matrix J is

J = kBT

(
0 −1
1 ξξξ

)
(2)

ξξξ is the friction tensor, which in general depends upon q:

ξξξ =

(
ξξξ RR ξξξ RS
ξξξ SR ξξξ SS

)
(3)

The precessional operator is P̂r = Ltr
(

∇̂LH × ∇̂L

)
. Hydrodynamic models13,14 can be em-

ployed to evaluate approximately ξξξ AB, and we shall assume here they are valid.8,13,14. Fi-
nally, the equilibrium distribution ρ(Q) is defined with respect to the total energy H

ρ(Q) = exp(−H[Q]/kBT )/⟨exp(−H(Q)/kBT )⟩ (4)

where the average ⟨. . .⟩ is defined with respect to Q, and the total free energy H is

H = K +U =
1
2

LtrI−1L+
1
2

gµν(pµ −LtrAµ)(pν −LtrAν)+U (5)

here gµν is the contravariant metric tensor, Aµ is the gauge potential, I is the inertia tensor,
U is the internal energy, depending upon q.



4 Projection of the momenta

We define

ρ(x) =
∫

d pρ(Q) = ⟨ρ(Q)⟩πππ = exp(−U/kBT )/⟨exp(−U/kBT )⟩x

ρ(πππ|x) = ρ(Q)

ρ(x)

ρ(x, t) = ⟨ρ(Q)⟩πππ

(6)

and the symmetrized, for convenience, Fokker-Planck equation

∂ ρ̃(Q, t)
∂ t

=−Γ̃ρ̃(Q, t) (7)

where ρ̃(Q, t) = ρ(Q, t)ρ(Q)−1/2, Γ̃ = ρ(Q)−1/2Γ̂ρ(Q)1/2. We partition the symmetrized time
evolution operator in two parts

Γ̃int = P̂r+ kBT ρ(πππ|x)−1/2
[
ρ(x)−1/2

∇̂
tr
x ρ(x)1/2

ρ(πππ|x)∇̂πππ

−∇̂
tr
πππρ(πππ|x)ρ(x)1/2

∇̂xρ(x)−1/2
]

ρ(πππ|x)−1/2
(8)

Notice that the total energy can be written in general in the form

H = K +U =
1
2

ptrM(x)p+U(x) (9)

where M is symmetric.

Using a bra-ket notation, we define |0⟩
πππ
= ρ(πππ|x)1/2 and we define the projection operator

P̂ = |0⟩
πππ
⟨0| (10)

One shows easily that for two generic functions f (x),g(Q)

Γ̃0|0⟩πππ
f (x) = 0

P̂Γ̃0g(Q) = 0
(11)
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We assume that x and πππ are initially statistically uncorrelated, so that the initial phase density
is ρ(Q,0) = |0⟩

πππ
ρ(x,0). Defining Q̂ = 1− P̂, the well-known formal solution is obtained (see

I):

∂ P̂ρ̃(Q, t)
∂ t

= −P̂Γ̃P̂ρ̃(Q, t)+

+
∫ t

0
dτP̂Γ̃exp(−Q̂Γ̃τ)Q̂Γ̃P̂ρ̃(Q, t − τ)+

+ P̂Γ̃exp(−Q̂Γ̃t)Q̂ρ̃(Q,0) (12)

The first term is the zero-order averaged operator, the second and most complex term is
defined in terms of a general kernel that is a function of time. The latter goes to zero, due to
the initial conditions assumed. One finds:

∂ ρ̃(x, t)
∂ t

= −⟨0|Γ̃int|0⟩πππ ρ̃(x, t)+

+
∫ t

0
⟨0|Γ̃int exp

(
−Q̂Γ̃τ

)
Q̂Γ̃int|0⟩πππ ρ̃(x, t − τ)dτ

(13)

where ρ̃(x, t) = ρ(x, t)ρ(x)−1/2. The Fourier-Laplace transform of Eq. (13) yields

ρ̃(x,ω) =
[
iω + ⟨0|Γ̃int|0⟩πππ −⟨0|Γ̃int

(
iω + Q̂Γ̃

)−1
Q̂Γ̃int|0⟩πππ

]−1
ρ̃(x,0) (14)

The symmetrized form of a generic correlation function for observables depending only upon
x is

G(t) = ⟨ f (x)ρ1/2(Q)|exp
(
−Γ̃t

)
|g(x)ρ1/2(Q)⟩= ⟨ f (x)ρ1/2(Q)|ρ̃(Q, t)⟩ (15)

where ρ̃(Q, t) is the symmetrized density evolved from the initial ρ̃(Q,0) = g(x)ρ1/2(Q). The
Fourier-Laplace transform of G(t) is

J(iω) = ⟨ f (x)ρ̃1/2(Q)|
(
iω + Γ̃

)−1 |g(x)ρ1/2(Q)⟩=

= ⟨ f (x)ρ1/2(x)|ρ̃(x,ω)⟩x =

= ⟨ f (x)
[
iω + Ĝ(ω)−1]

ρ
1/2(x)⟩x (16)



where
Ĝ(ω) = ⟨0|Γ̃int|0⟩πππ −⟨0|Γ̃int

(
iω + Q̃Γ̃

)−1 Q̃Γ̃int|0⟩πππ (17)

To treat in practice Eq. (16) we follow a standard route. We start with the Dyson identity,
valid for any two generic operators Â, B̂:(

Â+ B̂
)−1

= Â
−1
[
1− B̂

(
Â+ B̂

)−1
]

(18)

which can be easily proved by inspection. We apply now the identity to
(
iω + Q̃Γ̃

)−1

(
iω + Q̃Γ̃

)−1
=

(
iω + Γ̃0 + Q̃Γ̃int

)−1

=
(
iω + Γ̃0

)−1
[
1− Q̃Γ̃int

(
iω + Γ̃0 + Q̃Γ̃int

)−1
]

(19)

Finally
(
iω + Q̃Γ̃

)−1 takes the more convenient form

(
iω + Q̃Γ̃

)−1
=

[
1+
(
iω + Γ̃0

)−1 Q̃Γ̃int

]−1 (
iω + Γ̃0

)−1

=
∞

∑
k=0

(−1)k
[(

iω + Γ̃0
)−1 Q̃Γ̃int

]k (
iω + Γ̃0

)−1

(20)

Substituting in Eq. 16 and rearranging terms one gets

Ĝ(ω) =
∞

∑
k=0

(−1)k⟨0|Γ̃int

[(
iω + Γ̃0

)−1 Q̃Γ̃int

]k
|0⟩πππ =

∞

∑
k=0

ĝk(ω) (21)

this is essentially a perturbation expansion where the k-th term Ĝk(ω) is of order k+1 in Γ̃int.
Formally, this expression is equivalent to a total time ordered cumulant (TTOC) expansion.
The diffusive limit is obtained by arresting the expansion to k = 1, and neglecting the residual
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dependence at short time The first term (k = 0) can be shown to be zero, i.e.

⟨0|Γ̃int|0⟩πππ = ⟨0|P̂r|0⟩πππ +

+kBT
[
ρ(x)−1/2

∇̂
tr
x ρ(x)1/2⟨ρ(πππ|x)∇̂πππ⟩πππ+

−⟨∇̂tr
πππρ(πππ|x)⟩ρ(x)1/2

∇̂xρ(x)−1/2
]
= 0 (22)

The second term is slightly more involved. After some passages, one obtains

⟨0|Γ̃int
(
iω + Γ̃

)−1
Γ̃|0⟩πππ = ρ(x)−1/2

∇̂
tr
x D(ω)ρ(x)∇̂xρ(x)−1/2 (23)

where D(ω) is

D(ω,q) = M−1⟨πππρ(πππ|x)1/2|(iω + Γ̃)−1|πππ tr
ρ(πππ|x)1/2⟩πππM−1 (24)

for ω → 0, given the structure of Γ̃0 one gets exactly

D = M−1⟨ππππππ
tr
ρ(πππ|x)⟩πππξξξ (x)−1 = kBT ξξξ

−1 (25)

Finally, we can define a symmetrized diffusive (Smoluchowski) equation

∂

∂ t
ρ̃(x, t) =−Γ̃Dρ̃(x, t)

Γ̃D =−ρ̃(x)−1/2
∇̂

tr
x Dρ̃(x)∇̂xρ̃(x)−1/2

(26)

which of course is equivalent to the unsymmetrized form previously shown.
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