Supporting information for

Infrared Photodissociation Spectroscopy of Mass-Selected $[TaO_3(CO_2)_n]^+$ (n = 2–5) Complexes in the Gas Phase

Jia Han,^{1,†} Yang Yang,^{2,†} Binglin Qiu,^{1,†} Pengcheng Liu,¹ Xiangkun Wu,³ Guanjun Wang,^{2,*} Shilin Liu,¹ Xiaoguo Zhou^{1,*}

- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- 2. Department of Chemistry, Fudan University, Shanghai, 200433, China
- 3. Paul Scherrer Institute, 5232 Villigen, Switzerland

Contents:

- **Figure S1.** Optimized geometries of the $[TaO_3(CO_2)_2]^+$ complex isomers in the singlet and triplet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).
- **Figure S2.** Optimized geometries of the $[TaO_3(CO_2)_3]^+$ complex isomers in the singlet and triplet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).
- **Figure S3.** Optimized geometries of the $[TaO_3(CO_2)_4]^+$ complex isomers in the singlet and triplet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).
- **Figure S4.** Optimized geometries of the $[TaO_3(CO_2)_5]^+$ complex isomers in the singlet and triplet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).
- Figure S5. Relative energies (in kcal/mol) of the $[TaO_3(CO_2)_n]^+$ (n=2-5) complexes in the singlet and quintet states calculated at the PBE0-D3(BJ)/def2-TZVP level

of theory (bond lengths in Ångströms and bond angles in degrees).

Table S1. Binding energies of successive CO₂ ligands calculated for the singlet and triplet complex isomers at the PBE0-D3(BJ)/def2-TZVP level of theory (in kcal/mol).

Figure S1. Optimized geometries of the $[TaO_3(CO_2)_2]^+$ complex isomers in the singlet and triplet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).

Figure S2. Optimized geometries of the $[TaO_3(CO_2)_3]^+$ complex isomers in the singlet and triplet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).

Figure S3. Optimized geometries of the $[TaO_3(CO_2)_4]^+$ complex isomers in the singlet and triplet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).

Figure S4. Optimized geometries of the $[TaO_3(CO_2)_5]^+$ complex isomers in the singlet and triplet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).

Figure S5. Relative energies (in kcal/mol) of the $[TaO_3(CO_2)_n]^+$ (n=2-5) complexes in the singlet and quintet states calculated at the PBE0-D3(BJ)/def2-TZVP level of theory (bond lengths in Ångströms and bond angles in degrees).

	Binding energy (kcal/mol)	
	singlet	triplet
$TaO_3(CO_2)^+$ - CO_2	29.5	17.8
$TaO_3(CO_2)_2^+$ - CO_2	20.2	15.1
$TaO_{3}(CO_{2})_{3}^{+}-CO_{2}$	12.8	5.8
$TaO_3(CO_2)_4^+$ – CO_2	5.6	5.7

Table S1. Binding energies of successive CO_2 ligands calculated for the singlet and triplet complex isomers at the PBE0-D3(BJ)/def2-TZVP level of theory (in kcal/mol).