Ferroelectric and strain-tuned MoSe₂/Bi₂O₂Se van der Waals

heterostructure with band alignment evolution

Shucao Lu^a, Yanlu Li^{a,*}, Xian Zhao^{b,*}

^aState Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong

University, Jinan, 250100, China

^bCenter for Optics Research and Engineering of Shandong University, Shandong University, Qingdao, 266237, China

Corresponding authors:

Y. L. Li email: liyanlu@sdu.edu.cn

X. Zhao email: <u>xianzhao@sdu.edu.cn</u>

Supporting Information

Fig. S1. Convergence tests for energy (a) and force (b), respectively.

Fig.S2. Band structures of the Bi₂O₂Se monolayer (zipper surface model with 3×4 supercell) with (a) PBE, PBE+SOC and (b) HSE, HSE+SOC approaches.

Fig.S3. Positive and negative charge centers of 3×3 (a) and 3×4 (b) Bi_2O_2Se monolayers.

Fig.S4. Crystal structures of the Bi_2O_2Se monolayer with 2×2 , 3×3 , 3×4 , 4×4 and

 5×5 supercells.

Fig.S5. Electrostatic potentials of the Bi_2O_2Se monolayer with 2×2 , 3×3 , 3×4 ,

 4×4 and 5×5 supercells.

Fig.S6. Band structures of the Bi_2O_2Se monolayer with 2×2 , 3×3 , 3×4 , 4×4 and

 5×5 supercells. The Fermi level is set to zero.

Fig.S7. Crystal structures of the considered Bi₂O₂Se monolayer models.

Fig.S8. Electrostatic potentials of the considered Bi_2O_2Se monolayer models.

Fig.S9. Band structures of the considered Bi₂O₂Se monolayer models. The Fermi level is set to zero.

Fig. S10. Band structures of Bi_2O_2Se and those in $MoSe_2/Bi_2O_2Se(\uparrow)$ and $MoSe_2/Bi_2O_2Se(\downarrow)$ (a), as well as $MoSe_2$ and those in $MoSe_2/Bi_2O_2Se(\uparrow)$ and $MoSe_2/Bi_2O_2Se(\downarrow)$ (b).

Fig.S11. Top- and side-view of the crystal structures, band structures and projected density of states of (a, b) Bi₂O₂Se and (c, d) MoSe₂. The Fermi level is set to zero.

Fig.S12. Variation of the total energies of (a) $MoSe_2/Bi_2O_2Se(\uparrow)$ and (b) $MoSe_2/Bi_2O_2Se(\downarrow)$ at 300 K. The structures before and after the evolution of 10 ps are also shown.

Fig. S13. Spin density of states of $MoSe_2/Bi_2O_2Se(\uparrow)$ and $MoSe_2/Bi_2O_2Se(\downarrow)$.

Fig. S14.The curve of stress vs. strain of the heterostructure under tensile strain (a) and compressive strain (b).

Fig. S15. Spin density of states of MoSe₂/Bi₂O₂Se (\uparrow) under the in-plane strain of (a) $\varepsilon = -4\%$ and (b) $\varepsilon = -2\%$, and of MoSe₂/Bi₂O₂Se (\downarrow) under the in-plane strain of (c) $\varepsilon = -4\%$ and (d) $\varepsilon = -2\%$.

Fig. S16. Projected band structures of $MoSe_2/Bi_2O_2Se(\uparrow)$ under different in-plane strain. The Fermi level set to be zero. Red and blue dots represent the contributions of Bi_2O_2Se and $MoSe_2$ layers, respectively.

Fig. S17. Projected band structures of $MoSe_2/Bi_2O_2Se(\downarrow)$ under different in-plane strain. The Fermi level set to be zero. Red and blue dots represent the contributions of Bi_2O_2Se and $MoSe_2$ layers, respectively.

	Formation energy (eV/atom)
Model 1	-0.912
Model 2	-0.891
Model 3	-0.882
Model 4	-0.897
Model 5	-0.901
Model 6	-0.895

Table S1. Formation energies (eV/atom) of 6 different Bi₂O₂Se monolayer models

Table S2. Binding energies E_b of the considered Bi₂O₂Se monolayer models in Fig. S7.

	$E_{\rm b} ({\rm emV}/{\rm \AA}^2)$		
Model 1	157.43		
Model 2	164.33		
Model 3	167.40		
Model 4	162.77		
Model 5	160.95		
Model 6	163.07		

Table S3. Bond lengths (Å) of Bi-Se in Bi₂O₂Se and Mo-Se in MoSe₂ as a function of biaxial strain for MoSe₂/Bi₂O₂Se(↑) and MoSe₂/Bi₂O₂Se(↓)

	$MoSe_2/Bi_2O_2Se(\uparrow)$		$MoSe_2/Bi_2O_2Se(\downarrow)$	
	d _{Bi-Se}	d _{Mo-Se}	d _{Bi-Se}	d _{Mo-Se}
-8%	2.748	2.475	2.697	2.485
-6%	2.758	2.473	2.826	2.514
-4%	2.863	2.493	2.735	2.496
-2%	2.990	2.496	2.808	2.512
0%	3.019	2.518	2.883	2.529
2%	3.012	2.574	2.905	2.527
4%	3.173	2.600	2.975	2.540
6%	3.128	2.630	3.001	2.551
8%	3.335	2.657	3.178	2.572