Supplementary information

Enhancing proton mobility and thermal stability in phosphate glasses with WO₃: The mixed glass former effect in proton conducting glasses

Aman Sharma,^a Issei Suzuki,^a Tomohiro Ishiyama,^b and Takahisa Omata*^a

^a Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

^b Research Institute for Energy Conservation, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

S1. Proton injection by APS

Figure S1 depicts the depth profiles of C_{Na} and C_{OH} for all glasses after alkali-proton substitution (APS). The profiles indicate that over 90% of Na ions were discharged from the glasses, and a large amount of OH was introduced into the glasses through APS. The electrochemical substitution of Na⁺ ions with protons was successfully conducted, as evidenced by the comparable absolute values of the changes in C_{Na} and C_{OH} , ΔC_{Na} , and ΔC_{OH} , before and after APS.

Fig S1 Depth profiles of C_{Na} (black dots) and C_{OH} (red solid line) for *x*W-glass after alkali-proton substitution (APS). The black and red dashed lines indicate C_{Na} and C_{OH} , respectively, for the *x*W-glass before APS.

Figure S2. XRD patterns of the xW glasses after APS.

Fig S3 Photographic images of the glasses after alkali-proton substitution (APS) for the (a) 2W-, (b) 4W-, (c) 6W-, and (d) 8W-glasses.

S2. Proton conductivity

Fig S4 Electromotive forces (EMFs) for the hydrogen concentration cell as a function of logarithmic hydrogen partial pressure, $p(H_2)$, ratio at 207 °C for xW glass after alkali-proton substitution (APS). The theoretical emfs calculated using the Nernst equation, $E = (RT/2F) \ln(p(H_2)_{high}/p(H_2)_{low})$ are shown as red lines.

Fig S5 Electromotive forces (EMFs) for the hydrogen concentration cell as a function of logarithmic hydrogen partial pressure, $p(H_2)$, ratio at 243 °C for *x*W glass after alkali-proton substitution (APS). The theoretical emfs calculated using the Nernst equation, $E = (RT/2F) \ln(p(H_2)_{high}/p(H_2)_{low})$ are shown as red lines.

Fig S6 Arrhenius plot of the total conductivity (σ_{total}) and partial conductivity due to non-proton contributions ((1- $t_{\rm H}$)× σ_{total}) of the 6W- and 8W- glasses after APS comparing with the total conductivity, i.e., approximately Na⁺ ion conductivity, of the corresponding glasses before APS.

S3. Raman spectra

Assignment ^a	Position / cm^{-1}					Ref.
	2W	4W	6W	8W		
$\delta_{ ext{O-M-O}}$	265	265	265	265	Bending mode of O–M–O of MO ₆ octahedra	S1-S4
$\delta_{ ext{O-M-O}}$ -	380	380	380	380	Bending mode of $O-M-O^-$ of MO_6 octahedra	S1-S4
$\delta_{\mathrm{O-M-O}}$ + $\delta_{\mathrm{O-P-O}}$	508	509	512	514	Combination mode of the O–M–O bending mode with the O–P–O bending mode	S1-S4
$\mathcal{V}_{M\!-\!\mathrm{O}}$	598	596	595	594	Stretching mode of the <i>M</i> –O bond of <i>M</i> O ₆ octahedra	S1-S4
v_{P-O-P} , sym (Q^2)	714	724	738	746	Symmetric stretching mode of the $P-O-P$ bond for the Q^2 unit	S5-S6
<i>V_{M-O}-</i>	917, 950	912, 954	907, 956	902, 956	Stretching mode of the M -O ⁻ bond of MO_6 octahedra	S1-S4
v_{O-P-O} , sym (Q ²)	1163	1159	1157	1153	Symmetric stretching mode of NBOs for the Q^2 unit	S5-S6
VO-P-O, assym, (Q ²)	1246	1244	1242	1240	Asymmetric stretching mode of NBOs for the Q^2 unit	S5-S6

Table S1 Assignment of the Raman bands observed for xW-glass after alkali-proton substitution (APS).

^{*a*} *M* denotes Nb or W

References

- S1M. G. Donato, M. Gagliardi, L. Sirleto, G. Messina, A. A. Lipovskii, D. K. Tagantsev and G. C. Righini, *Appl. Phys. Lett.*, 2010, 97, 231111.
- S2A. El Jazouli, J. C. Viala, C. Parent, G. Le Flem and P. Hagenmuller, *J. Solid State Chem.*, 1988, **73**, 433–439.
- S3K. Fukumi and S. Sakka, J. Mater. Sci., 1988, 23, 2819–2823.
- S4J. M. Jheng and I. E. Wachs, Chem. Mater., 1991, 3, 100-107.
- S5R. K. Brow, J. Non Cryst. Solids, 2000, 263–264, 1–28.
- S6R. K. Brow, D. R. Tallant, J. J. Hudgens, S. W. Martin and A. D. Irwin, J. Non Cryst. Solids, 1994, 177, 221–228.