Role of native point defects and donor impurities on the electrical properties of ZnSb₂O₄: A hybrid density-functional study

(Supplementary Information)

Supparat Charoenphon,¹ Auttasit Tubtimtae,² Isao Watanabe,³ Sirichok Jungthawan,⁴ Jiraroj T-Thienprasert,¹ Adisak Boonchun,¹ and Pakpoom Reunchan^{1*}

¹Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

²Division of Physics, Department of Physical and Material Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand

³Advanced Meson Science Laboratory, Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan

⁴School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand 3000

A. Crystal structure and atomic coordinates of ZnSb₂O₄

POSCAR files for the 28-atom primitive cell and 56-atom supercell of $ZnSb_2O_4$ used in the calculations are attached as a zip file: POSCARs.zip

B. Bader charge of ZnSb₂O₄, Sb₂O₃, and ZnO

	ZnSb ₂ O ₄	Sb ₂ O ₃	Sb ₂ O ₅	ZnO
Sb	+1.86 <i>e</i>	+1.92 <i>e</i>	+3.06e	-
Zn	+1.47 <i>e</i>	-	-	+1.06 <i>e</i>
01	-1.27 <i>e</i>	-1.31 <i>e</i>	-1.19e	-1.06 <i>e</i>
02	-1.32 <i>e</i>	-1.26 <i>e</i>	-1.22 <i>e</i>	-
03	-	-	-1.24 <i>e</i>	-

Table S1 Bader charge analyses on ZnSb₂O₄, Sb₂O₃ and ZnO

C. Formation energy and transition levels of selected defects using 56- and 224-atom supercells.

Defect		Supercell 56 atoms		Supercell 224 atoms	
	q	O-rich	O-poor	O-rich	O-poor
	2+	2.44	1.68	2.54	1.78
Vo	1+	0.09	-0.67	0.19	-0.57
	0	-2.57	-3.33	-2.67	-3.43
Zn _{Sb}	1–	3.41	3.78	3.56	3.94
	0	2.17	2.55	2.31	2.69
Ga _{Zn}	0	2.19	1.82	2.35	1.97
	1+	-2.15	-2.53	-2.00	-2.38

Table S2 Formation energy of predominant defects at the VBM calculated using 56- and 224atom supercells.

Table S3 Calculated transition level of the predominant defect using 56- and 224-atom supercells. All values are referenced to the VBM.

Defect -	Supercell 56 atoms		Supercell 224 atoms	
	q , q^\prime	$\varepsilon(q,q')$	q,q'	$\varepsilon(q,q')$
Vo	2+/0	2.50	2+/0	2.61
Znsb	0/—	1.24	0/—	1.25
Ga _{Zn}	+/0	4.34	+/0	4.35

D. Local atomic structure of intrinsic defects

Vacancies

Figure S1 Local atomic structure of vacancy defects in their stable charge state at the pinned Fermi level; (a) V_{Sb}^{3-} , (b) V_{Zn}^{2-} and (c) V_0^0 . The small red spheres are the O atoms; the large grey spheres and large copper spheres are Zn and Sb, respectively.

Interstitials

Figure S2 Local atomic geometry of interstitial defects in their stable charge state at the pinned Fermi level; (a) Sb_i^{1+} , (b) Zn_i^0 and (c) O_i^0 . The small red spheres are the O atoms; the large grey spheres and large copper spheres are Zn and Sb, respectively.

Figure S3 Local atomic structure of antisite defects in their stable charge state at the pinned Fermi level; (a) Sb_0^{5+} , (b) Zn_0^{4+} , (c) O_{Sb}^{3-} , (d) O_{Zn}^{2-} , (e) Sb_{Zn}^{1+} and (f) Zn_{Sb}^{1-} . The small red spheres are the O atoms; the large grey spheres and large copper spheres are Zn and Sb, respectively.

E. Local atomic structure of Al, In, Ga, and F impurities

In impurities

Figure S4 Local atomic geometry of indium (In) impurities in their stable charge state at the pinned Fermi level; (a) In_{Sb}^{2-} , (b) In_{Zn}^{1+} and (c) In_i^{1+} . The small red spheres are the O atoms; the large grey spheres, large copper spheres and large purple spheres are Zn, Sb, and In, respectively.

Al impurities

Figure S5 Local atomic geometry of aluminum (Al) impurities in their stable charge state at the pinned Fermi level; (a) Al_{Sb}^{0} , (b) Al_{Zn}^{1+} , and (c) Al_{i}^{0} . The small red spheres are the O atoms; the large grey spheres, large copper spheres and large blue spheres are Zn, Sb and Al, respectively.

Ga impurities

Figure S6 Local atomic geometry of gallium (Ga) impurities in $ZnSb_2O_4$ as shown (a) Ga_{Sb}^{2-} , (b) Ga_{Zn}^{1+} and (c) Ga_i^0 . The small red spheres are the O atoms; the large grey spheres, large copper spheres and large green spheres are Zn, Sb and Ga, respectively.

F impurities

Figure S7 Local atomic geometry of fluorine (F) impurities in their stable charge state at the pinned Fermi level (a) F_0^{1+} and (b) F_i^{1-} . The small red spheres are the O atoms; the large grey spheres, large copper spheres and small light purple spheres are Zn, Sb and F respectively.