Supplementary information: First-principles study of thermal transport properties in ferroelectric HfO₂ and related fluorite-structure ferroelectrics

Shenglong Zhang^{a,b}, Shilei Yi^{a,b}, Jia-Yue Yang^{a,b}, Jian Liu^{a,b,*}, Linhua Liu^{a,b,*}

^a School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China ^b Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China

18	idle. SI	. The el	astic co	onstants	(in unit	IS OF GP	a) for f.	luorite-	structure	e lerroe	lectrics.	
	C_{11}	C_{12}	C_{13}	C_{21}	C_{22}	C_{23}	C_{31}	C_{32}	<i>C</i> ₃₃	C_{44}	C_{55}	C_{66}
ZrO ₂	37.2	14.8	11.4	14.8	37.9	12.7	11.4	12.7	36.6	8.4	8.7	12.3
ZrS_2	19.7	7.0	6.8	7.0	13.4	5.5	6.8	5.5	14.1	2.5	4.0	6.5
ZrSe ₂	16.3	5.8	5.5	5.8	11.3	4.7	5.5	4.7	11.8	1.8	2.6	5.4
HfO ₂	39.3	15.3	11.8	15.3	40.9	13.2	11.8	13.2	40.0	9.3	9.5	13.6
HfS_2	20.9	7.2	6.5	7.2	15.1	5.7	6.5	5.7	16.5	2.9	3.8	6.8
$HfSe_2$	17.2	6.0	5.4	6.0	13.1	4.9	5.4	4.9	14.2	2.2	2.8	5.6
$CaCl_2$	6.6	2.9	2.0	2.9	5.7	1.9	2.0	1.9	6.2	1.4	1.5	2.1
$CaBr_2$	5.3	2.3	1.4	2.3	4.6	1.4	1.4	1.4	5.2	1.0	1.1	1.7
CaI_2	4.0	1.7	0.9	1.7	3.7	1.0	0.9	1.0	4.4	0.7	0.8	1.4
$SrCl_2$	5.4	2.6	2.1	2.6	4.5	1.7	2.1	1.7	4.1	1.2	1.3	1.8
SrBr_2	4.6	2.2	1.7	2.2	3.5	1.3	1.7	1.3	3.6	0.9	1.1	1.5
SrI ₂	3.8	1.7	1.3	1.7	2.8	0.9	1.3	0.9	3.2	0.7	0.8	1.2

Table. S1. The elastic constants (in units of GPa) for fluorite-structure ferroelectrics.

Criteria Structure	(i)	(ii)	(iii)	(iv)	(v)	(vi)
ZrO ₂	37.2	1190.8	36944.8	8.4	8.7	12.3
ZrS_2	19.7	215.0	2339.3	2.5	4.0	6.5
ZrSe ₂	16.3	150.6	1374.5	1.8	2.6	5.4
HfO_2	39.3	1373.3	47154.9	9.3	9.5	13.6
HfS_2	20.9	263.8	3568.4	2.9	3.8	6.8
HfSe ₂	17.2	189.3	2210.9	2.2	2.8	5.6
CaCl ₂	6.6	29.2	156.5	1.4	1.5	2.1
CaBr ₂	5.3	19.1	88.9	1.0	1.1	1.7
CaI ₂	4.0	11.9	48.5	0.7	0.8	1.4
$SrCl_2$	5.4	17.5	55.0	1.2	1.3	1.8
SrBr ₂	4.6	11.3	32.4	0.9	1.1	1.5
SrI ₂	3.8	7.8	21.0	0.7	0.8	1.2

Table. S2. The elastic stability criteria for fluorite-structure ferroelectrics.

Criteria (i): $C_{11} > 0$; (ii): $C_{11}C_{22} - C_{12}^2 > 0$;

* Corresponding authors.

E-mail address: Jian.Y.Liu@sdu.edu.cn (Jian Liu); liulinhua@sdu.edu.cn (Linhua Liu)

Fig. S1. The phonon dispersion curves for (a,b) group IV-VI and (c,d) group II-VII fluorite-structure ferroelectrics.

Fig. S2. Ab-initio molecular dynamics (AIMD) simulations at 300 K for fluorite-structure ferroelectrics.

Fig. S3. The temperature-dependent in-plane (perpendicular to the direction of spontaneous polarization P_S), cross-plane (parallel to the direction of P_S) and average thermal conductivities κ_L for (a,b) group IV-VI and (c,d) group II-VII fluorite-

structure ferroelectrics.

Fig. S4. Normalized cumulative thermal conductivity $\tilde{\kappa}_{cum}$ for fluorite-structure ferroelectrics.