Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Electronic Supporting Information (ESI) for the paper

Combined crossed-beams and theoretical study of the O(³P, ¹D) + acrylonitrile (CH₂CHCN) reactions and implications for combustion and extraterrestrial environments

Giacomo Pannacci,^a Luca Mancini,^a Gianmarco Vanuzzo,^a Pengxiao Liang,^a Demian Marchione,^a Marzio Rosi,^b Piergiorgio Casavecchia,^a and Nadia Balucani^{*a}

^a Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy ^b Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, Perugia, Italy **Table T1**: List of all the possible combination of products identified for the $O(^{3}P, ^{1}D) + CH_{2}CHCN$ reactions evaluated at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory.

$O(^{3}P) + CH_{2}CHCN$	\longrightarrow CH ₂ CHN + CO	- 179 kJ/mol
	\longrightarrow CH ₂ CN + HCO	- 126 kJ/mol
	\longrightarrow CH ₂ CO + HCN	- 119 kJ/mol
	\longrightarrow COCN + CH ₃	- 69 kJ/mol
	—> HCOCHCN + H	- 62 kJ/mol
	\longrightarrow CH ₂ O + HCCN	- 58 kJ/mol
	\longrightarrow OCCH ₂ CN + H	- 56 kJ/mol
	—> HCOCH + HCN	- 40 kJ/mol
	\longrightarrow CH ₂ COCN + H	- 36 kJ/mol
	\longrightarrow CH ₂ CH + NCO	- 1 kJ/mol
	\longrightarrow CH ₃ CO + CN	+ 4 kJ/mol
	\longrightarrow OCHCN + CH ₂	+ 5 kJ/mol
	—> CHCHCN + OH	+ 27 kJ/mol
$O(^{1}D) + CH_{2}CHCN$	\longrightarrow CH ₃ CN + CO	- 653 kJ/mol
	\longrightarrow CH ₂ CNH + CO	-538 kJ/mol
	\longrightarrow OCCHCN + H ₂	- 509 kJ/mol
	\longrightarrow HNCO + H ₂ CC	- 322 kJ/mol
	\longrightarrow CH ₂ CN + HCO	- 316 kJ/mol
	\longrightarrow COCN + CH ₃	- 259 kJ/mol
	—> HCOCHCN + H	- 252 kJ/mol
	\longrightarrow OCCH ₂ CN + H	- 246 kJ/mol
	\longrightarrow CH ₂ COCN + H	- 226 kJ/mol
	\longrightarrow CH ₂ NC + HCO	- 218 kJ/mol
	\longrightarrow HCOCCN + H ₂	- 209 kJ/mol
	\longrightarrow CH ₂ CH + OCN	- 192 kJ/mol
	\longrightarrow CH ₂ CNCO + H	- 180 kJ/mol
	—> t-HCOCHNC+H	- 164 kJ/mol
	—> c-HCOCHNC+ H	- 159 kJ/mol
	\longrightarrow OCCH ₂ NC + H	- 152 kJ/mol
	\longrightarrow <i>c</i> -CH ₂ (O)CCN + H	- 90 kJ/mol
	\longrightarrow <i>c</i> -CH(OCH)CN + H	- 60 kJ/mol
	\longrightarrow <i>c</i> -CH ₂ CCC(O)N + H	+ 109 kJ/mol

Fig. S1: Schematic representation of the global PES for the reaction O(³P) + CH₂CHCN, with the energies evaluated at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory.

Fig. S2: Schematic representation of the global PES for the reaction $O(^{1}D) + CH_{2}CHCN$, with the energies evaluated at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory.

Fig. S3: Schematic representation of the isomerisation process identified in the singlet PES for the reaction $O(^{1}D) + CH_{2}CHCN$.

Fig. S4: Schematic representation of the singlet PES reporting the product channels with exit barrier for the reaction $O(^{1}D) + CH_{2}CHCN$.

Fig. S5: Schematic representation of the singlet PES reporting the product channels without exit barrier for the reaction $O(^{1}D) + CH_{2}CHCN$.

Fig. S6: B3LYP optimized geometries of the most important transition states identified along the triplet/ singlet PESs for the $O({}^{3}P,{}^{1}D)$ + acrylonitrile reactions. The angles (°) are indicated in red, while the bond lengths (Å) are indicated in black.

Fig. S7: B3LYP optimized geometries of the most important minima identified along the triplet/singlet PESs for the $O(^{3}P,^{1}D)$ + acrylonitrile reactions. The angles (°) are indicated in red, while the bond lengths (Å) are indicated in black.

Fig. S8: B3LYP optimized geometries of the most important products identified on the triplet/singlet PESs for the $O(^{3}P,^{1}D)$ + acrylonitrile reactions. The angles (°) are indicated in red, while the bond lengths (Å) are indicated in black.

Table T2: Relative energies (kJ/mol, OK) of all the possible stationary points, including minima and transition states, identified in both the singlet and triplet PES for the reaction $O(^{3}P) + CH_{2}CHCN$, evaluated at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory.

O(³ P) + CH ₂ CHCN	0 kJ/mol	3TS31	-27 kJ/mol
³ MIN1	-5 kJ/mol	3TS32	-72 kJ/mol
³ MIN2	-115 kJ/mol	³ TS33	-122 kJ/mol
³ MIN3	-108 kJ/mol	³ TS34	+37 kJ/mol
³ MIN4	-176 kJ/mol	³ TS35	+72 kJ/mol
³ MIN5	-71 kJ/mol	³ TS42	+117 kJ/mol
³ MIN6	-179 kJ/mol	³ TS43	+43 kJ/mol
³ MIN7	-133 kJ/mol	O(1D) + CH ₂ CHCN	+190 kJ/mol
³ MIN8	-157 kJ/mol	¹ MIN1	-322 kJ/mol
³ MIN9	-140 kJ/mol	¹ MIN2	-119 kJ/mol
³ MIN10	-105 kJ/mol	¹ MIN3	-427 kJ/mol
³ MIN11	-154 kJ/mol	¹ MIN4	-424 kJ/mol
³ MIN12	-128 kJ/mol	¹ MIN7	-420 kJ/mol
³ TS1	+ 8 kJ/mol	¹ MIN9	-334 kJ/mol
³ TS2	-25 kJ/mol	¹ MIN10	-330 kJ/mol
³ TS3	-34 kJ/mol	¹ MIN12	-313 kJ/mol
³ TS4	-23 kJ/mol	¹ MIN13	-25 kJ/mol
³ TS5	+56 kJ/mol	¹ MIN14	-430 kJ/mol
³ TS6	+5 kJ/mol	¹ MIN15	-220 kJ/mol
³ TS7	-65 kJ/mol	¹ MIN16	-409 kJ/mol
³ TS8	+126 kJ/mol	¹ TS1	-108 kJ/mol
³ TS9	-134 kJ/mol	¹ TS2	-96 kJ/mol
3TS10	+29 kJ/mol	¹ TS3	-222 kJ/mol
3TS11	+51 kJ/mol	¹ TS4	-124 kJ/mol

3TS12	-25 kJ/mol	¹ TS5	-103 kJ/mol
³ TS13	+37 kJ/mol	¹ TS6	-58 kJ/mol
³ TS14	+1 kJ/mol	¹ TS7	-318 kJ/mol
³ TS15	-19 kJ/mol	¹ TS8	-179 kJ/mol
³ TS16	+22 kJ/mol	¹ TS9	+13 kJ/mol
³ TS17	+4 kJ/mol	¹ TS10	-102 kJ/mol
³ TS18	0 kJ/mol	¹ TS11	-58 kJ/mol
³ TS19	-14 kJ/mol	¹ TS12	-175 kJ/mol
³ TS20	-138 kJ/mol	¹ TS13	-102 kJ/mol
³ TS21	-46 kJ/mol	¹ TS14	-418 kJ/mol
³ TS22	+27 kJ/mol	¹ TS15	-50 kJ/mol
³ TS23	-94 kJ/mol	¹ TS16	-62 kJ/mol
³ TS24	+23 kJ/mol	¹ TS17	-9 kJ/mol
³ TS25	-101 kJ/mol	¹ TS18	+14 kJ/mol
³ TS27	-19 kJ/mol	¹ TS19	+180 kJ/mol
3TS28	-60 kJ/mol		