Electronic Supplementary Information

Fluorination Effects Probed in 4-fluoroacetophenone and Its

Monohydrate

Xiujuan Wang,^a Jiayi Li,^a Juncheng Lei,^a Xuefang Xu,^{*a} Yang Zheng,^a Junhua Chen,^{*b} Xiao Tian,^a and Qian Gou^{*a,c}

^a School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55,

401331, Chongqing, China.

^b School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China

^c Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55,

401331, Chongqing, China.

Corresponding Author

*Qian Gou, E-mail: <u>qian.gou@cqu.edu.cn;</u> *Xuefang Xu, E-mail: <u>xuefang_xu@cqu.edu.cm;</u> *Junhua Chen, E-mail: <u>chenjh@gmc.edu.cn.</u>

Contents:

Fig. S1: Structure, principal axes of inertia and heavy atomic labels of the 4FAP monomer optimized at the MP2/6-311++G(d,p) level of theory.

<u>**Table S1**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of 4FAP. <u>**Table S2**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C1 isotopologue of 4FAP.

<u>**Table S3**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C2 isotopologue of 4FAP.

<u>**Table S4**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C3 isotopologue of 4FAP.

<u>**Table S5**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C4 isotopologue of 4FAP.

<u>**Table S6**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C5 isotopologue of 4FAP.

<u>**Table S7**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C6 isotopologue of 4FAP.

<u>**Table S8**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C7 isotopologue of 4FAP.

<u>**Table S9**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C8 isotopologue of 4FAP.

<u>Table S10</u>: Comparison of the *ab* initio (r_e), the substituted (r_s) and the semi-experimental equilibrium ($r_{s\to e}^{SE}$) coordinates of carbon atoms in 4FAP.

<u>Table S11</u>: Theoretical, experimental and semi-experimental rotational constants of all nine isotopologues of 4FAP.

<u>Table S12:</u> Theoretical, experimental and semi-experimental rotational constants of all nine isotopologues of AP.

<u>**Table S13**</u>: Geometries of the carbon skeletons of the 4FAP and AP. (r_{e} , r_{s} and $r_{s \rightarrow e}^{SE}$ structures)

<u>**Table S14**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the isomer I of 4FAP-H₂O.

<u>**Table S15</u>**: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer I of 4FAP-H₂¹⁸O.</u>

<u>**Table S16**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer I of 4FAP-HOD.

<u>**Table S17**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer I of 4FAP-DOH.

<u>**Table S18**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer I of 4FAP-D₂O.

<u>**Table S19**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-H₂O.

<u>**Table S20</u>**: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-H₂¹⁸O.</u>

<u>**Table S21**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-HOD.

Table S22: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the

Isomer II of 4FAP-DOH.

<u>**Table S23**</u>: Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-D₂O.

Fig. S2: The structural comparison of 4FAP and isomer II of 4FAP-H₂O in the distance (Å) between the H atoms of -CH₃ and the O atoms of -C=O.

<u>Table S24</u>: Transition frequencies and intensities of isomer I and isomer II of the $4FAP-H_2O$ complex for the population ratio.

Table S25: The r_s and r_e coordinates of the oxygen atom of water in 4FAP-H₂O.

Table S26: Theoretical, experimental and semi-experimental rotational constants of $H_2^{18}O$, DOH (with D participating in the HB), HOD, and D_2O isotopologues of isomers I of the 4FAP- H_2O .

Table S27: Theoretical, experimental and semi-experimental rotational constants of H₂¹⁸O, DOH

(with D participating in the HB), HOD, and D₂O isotopologues of isomers II of the 4FAP-H₂O.

Fig. S1. Structure, principal axes of inertia and heavy atomic labels of the 4FAP monomer optimized at the MP2/6-311++G(d,p) level of theory.

J	$K_{\rm a}'$	K_{c}'	<i>J</i> ''	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	$v_{\rm obs-calc}/kHz$
4	0	4	3	0	3	А	5613.2017	-2.1
4	0	4	3	0	3	Е	5613.2017	1.5
4	1	4	3	1	3	А	5385.3023	-0.8
4	1	4	3	1	3	Е	5385.3023	1.1
4	1	3	3	1	2	А	5910.3442	3.0
4	1	3	3	1	2	Е	5910.3376	2.6
4	2	3	3	2	2	А	5653.1607	-0.3
4	2	3	3	2	2	Е	5653.1888	1.1
4	2	2	3	2	1	А	5696.5106	-1.1
4	2	2	3	2	1	Е	5696.4782	1.8
4	3	2	3	3	1	А	5665.0171	-1.3
4	3	2	3	3	1	Е	5665.2578	3.6
4	3	1	3	3	0	А	5665.5620	0.1
4	3	1	3	3	0	Е	5665.3187	1.0
5	0	5	4	0	4	А	6984.8343	-0.5
5	0	5	4	0	4	Е	6984.8343	3.7
5	1	5	4	1	4	А	6724.0404	-1.4
5	1	5	4	1	4	Е	6724.0404	0.9
5	1	4	4	1	3	А	7379.1204	1.8
5	1	4	4	1	3	Е	7379.1099	-1.2
5	2	4	4	2	3	А	7060.9999	3.6
5	2	4	4	2	3	Е	7060.9999	-0.2
5	2	3	4	2	2	А	7146.8426	0.5
5	2	3	4	2	2	Е	7146.8264	-0.8
5	3	3	4	3	2	А	7084.7637	0.7
5	3	3	4	3	2	Е	7085.2789	-0.6
5	3	2	4	3	1	А	7086.6609	-1.5
5	3	2	4	3	1	Е	7086.1363	1.0
5	4	2	4	4	1	А	7080.3892	-0.7
5	4	2	4	4	1	Е	7080.3892	-2.3
5	4	1	4	4	0	А	7080.4067	4.3
5	4	1	4	4	0	Е	7080.3892	-1.1
6	0	6	5	0	5	А	8337.1386	-2.8
6	0	6	5	0	5	Е	8337.1386	1.7
6	1	6	5	1	5	А	8058.1936	-1.2
6	1	6	5	1	5	Е	8058.1936	1.5
6	1	5	5	1	4	А	8841.5153	1.7
6	1	5	5	1	4	Е	8841.5037	-1.0
6	2	5	5	2	4	А	8465.2047	-1.3
6	2	5	5	2	4	Е	8465.2047	1.3
6	2	4	5	2	3	А	8612.8391	1.9
6	2	4	5	2	3	Е	8612.8234	-2.8

Table S1 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of 4FAP.

6	3	4	5	3	3	А	8506.3617	-0.2
6	3	4	5	3	3	Е	8506.7696	0.4
6	3	3	5	3	2	А	8511.4134	0.3
6	3	3	5	3	2	Е	8510.9934	0.5
6	4	3	5	4	2	А	8499.6479	-0.6
6	4	3	5	4	2	Е	8499.6698	-1.1
6	4	2	5	4	1	А	8499.7000	-4.7
6	4	2	5	4	1	Е	8499.6698	0.1
7	0	7	6	0	6	А	9668.9394	-2.1
7	0	7	6	0	6	Е	9668.9394	2.5
7	1	7	6	1	6	А	9387.2896	-1.3
7	1	7	6	1	6	Е	9387.2896	1.7
7	1	6	6	1	5	А	10295.7410	1.8
7	1	6	6	1	5	Е	10295.7280	-1.2
7	2	6	6	2	5	А	9865.0829	-2.6
7	2	6	6	2	5	Е	9865.0829	2.8
7	2	5	6	2	4	А	10094.9213	1.7
7	2	5	6	2	4	Е	10094.9070	-1.8
7	3	5	6	3	4	А	9929.7397	0.1
7	3	5	6	3	4	Е	9929.9015	0.5
7	3	4	6	3	3	А	9941.0518	-1.7
7	3	4	6	3	3	Е	9940.8768	-0.2
7	4	4	6	4	3	А	9920.6127	-1.6
7	4	4	6	4	3	Е	9920.7027	4.9
7	4	3	6	4	2	А	9920.7964	-4.8
7	4	3	6	4	2	Е	9920.7011	-1.8
8	0	8	7	0	7	А	10981.0574	-2.3
8	0	8	7	0	7	Е	10981.0574	2.3
8	1	8	7	1	7	А	10711.0634	-1.5
8	1	8	7	1	7	Е	10711.0634	1.8
8	1	7	7	1	6	А	11739.7484	2.4
8	1	7	7	1	6	Е	11739.7337	-1.1
8	2	7	7	2	6	А	11259.9534	1.1
8	2	7	7	2	6	Е	11259.9451	-0.4
8	2	6	7	2	5	А	11591.4755	1.4
8	2	6	7	2	5	Е	11591.4610	-1.2
8	3	6	7	3	5	А	11354.6138	-0.9
8	3	6	7	3	5	Е	11354.6713	0.8
8	3	5	7	3	4	А	11377.0823	-2.0
8	3	5	7	3	4	Е	11377.0113	0.4
8	4	5	7	4	4	А	11343.5304	-1.6
8	4	5	7	4	4	Е	11343.7481	-1.0
8	4	4	7	4	3	А	11344.0440	-1.0
0	1	4	7	4	3	Е	11343.8110	0.2

9	0	9	8	0	8	А	12276.3025	-1.4
9	0	9	8	0	8	Е	12276.3025	3.0
9	1	9	8	1	8	А	12029.4564	-1.5
9	1	9	8	1	8	Е	12029.4564	2.0
9	1	8	8	1	7	А	13171.2218	3.0
9	1	8	8	1	7	Е	13171.2059	-0.8
9	2	8	8	2	7	А	12649.1609	1.4
9	2	8	8	2	7	Е	12649.1511	-0.4
9	2	7	8	2	6	А	13098.8534	1.1
9	2	7	8	2	6	Е	13098.8371	-1.7
9	3	7	8	3	6	А	12780.4986	-0.5
9	3	7	8	3	6	Е	12780.5156	-0.8
9	3	6	8	3	5	А	12821.2669	-1.7
9	3	6	8	3	5	Е	12821.2320	0.9
9	4	6	8	4	5	А	12768.6088	-2.1
9	4	6	8	4	5	Е	12769.0180	-0.4
9	4	5	8	4	4	А	12769.8361	-2.1
9	4	5	8	4	4	Е	12769.4113	0.0
10	0	10	9	0	9	А	13558.8483	-1.8
10	0	10	9	0	9	Е	13558.8483	2.5
10	1	10	9	1	9	А	13342.6007	-1.8
10	1	10	9	1	9	Е	13342.6007	1.8
10	1	9	9	1	8	А	14587.6299	2.3
10	1	9	9	1	8	Е	14587.6150	0.3
10	2	9	9	2	8	А	14032.1130	2.1
10	2	9	9	2	8	Е	14032.1022	0.1
10	2	8	9	2	7	А	14611.9661	2.2
10	2	8	9	2	7	Е	14611.9454	-3.4
10	3	8	9	3	7	А	14206.7152	0.9
10	3	8	9	3	7	Е	14206.7152	-0.7
10	3	7	9	3	6	А	14275.5758	-3.2
10	3	7	9	3	6	Е	14275.5556	1.0
10	4	7	9	4	6	А	14196.0069	-1.4
10	4	7	9	4	6	Е	14196.4945	0.4
10	4	6	9	4	5	А	14198.6548	-1.4
10	4	6	9	4	5	Е	14198.1478	-0.8
11	0	11	10	0	10	А	14833.2527	-2.7
11	0	11	10	0	10	Е	14833.2527	1.4
11	1	11	10	1	10	А	14650.7948	-0.4
11	1	11	10	1	10	Е	14650.7948	3.3
11	1	10	10	1	9	А	15986.3686	3.0
11	1	10	10	1	9	Е	15986.3511	-1.1
11	2	10	10	2	9	А	15408.2811	0.5
11	2	10	10	2	9	Е	15408.2709	-0.2

11	2	9	10	2	8	А	16125.2343	-0.4
11	2	9	10	2	8	Е	16125.2173	-0.5
11	3	9	10	3	8	А	15632.4158	-4.1
11	3	9	10	3	8	Е	15632.4158	1.6
12	0	12	11	0	11	А	16103.5377	-2.4
12	0	12	11	0	11	Е	16103.5377	1.6
12	1	12	11	1	11	А	15954.4557	-1.6
12	1	12	11	1	11	Е	15954.4557	2.2
13	0	13	12	0	12	А	17372.6703	-0.9
13	0	13	12	0	12	Е	17372.6703	3.0
13	1	13	12	1	12	А	17254.0910	-1.3
13	1	13	12	1	12	Е	17254.0910	2.6
2	1	2	1	0	1	А	5597.2451	8.7
2	1	2	1	0	1	Е	5597.2233	-0.1
2	2	1	1	1	0	А	11660.7282	-1.8
2	2	1	1	1	0	Е	11660.4725	2.3
2	2	0	1	1	1	А	11796.4911	1.4
2	2	0	1	1	1	Е	11796.6746	0.6
3	2	2	2	1	1	А	12943.4694	-3.9
3	2	2	2	1	1	Е	12943.3915	2.3
3	3	1	2	2	0	А	19070.9753	1.7
3	3	1	2	2	0	Е	19069.2255	-1.9
3	3	0	2	2	1	А	19075.4295	1.2
3	3	0	2	2	1	Е	19077.0482	-1.3
4	1	4	3	0	3	А	7976.2784	7.0
4	1	4	3	0	3	Е	7976.2590	-1.2
4	2	3	3	1	2	А	14159.8986	1.5
4	2	3	3	1	2	Е	14159.8447	0.1
5	1	5	4	0	4	А	9087.1155	6.2
5	1	5	4	0	4	Е	9087.0984	-1.1
5	2	4	4	1	3	А	15310.5570	4.8
5	2	4	4	1	3	Е	15310.5099	0.2
6	0	6	5	1	5	А	6234.8685	1.7
6	0	6	5	1	5	Е	6234.8685	0.5
6	1	6	5	0	5	А	10160.4731	3.8
6	1	6	5	0	5	Е	10160.4601	-0.9
6	2	5	5	1	4	А	16396.6409	1.3
6	2	5	5	1	4	Е	16396.6027	0.7
6	2	4	5	1	5	А	18663.6460	-7.3
6	2	4	5	1	5	Е	18663.6046	0.8
7	0	7	6	1	6	А	7845.6136	0.1
7	0	7	6	1	6	Е	7845.6136	0.8
7	1	7	6	0	6	А	11210.6113	-7.6
7	1	7	6	0	6	Е	11210.6113	-0.7

7	2	6	6	1	5	А	17420.2085	-2.9
7	2	6	6	1	5	Е	17420.1791	1.8
8	0	8	7	1	7	А	9439.3813	-1.1
8	0	8	7	1	7	Е	9439.3813	1.3
8	1	8	7	0	7	А	12252.7369	-5.4
8	1	8	7	0	7	Е	12252.7369	0.1
8	2	7	7	1	6	А	18384.4197	-4.8
8	2	7	7	1	6	Е	18384.3965	2.9
9	0	9	8	1	8	А	11004.6198	-1.6
9	0	9	8	1	8	Е	11004.6198	2.0
9	1	9	8	0	8	А	13301.1370	-3.4
9	1	9	8	0	8	Е	13301.1370	1.0
9	2	8	8	1	7	А	19293.8340	-4.0
9	2	8	8	1	7	Е	19293.8141	3.7
10	0	10	9	1	9	А	12534.0116	-2.1
10	0	10	9	1	9	Е	12534.0116	2.3
10	1	10	9	0	9	А	14367.4369	-2.1
10	1	10	9	0	9	Е	14367.4369	1.4
11	0	11	10	1	10	А	14024.6647	-1.8
11	0	11	10	1	10	Е	14024.6647	3.1
11	1	11	10	0	10	А	15459.3825	-1.5
11	1	11	10	0	10	Е	15459.3825	1.4
12	0	12	11	1	11	А	15477.4096	-1.8
12	0	12	11	1	11	Е	15477.4096	3.3
12	1	12	11	0	11	А	16580.5847	-1.3
12	1	12	11	0	11	Е	16580.5847	1.4
13	0	13	12	1	12	А	16895.6244	-0.9
13	0	13	12	1	12	Е	16895.6244	4.2
13	1	13	12	0	12	А	17731.1353	-2.9
13	1	13	12	0	12	Е	17731.1353	-0.3
14	0	14	13	1	13	А	18284.0214	-2.1
14	0	14	13	1	13	Е	18284.0214	2.9
14	1	14	13	0	13	А	18908.7079	-1.9
14	1	14	13	0	13	Е	18908.7079	0.7

J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	$v_{\rm obs-calc}/kHz$
6	0	6	5	0	5	А	8331.8457	-1.3
6	0	6	5	0	5	Е	8331.8457	3.2
7	0	7	6	0	6	А	9662.9171	6.3
7	0	7	6	0	6	Е	9662.9062	0.0
8	0	8	7	0	7	А	10974.3156	-9.1
8	0	8	7	0	7	Е	10974.3156	-4.5
2	1	2	1	0	1	А	5596.1890	8.4
2	1	2	1	0	1	Е	5596.1663	-1.2
3	1	3	2	0	2	А	6814.2294	9.8
3	1	3	2	0	2	Е	6814.2033	-4.1
3	2	2	2	1	1	А	12942.6186	-2.5
3	2	2	2	1	1	Е	12942.5312	-5.6
4	1	4	3	0	3	А	7973.9204	0.1
4	1	4	3	0	3	Е	7973.8975	-1.6
4	2	3	3	1	2	А	14158.3650	0.4
4	2	3	3	1	2	Е	14158.3059	-6.1
5	1	5	4	0	4	А	9084.1780	5.9
5	1	5	4	0	4	Е	9084.1602	-2.0
5	2	4	4	1	3	А	15308.4429	3.8
5	2	4	4	1	3	Е	15308.3808	-5.8
6	1	6	5	0	5	А	10156.9667	2.3
6	1	6	5	0	5	Е	10156.9549	-1.1
7	1	7	6	0	6	А	11206.5151	-2.7
7	1	7	6	0	6	Е	11206.5036	-7.3
7	0	7	6	1	6	А	7837.7944	1.0
7	0	7	6	1	6	Е	7837.7944	1.7
8	1	8	7	0	7	А	12247.9898	5.9
8	1	8	7	0	7	Е	12247.9780	-0.4
8	0	8	7	1	7	А	9430.7164	-1.4
8	0	8	7	1	7	Е	9430.7164	0.9
9	1	9	8	0	8	А	13295.6400	-3.2
9	1	9	8	0	8	Е	13295.6400	1.1
9	0	9	8	1	8	А	10995.2172	-1.8
9	0	9	8	1	8	Е	10995.2172	1.7

Table S2 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C1 isotopologue of 4FAP.

J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	v _{obs-calc} /kHz
6	0	6	5	0	5	А	8325.6816	-4.0
6	0	6	5	0	5	Е	8325.6816	0.5
7	0	7	6	0	6	А	9654.0914	-4.2
7	0	7	6	0	6	Е	9654.0914	0.4
8	0	8	7	0	7	А	10962.5766	-3.6
8	0	8	7	0	7	Е	10962.5766	0.9
2	2	1	1	1	0	А	11542.9670	-4.1
2	2	1	1	1	0	Е	11542.7218	-1.1
3	1	3	2	0	2	А	6770.6325	-8.2
3	1	3	2	0	2	Е	6770.6325	3.7
4	1	4	3	0	3	А	7927.6802	9.0
4	1	4	3	0	3	Е	7927.6593	-1.0
4	2	3	3	1	2	А	14036.7893	4.0
4	2	3	3	1	2	Е	14036.7347	0.3
5	1	5	4	0	4	А	9035.1562	8.8
5	1	5	4	0	4	Е	9035.1366	-1.2
6	1	6	5	0	5	А	10105.4248	3.3
6	1	6	5	0	5	Е	10105.4115	-1.9
6	0	6	5	1	5	А	6266.8847	1.7
6	0	6	5	1	5	Е	6266.8847	0.7
7	1	7	6	0	6	А	11153.1304	-6.9
7	1	7	6	0	6	Е	11153.1304	-0.2
7	0	7	6	1	6	А	7874.3583	-1.4
7	0	7	6	1	6	Е	7874.3583	-0.4
8	1	8	7	0	7	А	12193.7779	-4.3
8	1	8	7	0	7	Е	12193.7779	1.1
8	0	8	7	1	7	А	9463.5386	0.1
8	0	8	7	1	7	Е	9463.5386	2.6
9	1	9	8	0	8	А	13241.7946	0.1
9	1	9	8	0	8	Е	13241.7946	4.3
9	0	9	8	1	8	А	11022.9799	-1.4
9	0	9	8	1	8	Е	11022.9799	2.3

Table S3 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C2 isotopologue of 4FAP.

J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	$v_{\rm obs-calc}/kHz$
5	0	5	4	0	4	А	6957.9828	-3.1
5	0	5	4	0	4	Е	6957.9828	1.0
6	0	6	5	0	5	А	8304.1677	-3.1
6	0	6	5	0	5	Е	8304.1677	1.4
7	0	7	6	0	6	А	9629.6122	-0.7
7	0	7	6	0	6	Е	9629.6122	3.9
8	0	8	7	0	7	А	10935.2570	-2.5
8	0	8	7	0	7	Е	10935.2570	2.0
2	2	1	1	1	0	А	11543.6703	-8.3
2	2	1	1	1	0	Е	11543.4249	-3.1
3	1	3	2	0	2	А	6763.9295	2.7
3	1	3	2	0	2	Е	6763.9035	-1.3
4	1	4	3	0	3	А	7918.4551	6.7
4	1	4	3	0	3	Е	7918.4352	-2.3
4	2	3	3	1	2	А	14031.6096	2.9
4	2	3	3	1	2	Е	14031.5584	2.8
5	1	5	4	0	4	А	9023.6008	5.1
5	1	5	4	0	4	Е	9023.5845	-1.6
6	1	6	5	0	5	А	10091.5709	4.5
6	1	6	5	0	5	Е	10091.5555	-2.8
6	0	6	5	1	5	А	6238.5575	-3.5
6	0	6	5	1	5	Е	6238.5525	-9.6
7	1	7	6	0	6	А	11136.8496	1.0
7	1	7	6	0	6	Е	11136.8386	-3.3
7	0	7	6	1	6	А	7842.2178	0.6
7	0	7	6	1	6	Е	7842.2178	1.4
8	1	8	7	0	7	А	12174.7931	-0.9
8	1	8	7	0	7	Е	12174.7875	-1.2
8	0	8	7	1	7	А	9428.0252	1.4
8	0	8	7	1	7	Е	9428.0252	3.8
9	1	9	8	0	8	А	13219.7541	-4.6
9	1	9	8	0	8	Е	13219.7541	-0.4
9	0	9	8	1	8	А	10984.5396	-0.5
9	0	9	8	1	8	Е	10984.5396	3.1

 Table S4 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C3 isotopologue of 4FAP.

J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	v _{obs-calc} /kHz
5	0	5	4	0	4	А	6945.4437	-4.1
5	0	5	4	0	4	Е	6945.4437	0.1
6	0	6	5	0	5	А	8290.8953	3.2
6	0	6	5	0	5	Е	8290.8857	-1.9
7	0	7	6	0	6	А	9616.2071	-2.3
7	0	7	6	0	6	Е	9616.2022	-2.6
7	1	7	6	1	6	А	9335.7978	-3.1
7	1	7	6	1	6	Е	9335.7978	-0.1
8	0	8	7	0	7	А	10922.1147	-2.7
8	0	8	7	0	7	Е	10922.1147	1.8
2	2	1	1	1	0	А	11657.6625	-5.5
2	2	1	1	1	0	Е	11657.4016	-1.6
3	1	3	2	0	2	А	6799.8878	6.3
3	1	3	2	0	2	Е	6799.8675	-1.8
4	1	4	3	0	3	А	7954.7389	7.0
4	1	4	3	0	3	Е	7954.7190	-1.8
4	2	3	3	1	2	А	14144.0868	1.5
4	2	3	3	1	2	Е	14144.0360	3.5
5	1	5	4	0	4	А	9060.4781	2.5
5	1	5	4	0	4	Е	9060.4621	-3.6
6	1	6	5	0	5	А	10128.8247	2.3
6	1	6	5	0	5	Е	10128.8119	-2.1
7	1	7	6	0	6	А	11173.7370	5.8
7	1	7	6	0	6	Е	11173.7211	-3.2
7	0	7	6	1	6	А	7778.2802	1.1
7	0	7	6	1	6	Е	7778.2802	1.8
8	1	8	7	0	7	А	12210.1145	3.5
8	1	8	7	0	7	Е	12210.1040	-1.5
8	0	8	7	1	7	А	9364.5935	-2.1
8	0	8	7	1	7	Е	9364.5935	0.1
9	1	9	8	0	8	А	13252.0857	-0.5
9	1	9	8	0	8	Е	13252.0788	-3.0
9	0	9	8	1	8	А	10923.2778	0.1
9	0	9	8	1	8	Е	10923.2778	3.5

Table S5 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C4 isotopologue of 4FAP.

J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{\rm MHz}$	$v_{\rm obs-calc}/kHz$
6	0	6	5	0	5	А	8304.6475	-1.4
6	0	6	5	0	5	Е	8304.6475	3.0
7	0	7	6	0	6	А	9630.0855	-2.1
7	0	7	6	0	6	Е	9630.0855	2.4
8	0	8	7	0	7	А	10935.7136	-2.6
8	0	8	7	0	7	Е	10935.7136	1.9
2	2	1	1	1	0	А	11539.1724	-8.3
2	2	1	1	1	0	Е	11538.9301	-0.5
3	1	3	2	0	2	А	6762.4884	6.8
3	1	3	2	0	2	Е	6762.4679	-1.8
3	2	2	2	1	1	А	12816.4727	7.2
3	2	2	2	1	1	Е	12816.3849	0.8
4	1	4	3	0	3	А	7916.9988	4.6
4	1	4	3	0	3	Е	7916.9808	-2.5
4	2	3	3	1	2	А	14027.1574	2.8
4	2	3	3	1	2	Е	14027.1032	-0.4
5	1	5	4	0	4	А	9022.1178	5.9
5	1	5	4	0	4	Е	9022.1013	-1.0
5	2	4	4	1	3	А	15171.8093	-4.1
5	2	4	4	1	3	Е	15171.7712	-0.8
6	1	6	5	0	5	А	10090.0686	5.9
6	1	6	5	0	5	Е	10090.0542	-0.3
7	1	7	6	0	6	А	11135.3485	-6.9
7	1	7	6	0	6	Е	11135.3485	-0.3
7	0	7	6	1	6	А	7844.6730	-0.9
7	0	7	6	1	6	Е	7844.6730	0.0
8	1	8	7	0	7	А	12173.3551	-4.2
8	1	8	7	0	7	Е	12173.3551	1.1
8	0	8	7	1	7	А	9430.4471	-1.3
8	0	8	7	1	7	Е	9430.4471	1.2
9	1	9	8	0	8	А	13218.4371	-2.0
9	1	9	8	0	8	Е	13218.4378	2.9
9	0	9	8	1	8	А	10986.8655	-2.1
9	0	9	8	1	8	Е	10986.8655	1.5

 Table S6 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C5 isotopologue of 4FAP.

J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{\rm MHz}$	v _{obs-calc} /kHz
5	0	5	4	0	4	А	6976.5462	-4.9
5	0	5	4	0	4	Е	6976.5462	-0.7
6	0	6	5	0	5	А	8325.9600	-2.5
6	0	6	5	0	5	Е	8325.9600	2.0
7	0	7	6	0	6	А	9654.4510	-1.8
7	0	7	6	0	6	Е	9654.4510	2.8
8	0	8	7	0	7	А	10963.0203	-2.9
8	0	8	7	0	7	Е	10963.0203	1.6
2	2	1	1	1	0	А	11545.6704	-2.2
2	2	1	1	1	0	Е	11545.4239	-0.2
3	1	3	2	0	2	А	6771.6983	2.9
3	1	3	2	0	2	Е	6771.6705	-2.9
4	1	4	3	0	3	А	7928.8027	9.7
4	1	4	3	0	3	Е	7928.7806	-1.5
4	2	3	3	1	2	А	14039.6077	-6.1
4	2	3	3	1	2	Е	14039.5650	2.1
5	1	5	4	0	4	А	9036.3567	8.5
5	1	5	4	0	4	Е	9036.3377	-0.9
6	1	6	5	0	5	А	10106.6997	5.1
6	1	6	5	0	5	Е	10106.6862	-0.3
6	0	6	5	1	5	А	6266.1670	1.6
6	0	6	5	1	5	Е	6266.1670	0.6
7	1	7	6	0	6	А	11154.4695	2.0
7	1	7	6	0	6	Е	11154.4602	-0.6
7	0	7	6	1	6	А	7873.7212	0.5
7	0	7	6	1	6	Е	7873.7212	1.5
8	1	8	7	0	7	А	12195.1408	-6.4
8	1	8	7	0	7	Е	12195.1408	-1.1
8	0	8	7	1	7	А	9463.0082	-0.3
8	0	8	7	1	7	Е	9463.0082	2.1
9	1	9	8	0	8	А	13243.1653	-3.8
9	1	9	8	0	8	Е	13243.1653	0.4
9	0	9	8	1	8	А	11022.5842	-3.7
9	0	9	8	1	8	Е	11022.5842	-0.1

Table S7 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C6 isotopologue of 4FAP.

<i>J</i> ′	$K_{\rm a}'$	$K_{\rm c}'$	<i>J</i> ''	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{\rm MHz}$	v _{obs-calc} /kHz
6	0	6	5	0	5	А	8283.6182	-2.8
6	0	6	5	0	5	Е	8283.6182	1.7
7	0	7	6	0	6	А	9607.9046	-3.1
7	0	7	6	0	6	Е	9607.9046	1.5
8	0	8	7	0	7	А	10912.8247	-1.7
8	0	8	7	0	7	Е	10912.8247	2.9
2	1	2	1	0	1	А	5585.3990	5.8
2	1	2	1	0	1	Е	5585.3759	-4.3
2	2	1	1	1	0	А	11656.5188	-6.1
2	2	1	1	1	0	Е	11656.2577	-1.7
3	1	3	2	0	2	А	6797.1339	4.9
3	1	3	2	0	2	Е	6797.1050	-1.7
3	2	2	2	1	1	А	12931.4387	2.0
3	2	2	2	1	1	Е	12931.3487	-2.6
4	1	4	3	0	3	А	7951.1062	6.5
4	1	4	3	0	3	Е	7951.0863	-2.2
4	2	3	3	1	2	А	14140.9297	4.9
4	2	3	3	1	2	Е	14140.8688	-3.0
5	1	5	4	0	4	А	9056.0371	7.0
5	1	5	4	0	4	Е	9056.0179	-2.3
6	1	6	5	0	5	А	10123.5834	5.0
6	1	6	5	0	5	Е	10123.5682	-1.8
7	1	7	6	0	6	А	11167.6589	1.1
7	1	7	6	0	6	Е	11167.6488	-2.1
7	0	7	6	1	6	А	7767.9496	-0.6
7	0	7	6	1	6	Е	7767.9496	0.0
8	1	8	7	0	7	А	12203.1363	0.0
8	1	8	7	0	7	Е	12203.1280	-2.8
8	0	8	7	1	7	А	9353.0749	-1.4
8	0	8	7	1	7	Е	9353.0749	0.9
9	1	9	8	0	8	А	13244.1063	-4.9
9	1	9	8	0	8	Е	13244.1063	-0.5
9	0	9	8	1	8	А	10910.6985	-1.7
9	0	9	8	1	8	Е	10910.6985	1.8

Table S8 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C7 isotopologue of 4FAP.

J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	v _{obs-calc} /kHz
6	0	6	5	0	5	А	8227.2873	-1.6
6	0	6	5	0	5	Е	8227.2873	2.7
7	0	7	6	0	6	А	9542.0276	-1.3
7	0	7	6	0	6	Е	9542.0276	3.3
8	0	8	7	0	7	А	10837.4289	-3.4
8	0	8	7	0	7	Е	10837.4289	1.1
2	1	2	1	0	1	А	5535.3323	-0.3
2	1	2	1	0	1	Е	5535.3105	-9.4
2	2	1	1	1	0	А	11541.9182	2.5
2	2	1	1	1	0	Е	11541.6568	0.2
3	1	3	2	0	2	А	6738.3659	-3.8
3	1	3	2	0	2	Е	6738.3659	8.2
4	1	4	3	0	3	А	7883.9029	9.7
4	1	4	3	0	3	Е	7883.8794	-2.8
4	2	3	3	1	2	А	14008.7181	-5.0
4	2	3	3	1	2	Е	14008.6734	2.0
5	1	5	4	0	4	А	8980.6451	5.8
5	1	5	4	0	4	Е	8980.6260	-3.6
6	1	6	5	0	5	А	10040.3291	3.1
6	1	6	5	0	5	Е	10040.3155	-2.3
6	0	6	5	1	5	А	6139.1076	2.7
6	0	6	5	1	5	Е	6139.1076	1.5
7	1	7	6	0	6	А	11076.9113	2.2
7	1	7	6	0	6	Е	11076.8992	-3.1
7	0	7	6	1	6	А	7728.9913	-0.5
7	0	7	6	1	6	Е	7728.9913	0.2
8	1	8	7	0	7	А	12105.2742	3.8
8	1	8	7	0	7	Е	12105.2631	-1.9
8	0	8	7	1	7	А	9302.5505	-1.6
8	0	8	7	1	7	Е	9302.5505	0.7
9	1	9	8	0	8	А	13139.4677	-4.0
9	1	9	8	0	8	Е	13139.4677	0.2
9	0	9	8	1	8	А	10848.3542	-3.0
9	0	9	8	1	8	Е	10848.3542	0.4

Table S9 Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of ¹³C8 isotopologue of 4FAP.

	а	//Å		b	//Å	
	r _e	r _s	$r_{s \to e}^{SE}$	r _e	r _s	$r_{s \rightarrow e}^{SE}$
C1	-0.718	±-0.693(2)	±0.706(2)	-0.0191	0^{a}	0.04(3)
C2	0.0102	0^{a}	0^{a}	-1.221	±1.215(1) ^b	±1.215(1)
C3	1.404	±1.398(1)	±1.395(1)	-1.209	±1.205(1)	±1.204(1)
C4	2.060	±2.049(7)	±2.0437(7)	0.0210	0 ^a	0°
C5	1.372	±1.367(1)	±1.357(1)	1.230	±1.229(1)	±1.226(1)
C6	-0.0253	0^{a}	0^{a}	1.203	±1.201(1)	±1.197(1)
C7	-2.217	±2.203(6)	±2.2038(7)	-0.0922	0.06(2)	±0.09(1)
C8	-3.000	±3.0047(5)	±2.9851(5)	1.204	1.192(1)	±1.195(1)

Table S10 Comparison of the *ab* initio (r_e) , the substituted (r_s) and the semi-experimental equilibrium $(r_{s \to e}^{SE})$ coordinates of carbon atoms in 4FAP. (See Fig. S1 for the atomic labels).

^a Imaginary values, fixed at zero.

^b Errors in parenthesis are given in units of the last digit.

^c The coordinate value is too small to determine, fixed at zero.

		B_{e}^{theo}	B_0^{theo}	$\Delta B_{ m vib}$	B_0^{exp}	B_{e}^{SE}
	<mark>A/MHz</mark>	<mark>3652.515</mark>	<mark>3629.056</mark>	<mark>23.459</mark>	<mark>3673.1127(4)ª</mark>	<mark>3696.5717(4)</mark>
Normal	<mark><i>B</i>/MHz</mark>	<mark>768.889</mark>	<mark>763.336</mark>	<mark>5.553</mark>	<mark>772.76796(6)</mark>	<mark>778.32096(6)</mark>
	C/MHz	<mark>637.956</mark>	<mark>633.648</mark>	<mark>4.308</mark>	<mark>641.37113(4)</mark>	<mark>645.67913(4)</mark>
	<mark>A/MHz</mark>	<mark>3652.500</mark>	<mark>3629.192</mark>	<mark>23.308</mark>	<mark>3673.2148(8)</mark>	<mark>3696.5228(8)</mark>
C1	<mark>B/MHz</mark>	<mark>768.288</mark>	<mark>762.763</mark>	<mark>5.525</mark>	772.2018(2)	777.7268(2)
	C/MHz	<mark>637.543</mark>	<mark>633.258</mark>	<mark>4.285</mark>	<mark>640.98518(9)</mark>	<mark>645.27018(9)</mark>
	<mark>A/MHz</mark>	<mark>3613.728</mark>	<mark>3590.751</mark>	<mark>22.977</mark>	<mark>3634.2544(6)</mark>	<mark>3657.2314(6)</mark>
C2	<mark>B/MHz</mark>	<mark>768.888</mark>	<mark>763.342</mark>	<mark>5.546</mark>	772.7838(1)	778.3298(1)
	C/MHz	<mark>636.763</mark>	<mark>632.477</mark>	<mark>4.286</mark>	<mark>640.18763(6)</mark>	<mark>644.37363(6)</mark>
	<mark>A/MHz</mark>	<mark>3614.613</mark>	<mark>3591.567</mark>	<mark>23.046</mark>	<mark>3635.0126(8)</mark>	<mark>3658.0586(8)</mark>
C3	B/MHz	<mark>766.591</mark>	<mark>761.060</mark>	<mark>5.531</mark>	<mark>770.4674(1)</mark>	<mark>775.9984(1)</mark>
	C/MHz	<mark>635.213</mark>	<mark>630.935</mark>	<mark>4.278</mark>	<mark>638.62055(7)</mark>	<mark>642.89855(7)</mark>
	<mark>A/MHz</mark>	<mark>3652.503</mark>	<mark>3629.18</mark>	<mark>23.323</mark>	<mark>3673.2194(6)</mark>	<mark>3696.5424(6)</mark>
C4	<mark><i>B</i>/MHz</mark>	<mark>763.977</mark>	<mark>758.470</mark>	<mark>5.507</mark>	<mark>767.8587(1)</mark>	773.3657(1)
	C/MHz	<mark>634.570</mark>	<mark>630.295</mark>	<mark>4.275</mark>	<mark>637.98926(6)</mark>	<mark>642.26426(6)</mark>
	<mark>A/MHz</mark>	<mark>3614.303</mark>	<mark>3591.149</mark>	<mark>23.154</mark>	<mark>3633.5063(5)</mark>	<mark>3656.6603(5)</mark>
C5	B/MHz	<mark>766.154</mark>	<mark>760.600</mark>	<mark>5.554</mark>	770.5668(1)	<mark>776.1208(1)</mark>
	C/MHz	<mark>634.905</mark>	<mark>630.605</mark>	<mark>4.300</mark>	<mark>638.64200(6)</mark>	<mark>642.94200(6)</mark>
	<mark>A/MHz</mark>	<mark>3614.812</mark>	<mark>3591.591</mark>	<mark>23.221</mark>	<mark>3635.1455(7)</mark>	<mark>3658.3665(7)</mark>
C6	<mark>B/MHz</mark>	<mark>768.888</mark>	<mark>763.337</mark>	<mark>5.551</mark>	772.7845(1)	778.3355(1)
	C/MHz	<mark>636.796</mark>	<mark>632.500</mark>	<mark>4.296</mark>	<mark>640.21584(8)</mark>	<mark>644.51184(8)</mark>
	<mark>A/MHz</mark>	<mark>3652.293</mark>	<mark>3628.976</mark>	<mark>23.317</mark>	<mark>3673.0162(6)</mark>	<mark>3696.3332(6)</mark>
<mark>C7</mark>	<mark>B/MHz</mark>	763.201	757.731	<mark>5.470</mark>	<mark>767.0947(1)</mark>	772.5647(1)
	C/MHz	<mark>634.029</mark>	<mark>629.778</mark>	<mark>4.251</mark>	<mark>637.45558(8)</mark>	<mark>641.70658(8)</mark>
	A/MHz	<mark>3615.338</mark>	<mark>3592.508</mark>	22.83	<mark>3636.2955(6)</mark>	<mark>3659.1255(6)</mark>
C8	<mark><i>B</i>/MHz</mark>	<mark>758.510</mark>	<mark>752.969</mark>	<mark>5.541</mark>	762.2555(1)	<mark>767.7965(1)</mark>
	C/MHz	<mark>629.682</mark>	<mark>625.395</mark>	<mark>4.287</mark>	<mark>633.00903(7)</mark>	637.29603(7)

Table STT Theoretical, experimental and semi-experimental fotational constants of an inner isotopologues of 4171	Table S11 Theoretical	, experimental and	d semi-experimenta	l rotational constants	of all nine isoto	pologues of 4FAP.
---	-----------------------	--------------------	--------------------	------------------------	-------------------	-------------------

^{*a*} Values of centrifugal distortion constants were fixed at those of the parent species.

		B_{e}^{theo}	B_0^{theo}	$\Delta B_{ m vib}$	B_0^{exp}	B_{e}^{SE}
	<mark>A/MHz</mark>	<mark>3663.006</mark>	<mark>3640.200</mark>	<mark>22.806</mark>	3688.0267(5) ^a	3710.8327(5)
<mark>Normal</mark>	<mark>B/MHz</mark>	1210.575	1200.512	10.063	1215.0491(2)	1225.1121(2)
	C/MHz	<mark>917.072</mark>	<mark>910.402</mark>	<mark>6.670</mark>	<mark>919.9144(1)</mark>	<mark>926.5844(1)</mark>
	<mark>A/MHz</mark>	<mark>3662.995</mark>	<mark>3640.273</mark>	<mark>22.722</mark>	<mark>3688.109(1)</mark>	<mark>3710.831(1)</mark>
<mark>C1</mark>	<mark><i>B</i>/MHz</mark>	1210.451	1200.475	<mark>9.976</mark>	1214.9904(6)	1224.9664(6)
	C/MHz	<mark>917.001</mark>	<mark>910.381</mark>	<mark>6.620</mark>	<mark>919.8906(4)</mark>	<mark>926.5106(4)</mark>
	A/MHz	<mark>3624.670</mark>	<mark>3602.210</mark>	<mark>22.460</mark>	<mark>3649.1986(5)</mark>	<mark>3671.6586(5)</mark>
C2	<u>B/MHz</u>	1209.747	1199.752	<mark>9.995</mark>	1214.4274(3)	1224.4224(3)
	C/MHz	<mark>914.188</mark>	<mark>907.569</mark>	<mark>6.619</mark>	<mark>917.1257(1)</mark>	<mark>923.7447(1)</mark>
	A/MHz	<mark>3627.280</mark>	<mark>3604.716</mark>	<mark>22.564</mark>	<mark>3647.5047(5)</mark>	<mark>3670.0687(5)</mark>
C3	B/MHz	1199.895	1189.995	<mark>9.900</mark>	1204.9562(2)	1214.8562(2)
	C/MHz	<mark>908.715</mark>	<mark>902.126</mark>	<mark>6.589</mark>	<mark>911.6077(1)</mark>	<mark>918.1967(1)</mark>
	<mark>A/MHz</mark>	<mark>3662.930</mark>	<mark>3640.166</mark>	<mark>22.764</mark>	<mark>3688.0297(4)</mark>	<mark>3710.7937(4)</mark>
C4	<i>B</i> /MHz	1191.365	<u>1181.526</u>	<mark>9.839</mark>	1195.8145(2)	1205.6535(2)
	C/MHz	<mark>906.001</mark>	<mark>899.429</mark>	<mark>6.572</mark>	<mark>908.8471(1)</mark>	<mark>915.4191(1)</mark>
	A/MHz	<mark>3622.901</mark>	3600.361	<mark>22.540</mark>	3652.138(6)	<mark>3674.678(6)</mark>
C5	<i>B</i> /MHz	1200.495	1190.548	<mark>9.947</mark>	1204.3566(3)	1214.3036(3)
	C/MHz	<mark>908.783</mark>	<mark>902.172</mark>	<mark>6.611</mark>	911.5537(2)	<mark>918.1647(2)</mark>
	A/MHz	<mark>3624.457</mark>	3601.821	<mark>22.636</mark>	<mark>3649.5745(5)</mark>	3672.2105(5)
C6	<mark><i>B</i>/MHz</mark>	1209.919	<mark>1199.896</mark>	10.023	1214.2504(2)	1224.2734(2)
	C/MHz	<mark>914.273</mark>	<mark>907.640</mark>	<mark>6.633</mark>	917.0483(1)	923.6813(1)
	<mark>A/MHz</mark>	<mark>3662.726</mark>	<mark>3640.051</mark>	<mark>22.675</mark>	<mark>3687.869(5)</mark>	3710.544(5)
C7	<mark><i>B</i>/MHz</mark>	1202.229	1192.277	<mark>9.952</mark>	1206.7535(2)	1216.7055(2)
	C/MHz	<mark>912.258</mark>	<mark>905.680</mark>	<mark>6.578</mark>	<mark>915.1419(1)</mark>	<mark>921.7199(1)</mark>
	<mark>A/MHz</mark>	<mark>3626.912</mark>	<mark>3604.647</mark>	<mark>22.265</mark>	3652.2545(5)	<mark>3674.5195(5)</mark>
<mark>C8</mark>	<i>B</i> /MHz	1192.675	1182.691	<mark>9.984</mark>	1196.9384(2)	1206.9224(2)
	C/MHz	<mark>904.577</mark>	<mark>897.960</mark>	<mark>6.617</mark>	907.3087(1)	913.9257(1)

Table S12.	Theoretical, o	experimental and	semi-ex	perimental	rotational	constants of a	all nine isoto	pologues of AP.
		1		1				1 0

^a Values of centrifugal distortion constants were fixed at those of the parent species.

		4FAP			AP	
	r _e	r _s	$r_{s \to e}^{SE}$	r _e	r _s	$r_{s \rightarrow e}^{SE}$
Bond lengths/Å						
C1C2	1.406	1.400(3)	1.405(1)	1.405	1.350(5)	1.399(4)
C2C3	1.387	1.398(1) ^a	1.395(1)	1.396	1.405(3)	1.384(3)
C3C4	1.388	1.370(1)	1.368(1)	1.402	1.441(1)	1.435(1)
C4C5	1.386	1.405(1)	1.405(1)	1.399	1.350(1)	1.345(1)
C5C6	1.391	1.368(1)	1.357(1)	1.399	1.399(3)	1.386(3)
C6C1	1.400	1.387(1)	1.390(2)	1.405	1.374(5)	1.417(4)
C1C7	1.497	1.511(2)	1.501(1)	1.502	1.56(1)	1.474(7)
C7C8	1.516	1.49(2)	1.50(1)	1.516	1.49(2)	1.51(1)
Valence angles/°						
C2C3C4	118.53	118.7(1)	118.7(1)	120.18	118.9(9)	118.85(9)
C3C4C5	122.34	122.65(8)	122.47(8)	119.81	119.88(5)	119.98(7)
C4C5C6	118.50	117.8(1)	118.0(1)	120.14	121.2(1)	121.2(1)
C5C6C1	120.6	121.2(1)	121.7(1)	120.18	117.3(4)	120.8(3)
C6C1C7	122.6	122.3(9)	123.9(6)	122.2	121.5(8)	126.1(6)
C1C7C8	118.6	120(1)	117.8(9)	118.3	120(1)	118.0(8)
C2C1C7	118.4	117.5(9)	116.6(6)	118.4	113.5(8)	116.2(6)

Table S13. Geometries of the carbon skeletons of the 4FAP and AP. (r_e , r_s and $r_{s \to e}^{SE}$ structure)

^{*a*} Errors in parenthesis are given in units of the last digit.

	-2							
J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	<i>K</i> _c "	State	$v_{\rm obs}/{\rm MHz}$	v _{obs-calc} /kHz
6	0	6	5	0	5	А	4900.7910	-0.9
6	0	6	5	0	5	Е	4900.7910	0.8
6	1	6	5	1	5	А	4773.6264	1.1
6	1	6	5	1	5	Е	4773.6264	1.6
6	1	5	5	1	4	А	5058.0187	-2.3
6	1	5	5	1	4	Е	5058.0187	0.8
6	2	5	5	2	4	А	4917.7793	-0.7
6	2	5	5	2	4	Е	4917.8081	0.9
6	2	4	5	2	3	А	4937.2960	3.2
6	2	4	5	2	3	Е	4937.2618	0.2
6	3	4	5	3	3	А	4923.2568	-0.8
6	3	4	5	3	3	Е	4923.3574	-5.9
6	3	3	5	3	2	А	4923.4931	4.2
6	3	3	5	3	2	Е	4923.3816	2.2
7	0	7	6	0	6	А	5709.2457	-0.6
7	0	7	6	0	6	Е	5709.2457	1.2
7	1	7	6	1	6	А	5567.2255	-0.2
7	1	7	6	1	6	Е	5567.2255	0.4
7	1	6	6	1	5	А	5898.7687	-1.1
7	1	6	6	1	5	Е	5898.7687	2.5
7	2	6	6	2	5	А	5735.9898	-1.1
7	2	6	6	2	5	Е	5736.0027	1.0
7	2	5	6	2	4	А	5767.0956	1.8
7	2	5	6	2	4	Е	5767.0743	-4.0
7	3	5	6	3	4	А	5744.7346	0.2
7	3	5	6	3	4	Е	5744.9595	5.2
7	3	4	6	3	3	А	5745.2550	0.6
7	3	4	6	3	3	Е	5745.0375	-2.4
8	0	8	7	0	7	А	6513.9990	-1.6
8	0	8	7	0	7	Е	6513.9990	0.4
8	1	8	7	1	7	А	6359.9553	-1.8
8	1	8	7	1	7	Е	6359.9553	-1.0
8	1	7	7	1	6	А	6738.4198	1.0
8	1	7	7	1	6	Е	6738.4141	-0.7
8	2	7	7	2	6	А	6553.5494	1.5
8	2	7	7	2	6	Е	6553.5494	-2.5
8	2	6	7	2	5	А	6599.9373	1.5
8	2	6	7	2	5	Е	6599.9234	-2.9
8	3	6	7	3	5	А	6566.5870	0.7
8	3	6	7	3	5	Е	6566.8981	-1.5
8	3	5	7	3	4	А	6567.6264	0.9

Table S14. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-cale}$, kHz) of the isomer I of 4FAP-H₂O.

8	3	5	7	3	4	Е	6567.3055	-1.5
8	4	5	7	4	4	А	6564.2962	1.7
8	4	5	7	4	4	Е	6564.2962	-0.2
8	4	4	7	4	3	А	6564.3055	2.7
8	4	4	7	4	3	Е	6564.2962	0.4
9	0	9	8	0	8	А	7314.6913	-0.5
9	0	9	8	0	8	Е	7314.6913	1.6
9	1	9	8	1	8	А	7151.7342	0.4
9	1	9	8	1	8	Е	7151.7342	1.2
9	1	8	8	1	7	А	7576.7624	-6.0
9	1	8	8	1	7	Е	7576.7699	5.9
9	2	8	8	2	7	А	7370.3594	0.8
9	2	8	8	2	7	Е	7370.3594	0.0
9	2	7	8	2	6	А	7436.0878	1.7
9	2	7	8	2	6	Е	7436.0761	-2.9
9	3	7	8	3	6	А	7388.8295	1.0
9	3	7	8	3	6	Е	7389.1508	-2.4
9	3	6	8	3	5	А	7390.7324	1.3
9	3	6	8	3	5	Е	7390.4005	0.1
9	4	6	8	4	5	А	7385.7758	4.3
9	4	6	8	4	5	Е	7385.7758	-3.2
9	4	5	8	4	4	А	7385.7984	6.9
9	4	5	8	4	4	Е	7385.7758	-2.5
10	0	10	9	0	9	А	8111.0648	-2.3
10	0	10	9	0	9	Е	8111.0648	-0.1
10	1	10	9	1	9	А	7942.4842	-0.5
10	1	10	9	1	9	Е	7942.4842	0.4
10	1	9	9	1	8	А	8413.6027	0.9
10	1	9	9	1	8	Е	8413.5947	-2.3
10	2	9	9	2	8	А	8186.3319	0.3
10	2	9	9	2	8	Е	8186.3319	1.2
10	2	8	9	2	7	А	8275.7017	1.4
10	2	8	9	2	7	Е	8275.6914	-2.8
10	3	8	9	3	7	А	8211.4616	0.2
10	3	8	9	3	7	Е	8211.6939	-2.8
10	3	7	9	3	6	А	8214.7187	1.3
10	3	7	9	3	6	Е	8214.4745	-0.9
10	4	7	9	4	6	А	8207.5702	-6.8
10	4	7	9	4	6	Е	8207.5937	-2.0
10	4	6	9	4	5	А	8207.6244	4.0
10	4	6	9	4	5	Е	8207.5937	-1.5
11	0	11	10	0	10	А	8903.0099	-1.3
11	0	11	10	0	10	Е	8903.0099	0.9
11	1	11	10	1	10	А	8732.1534	-0.2

11 1 10 1 10 E 8732.1534 0.7 11 1 10 10 1 9 A 9248.6762 -2.1 11 2 10 10 2 9 A 9001.3773 0.4 11 2 10 10 2 9 A 901.3773 0.4 11 2 9 10 2 8 A 9118.7971 1.8 11 2 9 10 3 8 A 9014.4707 0.0 11 3 9 10 3 8 F 9034.6669 -2.3 12 0 12 11 0 11 A 9520.7005 1.2 12 1 12 11 1 10 A 19081.7496 -2.6 12 1 11 1 10 A 9815.4062 2.9 13 0									
11 1 10 10 1 9 A 9248.6762 -2.1 11 2 10 10 2 9 A 9001.3773 0.4 11 2 10 10 2 9 A 9001.3773 2.4 11 2 9 10 2 8 A 9118.7971 1.8 11 2 9 10 2 8 E 9118.7851 -4.3 11 3 9 10 3 8 A 9034.4707 0.0 11 3 9 10 3 8 E 9605.647 -0.8 12 0 12 11 0 11 E 960.5647 -0.8 12 1 12 11 1 11 R 9520.7005 0.3 12 1 12 11 1 10 A 10081.7601 2.2 12 1 11 2 10 A 9815.4062 0.2	11	1	11	10	1	10	Е	8732.1534	0.7
11 1 10 10 1 9 E 9248.6762 -2.1 11 2 10 10 2 9 E 9001.3773 2.4 11 2 9 10 2 8 A 9118.7851 -4.3 11 2 9 10 2 8 A 9118.7851 -4.3 11 3 9 10 3 8 E 9034.4707 0.0 11 3 9 10 3 8 E 9034.6069 -2.3 12 0 12 11 0 11 E 9690.5647 -1.3 12 1 12 11 1 11 A 1005.7005 1.2 12 1 11 11 10 E 10081.7496 -2.6 12 2 11 11 1 10 E 10473.9339 -1.5 13 0 13 12 0 12 A 10473.9339 -1.5	11	1	10	10	1	9	А	9248.6849	1.3
11 2 10 10 2 9 A 9001.3773 2.4 11 2 9 10 2 8 A 9118.7851 4.3 11 2 9 10 2 8 A 9118.7851 4.3 11 3 9 10 3 8 E 9034.6069 -2.3 12 0 12 11 0 11 A 9690.5647 -0.8 12 0 12 11 1 11 A 9520.7005 0.3 12 1 12 11 1 11 A 10081.7601 2.3 12 1 11 1 10 A 10081.7601 2.3 12 1 11 1 10 A 10081.7601 2.3 12 2 11 11 2 10 A 10081.7601 2.3 13 1 13 12 0 12 A 10081.7601 2.3 14 <td>11</td> <td>1</td> <td>10</td> <td>10</td> <td>1</td> <td>9</td> <td>Е</td> <td>9248.6762</td> <td>-2.1</td>	11	1	10	10	1	9	Е	9248.6762	-2.1
11 2 10 10 2 9 E 901.3773 2.4 11 2 9 10 2 8 A 9118.7971 1.8 11 2 9 10 3 8 E 9118.7851 -4.3 11 3 9 10 3 8 E 9034.4707 -0.8 12 0 12 11 0 11 A 9690.5647 -0.8 12 0 12 11 1 11 A 9520.7005 0.3 12 1 11 11 1 10 A 9520.7005 0.3 12 1 11 11 1 10 A 9601.7496 -2.6 12 1 11 11 1 10 A 9815.4062 0.2 12 1 11 12 0 12 A 10073.9399 0.6 13 0 13 12 0 12 A 1038.0969 -2.2	11	2	10	10	2	9	А	9001.3773	0.4
11 2 9 10 2 8 A 9118.7971 1.8 11 3 9 10 3 8 A 9034.707 0.0 11 3 9 10 3 8 A 9034.4069 -2.3 12 0 12 11 0 11 A 9690.5647 -0.8 12 0 12 11 0 11 E 9690.5647 1.3 12 1 12 11 1 11 A 9520.7005 0.3 12 1 11 11 11 E 9520.7005 1.2 12 1 11 11 10 A 10081.7601 2.3 12 1 11 11 10 A 9815.4062 0.2 12 1 11 12 0 12 A 10473.9339 0.6 13 0 13 12 0 12 A 10473.9339 0.6 13 1 </td <td>11</td> <td>2</td> <td>10</td> <td>10</td> <td>2</td> <td>9</td> <td>Е</td> <td>9001.3773</td> <td>2.4</td>	11	2	10	10	2	9	Е	9001.3773	2.4
11 2 9 10 2 8 E 9118.7851 4.3 11 3 9 10 3 8 A 9034.4707 0.0 11 3 9 10 3 8 E 9034.6069 -2.3 12 0 12 11 0 11 A 9690.5647 1.3 12 0 12 11 1 11 A 9520.7005 0.3 12 1 12 11 1 10 A 10081.7601 2.3 12 1 11 11 1 10 A 10081.7496 -2.6 12 2 11 11 2 10 E 9815.4062 0.2 12 2 11 11 2 10 A 10081.7496 -3.1 13 0 13 12 0 12 E 10473.9339 -1.5 13 0 13 12 1 11 A 10308.0969 -3.1	11	2	9	10	2	8	А	9118.7971	1.8
11 3 9 10 3 8 A 9034.4707 0.0 11 3 9 10 3 8 E 9034.6069 -2.3 12 0 12 11 0 11 A 9690.5647 -0.8 12 0 12 11 1 11 A 9690.5647 1.3 12 1 12 11 1 11 A 9520.7005 1.2 12 1 11 11 1 0 A 10081.7496 -2.6 12 2 11 11 2 10 A 9815.4062 2.9 13 0 13 12 0 12 A 10473.9339 -1.5 13 0 13 12 1 12 A 10308.0669 -3.1 13 1 13 12 1 12 A 10308.0669 -2.2 13 1 12 1 11 A 10912.5519 4.1	11	2	9	10	2	8	Е	9118.7851	-4.3
11 3 9 10 3 8 E 9034.6069 -2.3 12 0 12 11 0 11 A 9690.5647 1.3 12 1 12 11 0 11 E 9690.5647 1.3 12 1 12 11 1 11 A 9520.7005 1.2 12 1 11 11 11 10 A 10081.7001 2.3 12 1 11 11 1 10 E 10081.7496 -2.6 12 2 11 11 2 10 A 9815.4062 0.2 13 0 13 12 0 12 E 10473.9339 0.6 13 1 13 12 1 12 A 10308.0969 -3.1 13 1 13 12 1 12 E 10308.0969 -2.2 13 1 12 2 11 A 10912.5368 -5.1 <	11	3	9	10	3	8	А	9034.4707	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	3	9	10	3	8	Е	9034.6069	-2.3
12 0 12 11 0 11 E 9690.5647 1.3 12 1 12 11 1 11 A 9520.7005 1.2 12 1 12 11 1 11 E 9520.7005 1.2 12 1 11 11 1 10 A 10081.7601 2.3 12 2 11 11 2 10 A 9815.4062 0.2 13 0 13 12 0 12 A 10473.9339 -1.5 13 0 13 12 0 12 E 10473.9339 -6.6 13 1 13 12 1 12 A 10308.0969 -3.1 13 1 12 12 1 11 E 10912.519 4.1 13 1 12 12 1 11 E 10912.5368 -5.1 13 2 12 12 1 11 E 10628.343 <	12	0	12	11	0	11	А	9690.5647	-0.8
12 1 12 11 1 11 A 9520.7005 1.2 12 1 12 11 1 11 E 9520.7005 1.2 12 1 11 11 11 10 A 10081.7601 2.3 12 1 11 11 1 10 E 10081.7496 -2.6 12 2 11 11 2 10 A 9815.4062 0.2 12 2 11 11 2 10 E 10473.9339 -1.5 13 0 13 12 0 12 A 10308.0969 -3.1 13 1 13 12 1 12 E 10308.0969 -2.2 13 1 12 12 1 11 A 10912.5368 -5.1 13 1 12 12 1 11 E 10912.5368 -5.1 13 2 11 12 2 10 A 10814.677	12	0	12	11	0	11	Е	9690.5647	1.3
12 1 12 11 1 11 E 9520.7005 1.2 12 1 11 11 10 A 10081.7601 2.3 12 1 11 11 10 E 10081.7496 -2.6 12 2 11 11 2 10 A 9815.4062 0.2 12 2 11 11 2 10 E 9815.4062 2.9 13 0 13 12 0 12 E 10473.9339 -1.5 13 0 13 12 1 12 A 10308.0669 -2.2 13 1 13 12 1 12 E 10308.0669 -2.2 13 1 12 12 1 11 A 10912.5368 -5.1 13 2 12 12 2 11 A 10628.3289 -0.6 13 2 11 12 2 10 E 10814.6877 -2.1 <t< td=""><td>12</td><td>1</td><td>12</td><td>11</td><td>1</td><td>11</td><td>А</td><td>9520.7005</td><td>0.3</td></t<>	12	1	12	11	1	11	А	9520.7005	0.3
12 1 11 11 1 10 A 10081.7601 2.3 12 1 11 11 1 10 E 10081.7496 -2.6 12 2 11 11 2 10 A 9815.4062 0.2 12 2 11 11 2 10 E 9815.4062 2.9 13 0 13 12 0 12 A 10473.9339 -1.5 13 0 13 12 0 12 E 10308.0969 -2.2 13 1 13 12 1 11 A 10912.5519 4.1 13 1 12 12 1 11 A 10628.3343 1.6 13 2 12 12 11 E 10912.5568 -5.1 13 2 11 12 2 10 A 10814.6877 -2.1 13 2 11 12 2 10 A 10814.6877 -2.1	12	1	12	11	1	11	Е	9520.7005	1.2
12 1 11 11 1 10 E 10081.7496 -2.6 12 2 11 11 2 10 A 9815.4062 2.9 13 0 13 12 0 12 A 10473.9339 -1.5 13 0 13 12 0 12 E 10473.9339 0.6 13 1 13 12 1 12 A 10308.0969 -3.1 13 1 13 12 1 12 E 10308.0969 -2.2 13 1 12 12 1 11 A 10912.5519 4.1 13 1 12 12 1 11 A 10912.5368 -5.1 13 2 12 12 2 11 A 10628.3289 -0.6 13 2 11 12 2 10 A 10814.6772 -6.1 14 0 14 13 0 13 A 11094.3459	12	1	11	11	1	10	А	10081.7601	2.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	1	11	11	1	10	Е	10081.7496	-2.6
12 2 11 11 2 10 E 9815.4062 2.9 13 0 13 12 0 12 A 10473.9339 -1.5 13 0 13 12 0 12 E 10473.9339 0.6 13 1 13 12 1 12 A 10308.0969 -3.1 13 1 13 12 1 12 E 10308.0969 -2.2 13 1 12 12 1 11 A 10912.5519 4.1 13 1 12 12 1 11 E 10912.5368 -5.1 13 2 12 12 2 11 A 10628.3343 1.6 13 2 11 12 2 10 A 10814.6877 -2.1 13 2 11 12 2 10 E 10814.6772 -6.1 14 0 14 13 0 13 A 1125.4776	12	2	11	11	2	10	А	9815.4062	0.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	2	11	11	2	10	Е	9815.4062	2.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	0	13	12	0	12	А	10473.9339	-1.5
1311312112A10308.0969 -3.1 1311312112E10308.0969 -2.2 1311212111A10912.55194.11311212111E10912.5368 -5.1 1321212211A10628.33431.61321212211E10628.3289 -0.6 1321112210A10814.6877 -2.1 1321112210E10814.6772 -6.1 1401413013A11253.4776 1.0 1411413113A11094.3459 1.7 1411413113E11094.3459 2.5 1411313112E11740.7566 6.1 1411313112E11740.7566 6.1 1501514014A12029.6743 -2.9 1511514114A11879.4411 1.9 1511514113A12566.0586 -3.9 1601615015A12803.0932 -1.2 16116151 <td< td=""><td>13</td><td>0</td><td>13</td><td>12</td><td>0</td><td>12</td><td>Е</td><td>10473.9339</td><td>0.6</td></td<>	13	0	13	12	0	12	Е	10473.9339	0.6
1311312112E10308.0969-2.21311212111A10912.55194.11311212111E10912.5368-5.11321212211A10628.33431.61321212211E10628.3289-0.61321112210A10814.6877-2.11321112210E10814.6772-6.11401413013A11253.4776-1.11401413013E11253.47761.01411413113A11094.34592.51411313112A11740.75666.11411313112E11740.75666.11501514014A12029.6743-2.91501514114A11879.44111.91511514114A12566.0586-3.91601615015A12803.0932-1.21611615115A12663.40520.11611615115E12663.40	13	1	13	12	1	12	А	10308.0969	-3.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1	13	12	1	12	Е	10308.0969	-2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1	12	12	1	11	А	10912.5519	4.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1	12	12	1	11	Е	10912.5368	-5.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	2	12	12	2	11	А	10628.3343	1.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	2	12	12	2	11	Е	10628.3289	-0.6
13 2 11 12 2 10 E 10814.6772 -6.1 14 0 14 13 0 13 A 11253.4776 -1.1 14 0 14 13 0 13 E 11253.4776 1.0 14 1 14 13 1 13 A 11094.3459 1.7 14 1 14 13 1 13 A 11094.3459 2.5 14 1 13 13 1 12 A 11740.7566 -0.1 14 1 13 13 1 12 E 11740.7566 6.1 15 0 15 14 0 14 A 12029.6743 -2.9 15 0 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 1 14 A 11879.4411 1.9 15 1 15 14 1 13 A 12566.0586	13	2	11	12	2	10	А	10814.6877	-2.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	2	11	12	2	10	Е	10814.6772	-6.1
14 0 14 13 0 13 E 11253.4776 1.0 14 1 14 13 1 13 A 11094.3459 1.7 14 1 14 13 1 13 E 11094.3459 2.5 14 1 13 13 1 12 A 11740.7566 -0.1 14 1 13 13 1 12 E 11740.7566 6.1 15 0 15 14 0 14 A 12029.6743 -2.9 15 0 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 1 14 A 11879.4411 1.9 15 1 15 14 1 13 E 12566.0685 -0.5 15 1 14 14 1 13 E 12566.0586	14	0	14	13	0	13	А	11253.4776	-1.1
14 1 14 13 1 13 A 11094.3459 1.7 14 1 14 13 1 13 E 11094.3459 2.5 14 1 13 13 1 12 A 11740.7566 -0.1 14 1 13 13 1 12 E 11740.7566 6.1 15 0 15 14 0 14 A 12029.6743 -2.9 15 0 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 1 14 A 11879.4411 1.9 15 1 15 14 1 13 A 12566.0685 -0.5 15 1 14 14 1 13 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932	14	0	14	13	0	13	Е	11253.4776	1.0
14 1 14 13 1 13 E 11094.3459 2.5 14 1 13 13 1 12 A 11740.7566 -0.1 14 1 13 13 1 12 E 11740.7566 6.1 15 0 15 14 0 14 A 12029.6743 -2.9 15 0 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 1 14 A 11879.4411 1.9 15 1 15 14 1 13 A 12566.0685 -0.5 15 1 14 14 1 13 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932 -1.2 16 0 16 15 1 15 A 12663.4052	14	1	14	13	1	13	А	11094.3459	1.7
14 1 13 13 1 12 A 11740.7566 -0.1 14 1 13 13 1 12 E 11740.7566 6.1 15 0 15 14 0 14 A 12029.6743 -2.9 15 0 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 1 14 A 11879.4411 1.9 15 1 14 14 1 13 A 12566.0685 -0.5 15 1 14 14 1 13 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932 0.7 16 1 16 15 1 15 A 12663.4052	14	1	14	13	1	13	Е	11094.3459	2.5
14 1 13 13 1 12 E 11740.7566 6.1 15 0 15 14 0 14 A 12029.6743 -2.9 15 0 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 1 14 A 11879.4411 1.9 15 1 15 14 1 14 E 11879.4411 2.7 15 1 14 14 1 3 A 12566.0685 -0.5 15 1 14 14 1 3 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932 0.7 16 1 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052	14	1	13	13	1	12	А	11740.7566	-0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	1	13	13	1	12	Е	11740.7566	6.1
15 0 15 14 0 14 E 12029.6743 -0.9 15 1 15 14 1 14 A 11879.4411 1.9 15 1 15 14 1 14 E 11879.4411 2.7 15 1 14 14 1 3 A 12566.0685 -0.5 15 1 14 14 1 3 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932 -1.2 16 0 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	15	0	15	14	0	14	А	12029.6743	-2.9
15 1 15 14 1 14 A 11879.4411 1.9 15 1 15 14 1 14 E 11879.4411 2.7 15 1 14 14 1 13 A 12566.0685 -0.5 15 1 14 14 1 13 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932 -1.2 16 0 16 15 0 15 E 12803.0932 0.7 16 1 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	15	0	15	14	0	14	Е	12029.6743	-0.9
15 1 15 14 1 14 E 11879.4411 2.7 15 1 14 14 1 13 A 12566.0685 -0.5 15 1 14 14 1 13 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932 -1.2 16 0 16 15 0 15 E 12803.0932 0.7 16 1 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	15	1	15	14	1	14	А	11879.4411	1.9
15 1 14 14 1 13 A 12566.0685 -0.5 15 1 14 14 1 13 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932 -1.2 16 0 16 15 0 15 E 12803.0932 0.7 16 1 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	15	1	15	14	1	14	Е	11879.4411	2.7
15 1 14 14 1 13 E 12566.0586 -3.9 16 0 16 15 0 15 A 12803.0932 -1.2 16 0 16 15 0 15 E 12803.0932 0.7 16 1 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	15	1	14	14	1	13	А	12566.0685	-0.5
16 0 16 15 0 15 A 12803.0932 -1.2 16 0 16 15 0 15 E 12803.0932 0.7 16 1 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052 0.8 16 1 16 15 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	15	1	14	14	1	13	Е	12566.0586	-3.9
16 0 16 15 0 15 E 12803.0932 0.7 16 1 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	16	0	16	15	0	15	А	12803.0932	-1.2
16 1 16 15 1 15 A 12663.4052 0.1 16 1 16 15 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	16	0	16	15	0	15	Е	12803.0932	0.7
16 1 15 E 12663.4052 0.8 17 0 17 16 0 16 A 13574.3235 -2.4	16	1	16	15	1	15	А	12663.4052	0.1
17 0 17 16 0 16 A 13574.3235 -2.4	16	1	16	15	1	15	Е	12663.4052	0.8
	17	0	17	16	0	16	А	13574.3235	-2.4

17	0	17	16	0	16	Е	13574.3235	-0.5
18	0	18	17	0	17	А	14343.9513	-0.7
18	0	18	17	0	17	Е	14343.9513	1.2
19	0	19	18	0	18	А	15112.4990	-0.9
19	0	19	18	0	18	Е	15112.4990	1.2
20	0	20	19	0	19	А	15880.4170	-1.3
20	0	20	19	0	19	Е	15880.4170	0.9
2	2	1	1	1	0	А	10657.7521	3.5
2	2	1	1	1	0	Е	10656.8824	1.7
2	2	0	1	1	1	А	10705.7469	0.3
2	2	0	1	1	1	Е	10706.5457	1.5
3	2	2	2	1	1	А	11430.3586	-1.2
3	2	2	2	1	1	Е	11429.9610	0.7
4	1	4	3	0	3	А	6058.1634	5.5
4	1	4	3	0	3	Е	6058.1453	-1.2
4	2	3	3	1	2	А	12179.1654	-1.6
4	2	3	3	1	2	Е	12178.9969	-0.1
5	1	5	4	0	4	А	6762.8056	5.6
5	1	5	4	0	4	Е	6762.7884	-1.0
5	2	4	4	1	3	А	12904.2288	3.9
5	2	4	4	1	3	Е	12904.1307	-1.1
6	1	6	5	0	5	А	7447.3485	4.2
6	1	6	5	0	5	Е	7447.3347	0.1
6	2	5	5	1	4	А	13605.6462	-1.6
6	2	5	5	1	4	Е	13605.5860	1.3
6	2	4	5	1	5	А	14356.1739	-1.3
6	2	4	5	1	5	Е	14356.1739	-1.1
7	1	7	6	0	6	А	8113.7831	4.9
7	1	7	6	0	6	Е	8113.7643	-5.2
7	2	6	6	1	5	А	14283.6208	3.1
7	2	6	6	1	5	Е	14283.5708	2.3
8	1	8	7	0	7	А	8764.4814	-7.5
8	1	8	7	0	7	Е	8764.4814	0.1
8	2	7	7	1	6	А	14938.3949	-0.9
8	2	7	7	1	6	Е	14938.3569	2.7
9	0	9	8	1	8	А	5064.2068	3.4
9	0	9	8	1	8	Е	5064.2068	-0.1
9	1	9	8	0	8	А	9402.2156	-6.6
9	1	9	8	0	8	Е	9402.2156	-0.1
9	2	8	8	1	7	А	15570.3371	1.5
9	2	8	8	1	7	Е	15570.2978	-1.0
10	0	10	9	1	9	А	6023.5374	0.7
10	0	10	9	1	9	Е	6023.5374	-1.5
10	1	10	9	0	9	А	10030.0086	-6.5

10	1	10	9	0	9	Е	10030.0086	-1.3
10	2	9	9	1	8	А	16179.9014	2.6
10	2	9	9	1	8	Е	16179.8668	1.3
11	0	11	10	1	10	А	6984.0642	1.0
11	0	11	10	1	10	Е	6984.0642	0.2
11	1	11	10	0	10	А	10651.0994	-2.2
11	1	11	10	0	10	Е	10651.0994	1.8
12	0	12	11	1	11	А	7942.4719	-3.2
12	0	12	11	1	11	Е	7942.4719	-2.8
12	1	12	11	0	11	А	11268.7924	1.7
12	1	12	11	0	11	Е	11268.7872	-0.7
13	0	13	12	1	12	А	8895.7097	-0.5
13	0	13	12	1	12	Е	8895.7097	1.0
13	1	13	12	0	12	А	11886.3248	-0.4
13	1	13	12	0	12	Е	11886.3248	1.2
14	0	14	13	1	13	А	9841.0891	0.2
14	0	14	13	1	13	Е	9841.0891	2.8
14	1	14	13	0	13	А	12506.7340	0.0
14	1	14	13	0	13	Е	12506.7340	0.3
15	0	15	14	1	14	А	10776.4193	-2.6
15	0	15	14	1	14	Е	10776.4284	0.2
15	1	15	14	0	14	А	13132.6999	5.4
15	1	15	14	0	14	Е	13132.6910	-4.4
3	3	0	2	2	0	А	17528.7682	-5.6
3	3	0	2	2	0	Е	17529.4935	1.6
3	3	1	2	2	1	А	17529.3344	4.7
3	3	1	2	2	1	Е	17528.4926	-2.1

	-2							
J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}^{\prime\prime}$	State	$v_{\rm obs}/{\rm MHz}$	$v_{\rm obs-calc}/kHz$
7	0	7	6	0	6	А	5486.9787	-0.3
7	0	7	6	0	6	Е	5486.9787	1.4
7	1	7	6	1	6	А	5353.9426	-0.8
7	1	7	6	1	6	Е	5353.9426	-0.3
7	1	6	6	1	5	А	5660.5619	-4.2
7	1	6	6	1	5	Е	5660.5619	-0.7
7	2	6	6	2	5	А	5509.8027	-1.8
7	2	6	6	2	5	Е	5509.8185	0.8
7	2	5	6	2	4	А	5536.3495	3.2
7	2	5	6	2	4	Е	5536.3266	-2.1
8	0	8	7	0	7	А	6261.5388	0.2
8	0	8	7	0	7	Е	6261.5388	2.0
8	1	8	7	1	7	А	6116.5724	-0.4
8	1	8	7	1	7	Е	6116.5724	0.1
8	1	7	7	1	6	А	6466.6471	-1.1
8	1	7	7	1	6	Е	6466.6471	2.8
8	2	7	7	2	6	А	6295.3265	2.2
8	2	7	7	2	6	Е	6295.3265	-3.1
8	2	6	7	2	5	А	6334.9453	2.3
8	2	6	7	2	5	Е	6334.9299	-2.7
9	0	9	8	0	8	А	7032.5841	0.1
9	0	9	8	0	8	Е	7032.5841	1.9
9	1	9	8	1	8	А	6878.3792	1.6
9	1	9	8	1	8	Е	6878.3792	2.1
9	1	8	8	1	7	А	7271.6321	-2.2
9	1	8	8	1	7	Е	7271.6321	2.1
9	2	8	8	2	7	А	7080.2084	1.0
9	2	8	8	2	7	Е	7080.2084	-0.6
9	2	7	8	2	6	А	7136.4121	1.7
9	2	7	8	2	6	Е	7136.4002	-2.7
10	0	10	9	0	9	А	7799.8647	-0.2
10	0	10	9	0	9	Е	7799.8647	1.7
10	1	10	9	1	9	А	7639.2927	-0.1
10	1	10	9	1	9	Е	7639.2927	0.5
10	1	9	9	1	8	А	8075.3397	-5.2
10	1	9	9	1	8	Е	8075.3397	-0.5
10	2	9	9	2	8	А	7864.3773	1.8
10	2	9	9	2	8	Е	7864.3773	2.2
10	2	8	9	2	7	А	7940.9113	-5.1
10	2	8	9	2	7	Е	7940.9113	1.2
11	0	11	10	0	10	А	8563.2358	-0.1

Table S15. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-cale}$, kHz) of the Isomer I of 4FAP-H₂¹⁸O.

_	11	0	11	10	0	10	Б	95(2 2259	1.7
		*	11	10	0	10	E	8563.2358	1./
	11	1	11	10	1	10	А	8399.2659	0.4
	11	1	11	10	1	10	Е	8399.2659	1.0
	11	1	10	10	1	9	А	8877.5871	1.9
	11	1	10	10	1	9	Е	8877.5794	-0.8
	11	2	10	10	2	9	А	8647.7519	0.5
	11	2	10	10	2	9	Е	8647.7519	2.0
	11	2	9	10	2	8	А	8748.5225	-0.2
	11	2	9	10	2	8	Е	8748.5135	-3.3
	12	0	12	11	0	11	А	9322.6729	-2.1
	12	0	12	11	0	11	Е	9322.6729	-0.3
	12	1	12	11	1	11	А	9158.2553	-0.4
	12	1	12	11	1	11	Е	9158.2553	0.2
	12	1	11	11	1	10	А	9678.1470	2.4
	12	1	11	11	1	10	Е	9678.1371	-2.1
	13	0	13	12	0	12	А	10078.2919	-1.3
	13	0	13	12	0	12	Е	10078.2919	0.4
	13	1	13	12	1	12	А	9916.2375	1.2
	13	1	13	12	1	12	Е	9916.2375	1.7
	13	1	12	12	1	11	А	10476.7963	0.9
	13	1	12	12	1	11	Е	10476.7876	-2.0
	14	0	14	13	0	13	А	10830.3344	1.3
	14	0	14	13	0	13	Е	10830.3344	2.9
	15	0	15	14	0	14	А	11579.1527	0.0
	15	0	15	14	0	14	Е	11579.1527	1.4
	16	0	16	15	0	15	А	12325.1960	-1.5
	16	0	16	15	0	15	Е	12325.1960	-0.1
	2	2	1	1	1	0	А	10622.4206	2.7
	2	2	1	1	1	0	Е	10621.5264	5.5
	2	2	0	1	1	1	А	10666.7643	7.1
	2	2	0	1	1	1	Е	10667.5838	-0.5
	3	2	2	2	1	1	А	11366.1978	-3.3
	3	2	2	2	1	1	Е	11365.7597	3.7
	6	1	6	5	0	5	А	7298.0198	4.6
	6	1	6	5	0	5	Е	7298.0061	0.2
	7	1	7	6	0	6	А	7942.7259	5.1
	7	1	7	6	0	6	Е	7942.7135	0.9
	8	1	8	7	0	7	А	8572.3088	-5.8
	8	1	8	7	0	7	Е	8572.3088	1.2
	9	1	9	8	0	8	А	9189.1488	-4.8
	9	1	9	8	0	8	Е	9189.1488	0.9
	10	1	10	9	0	9	А	9795.8581	-4.2
	10	1	10	9	0	9	Е	9795.8581	0.2
_	11	0	11	10	1	10	А	6567.2386	0.1

11	0	11	10	1	10	Е	6567.2386	-0.6	-
11	1	11	10	0	10	А	10395.2612	-1.7	
11	1	11	10	0	10	Е	10395.2612	1.4	
12	0	12	11	1	11	А	7490.6457	-2.3	
12	0	12	11	1	11	Е	7490.6457	-1.7	
12	1	12	11	0	11	А	10990.2806	-2.0	
12	1	12	11	0	11	Е	10990.2806	-0.3	
13	0	13	12	1	12	А	8410.6849	-0.6	
13	0	13	12	1	12	Е	8410.6849	1.1	
13	1	13	12	0	12	А	11583.8432	-0.7	
13	1	13	12	0	12	Е	11583.8432	-0.3	
14	0	14	13	1	13	А	9324.7817	-0.7	
14	0	14	13	1	13	Е	9324.7817	2.2	
14	1	14	13	0	13	А	12178.7447	0.9	
14	1	14	13	0	13	Е	12178.7447	0.0	
3	3	0	2	2	0	А	17477.7382	-3.1	
3	3	0	2	2	0	Е	17478.4181	-9.0	
3	3	1	2	2	1	А	17478.2199	4.5	
3	3	1	2	2	1	Е	17477.4120	-1.3	

11 / 11 11								
J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{\rm MHz}$	$v_{\rm obs-calc}/kHz$
7	0	7	6	0	6	А	5568.8083	-1.1
7	0	7	6	0	6	Е	5568.8083	0.6
7	1	7	6	1	6	А	5431.9612	-3.9
7	1	7	6	1	6	Е	5431.9612	-3.3
7	1	6	6	1	5	А	5749.4620	-1.2
7	1	6	6	1	5	Е	5749.4562	-3.5
8	0	8	7	0	7	А	6354.3276	-1.4
8	0	8	7	0	7	Е	6354.3276	0.4
8	1	8	7	1	7	А	6205.5672	-1.4
8	1	8	7	1	7	Е	6205.5672	-0.8
8	1	7	7	1	6	А	6568.0298	1.7
8	1	7	7	1	6	Е	6568.0197	-4.4
9	0	9	8	0	8	А	7136.0705	-6.9
9	0	9	8	0	8	Е	7136.0705	-4.9
9	1	9	8	1	8	А	6978.2834	-3.4
9	1	9	8	1	8	Е	6978.2834	-2.7
9	1	8	8	1	7	А	7385.4028	1.3
9	1	8	8	1	7	Е	7385.3949	-2.3
10	0	10	9	0	9	А	7913.8013	-1.9
10	0	10	9	0	9	Е	7913.8013	0.1
10	1	10	9	1	9	А	7750.0485	-3.1
10	1	10	9	1	9	Е	7750.0485	-2.4
10	1	9	9	1	8	А	8201.3876	1.2
10	1	9	9	1	8	Е	8201.3806	-1.1
11	0	11	10	0	10	А	8687.3762	0.7
11	0	11	10	0	10	Е	8687.3866	3.0
11	1	11	10	1	10	А	8520.8045	-4.4
11	1	11	10	1	10	Е	8520.8045	-3.7
11	1	10	10	1	9	А	9015.7760	7.1
11	1	10	10	1	9	Е	9015.7648	1.0
12	0	12	11	0	11	А	9456.8008	-2.2
12	0	12	11	0	11	Е	9456.8008	-0.3
12	1	12	11	1	11	А	9290.5184	-0.1
12	1	12	11	1	11	Е	9290.5184	0.6
12	1	11	11	1	10	А	9828.3225	5.5
12	1	11	11	1	10	Е	9828.3086	-2.9
13	0	13	12	0	12	А	10222.2392	-2.9
13	0	13	12	0	12	Е	10222.2392	-1.1
13	1	13	12	1	12	А	10059.1571	2.4
13	1	13	12	1	12	Е	10059.1496	-4.4
13	1	12	12	1	11	А	10638.7781	-1.8

Table S16. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-cale}$, kHz) of the Isomer I of 4FAP-HOD.

13	1	12	12	1	11	Е	10638.7781	4.1
14	0	14	13	0	13	А	10983.9934	2.2
14	0	14	13	0	13	Е	10983.9934	4.0
15	0	15	14	0	14	А	11742.4739	5.3
15	0	15	14	0	14	Е	11742.4739	6.9
16	0	16	15	0	15	А	12498.1760	-1.5
16	0	16	15	0	15	Е	12498.1760	0.1
7	1	7	6	0	6	А	7981.9676	-3.9
7	1	7	6	0	6	Е	7981.9600	-3.3
8	1	8	7	0	7	А	8618.7272	-3.5
8	1	8	7	0	7	Е	8618.7272	3.5
9	1	9	8	0	8	А	9242.6851	-3.3
9	1	9	8	0	8	Е	9242.6851	2.5
10	1	10	9	0	9	А	9856.6640	1.3
10	1	10	9	0	9	Е	9856.6640	5.9

J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	$v_{\rm obs-calc}/kHz$
7	0	7	6	0	6	А	5634.5191	-1.5
7	0	7	6	0	6	Е	5634.5191	0.3
7	1	7	6	1	6	А	5495.2194	0.8
7	1	7	6	1	6	Е	5495.2194	1.4
7	1	6	6	1	5	А	5819.3471	-2.7
7	1	6	6	1	5	Е	5819.3471	0.8
8	0	8	7	0	7	А	6429.0403	-2.0
8	0	8	7	0	7	Е	6429.0403	0.0
8	1	8	7	1	7	А	6277.7664	-1.1
8	1	8	7	1	7	Е	6277.7664	-0.4
8	1	7	7	1	6	А	6647.7779	-6.7
8	1	7	7	1	6	Е	6647.7664	-4.2
9	0	9	8	0	8	А	7219.6542	-2.2
9	0	9	8	0	8	Е	7219.6542	-0.1
9	1	9	8	1	8	А	7059.3988	0.1
9	1	9	8	1	8	Е	7059.3988	0.8
9	1	8	8	1	7	А	7474.9801	2.3
9	1	8	8	1	7	Е	7474.9739	0.4
10	0	10	9	0	9	А	8006.1086	-2.0
10	0	10	9	0	9	Е	8006.1086	0.1
10	1	10	9	1	9	А	7840.0420	-0.8
10	1	10	9	1	9	Е	7840.0420	0.0
10	1	9	9	1	8	А	8300.7334	0.0
10	1	9	9	1	8	Е	8300.7201	1.5
11	0	11	10	0	10	А	8788.2801	-0.6
11	0	11	10	0	10	Е	8788.2801	1.4
11	1	11	10	1	10	А	8619.6452	0.7
11	1	11	10	1	10	Е	8619.6452	1.5
11	1	10	10	1	9	А	9124.8056	8.2
11	1	10	10	1	9	Е	9124.7902	-2.0

Table S17. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer I of 4FAP-DOH.

TI / 11 - D	20.							
J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{\rm MHz}$	$v_{\rm obs-calc}/kHz$
7	0	7	6	0	6	А	5498.7964	-2.6
7	0	7	6	0	6	Е	5498.7964	-0.9
7	1	7	6	1	6	А	5364.4852	-6.9
7	1	7	6	1	6	Е	5364.4852	-6.5
7	1	6	6	1	5	А	5675.1614	-2.3
7	1	6	6	1	5	Е	5675.1614	1.2
7	2	6	6	2	5	А	5522.4724	-1.5
7	2	6	6	2	5	Е	5522.4854	-0.9
7	2	5	6	2	4	А	5550.0045	0.1
7	2	5	6	2	4	Е	5549.9817	-5.9
8	0	8	7	0	7	А	6274.7086	-1.9
8	0	8	7	0	7	Е	6274.7086	-0.1
8	1	8	7	1	7	А	6128.5482	-1.2
8	1	8	7	1	7	Е	6128.5482	-0.7
8	1	7	7	1	6	А	6483.2265	-3.8
8	1	7	7	1	6	Е	6483.2265	0.1
8	2	7	7	2	6	А	6309.7464	2.5
8	2	7	7	2	6	Е	6309.7464	-2.4
8	2	6	7	2	5	А	6350.8297	0.8
8	2	6	7	2	5	Е	6350.8129	-6.0
9	0	9	8	0	8	А	7046.9885	-1.9
9	0	9	8	0	8	Е	7046.9885	-0.1
9	1	9	8	1	8	А	6891.7526	-1.7
9	1	9	8	1	8	Е	6891.7526	-1.2
9	1	8	8	1	7	А	7290.1555	-0.8
9	1	8	8	1	7	Е	7290.1555	3.5
9	2	8	8	2	7	А	7096.3535	0.1
9	2	8	8	2	7	Е	7096.3535	-1.3
9	2	7	8	2	6	А	7154.6209	3.6
9	2	7	8	2	6	Е	7154.6077	-2.4
10	0	10	9	0	9	А	7815.3887	-0.4
10	0	10	9	0	9	Е	7815.3887	1.5
10	1	10	9	1	9	А	7654.0383	-2.4
10	1	10	9	1	9	Е	7654.0383	-1.8
10	1	9	9	1	8	А	8095.7547	0.8
10	1	9	9	1	8	Е	8095.7471	-2.1
10	2	9	9	2	8	А	7882.2231	1.7
10	2	9	9	2	8	Е	7882.2231	2.2
10	2	8	9	2	7	А	7961.5333	-0.5
10	2	8	9	2	7	Е	7961.5228	-4.8
11	0	11	10	0	10	А	8579.7684	-0.9

Table S18. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer I of 4FAP-D₂O.

11	0	11	10	0	10	Е	8579.7684	1.0
11	1	11	10	1	10	А	8415.3542	-0.9
11	1	11	10	1	10	Е	8415.3542	-0.3
11	1	10	10	1	9	А	8899.8214	2.1
11	1	10	10	1	9	Е	8899.8099	-4.3
11	2	10	10	2	9	А	8667.2675	-0.3
11	2	10	10	2	9	Е	8667.2675	1.3
11	2	9	10	2	8	А	8771.6334	4.9
11	2	9	10	2	8	Е	8771.6226	-0.1
12	0	12	11	0	11	А	9340.1242	-0.9
12	0	12	11	0	11	Е	9340.1242	0.8
12	1	12	11	1	11	А	9175.6570	-0.7
12	1	12	11	1	11	Е	9175.6570	-0.1
12	1	11	11	1	10	А	9702.1366	5.0
12	1	11	11	1	10	Е	9702.1261	0.0
13	0	13	12	0	12	А	10096.5892	-2.0
13	0	13	12	0	12	Е	10096.5892	-0.3
13	1	13	12	1	12	А	9934.9215	-0.7
13	1	13	12	1	12	Е	9934.9215	-0.2
13	1	12	12	1	11	А	10502.4580	5.8
13	1	12	12	1	11	Е	10502.4460	-0.4
14	0	14	13	0	13	А	10849.4381	0.0
14	0	14	13	0	13	Е	10849.4381	1.6
15	0	15	14	0	14	А	11599.0557	1.4
15	0	15	14	0	14	Е	11599.0557	2.9
16	0	16	15	0	15	А	12345.9231	9.6
16	0	16	15	0	15	Е	12345.9139	1.7
7	1	7	6	0	6	А	7916.4344	2.3
7	1	7	6	0	6	Е	7916.4250	0.9
8	1	8	7	0	7	А	8546.1813	-1.2
8	1	8	7	0	7	Е	8546.1691	-6.6
9	1	9	8	0	8	А	9163.2302	3.9
9	1	9	8	0	8	Е	9163.2214	0.6
10	1	10	9	0	9	А	9770.2781	1.6
10	1	10	9	0	9	Е	9770.2708	-1.5
11	1	11	10	0	10	А	10370.2405	-2.0
11	1	11	10	0	10	Е	10370.2405	0.9

	2							
J'	$K_{\rm a}'$	<i>K</i> _c ′	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	v _{obs-calc} /kHz
8	0	8	7	0	7	А	7745.9608	-1.8
8	0	8	7	0	7	Е	7745.9608	-1.4
9	0	9	8	0	8	А	8649.5044	0.4
9	0	9	8	0	8	Е	8649.5044	0.8
10	0	10	9	0	9	А	9556.0990	3.9
10	0	10	9	0	9	Е	9556.0990	4.3
3	3	0	2	2	1	А	7992.7803	-4.7
3	3	0	2	2	1	Е	7992.8067	3.3
3	3	1	2	2	0	А	7958.3561	-0.5
3	3	1	2	2	0	Е	7958.3241	1.7
4	2	3	3	1	2	А	6623.7213	-1.8
4	2	3	3	1	2	Е	6623.7101	-8.2
4	3	2	3	2	1	А	9000.1484	-2.4
4	3	2	3	2	1	Е	9000.1414	2.4
4	4	1	3	3	0	А	10941.4972	-4.3
4	4	1	3	3	0	Е	10941.2008	3.2
4	4	0	3	3	1	А	10944.8977	-5.6
4	4	0	3	3	1	Е	10945.1885	3.4
5	2	4	4	1	3	А	7339.4563	-0.2
5	2	4	4	1	3	Е	7339.4563	4.5
5	3	3	4	2	2	А	9936.5805	-2.2
5	3	3	4	2	2	Е	9936.5805	7.0
5	3	2	4	2	3	А	10446.8840	5.4
5	3	2	4	2	3	Е	10446.8740	1.8
5	4	2	4	3	1	А	12045.9039	-1.5
5	4	2	4	3	1	Е	12045.8330	1.2
5	4	1	4	3	2	А	12069.8944	-4.4
5	4	1	4	3	2	Е	12069.9522	1.8
6	1	6	5	0	5	А	6043.1318	-1.7
6	1	6	5	0	5	Е	6043.1318	-0.7
6	0	6	5	1	5	А	5787.3999	2.0
6	0	6	5	1	5	Е	5787.3999	1.7
6	2	5	5	1	4	А	7985.3855	1.4
6	2	5	5	1	4	Е	7985.3855	6.0
6	3	4	5	2	3	А	10739.4476	2.0
6	3	4	5	2	3	Е	10739.4391	2.4
6	3	3	5	2	4	А	11878.2297	1.7
6	3	3	5	2	4	Е	11878.2186	-3.0
6	4	3	5	3	2	А	13116.0986	-1.8
6	4	3	5	3	2	Е	13116.0768	0.7
6	4	2	5	3	3	А	13211.6770	-3.1

Table S19. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-H₂O.

6	4	2	5	3	3	Е	13211.6870	4.7
7	1	7	6	0	6	А	6891.6196	-2.0
7	1	7	6	0	6	Е	6891.6196	-1.3
7	0	7	6	1	6	А	6759.0436	-1.4
7	0	7	6	1	6	Е	6759.0436	-1.5
7	2	6	6	1	5	А	8599.8724	-0.6
7	2	6	6	1	5	Е	8599.8724	3.7
7	3	5	6	2	4	А	11409.9552	-2.3
7	3	5	6	2	4	Е	11409.9443	-4.3
7	3	4	6	2	5	А	13541.0507	-9.9
7	3	4	6	2	5	Е	13541.0602	5.1
7	4	4	6	3	3	А	14114.6110	0.5
7	4	4	6	3	3	Е	14114.5945	-0.9
7	4	3	6	3	4	А	14394.7176	5.1
7	4	3	6	3	4	Е	14394.7040	-1.6
8	1	8	7	0	7	А	7767.3334	-0.5
8	1	8	7	0	7	Е	7767.3334	0.1
8	0	8	7	1	7	А	7701.7111	0.3
8	0	8	7	1	7	Е	7701.7111	0.4
8	2	7	7	1	6	А	9230.8354	-2.2
8	2	7	7	1	6	Е	9230.8279	-6.0
8	3	6	7	2	5	А	11969.7600	1.1
8	3	6	7	2	5	Е	11969.7508	0.7
8	4	5	7	3	4	А	14995.5521	-2.3
8	4	5	7	3	4	Е	14995.5450	3.9
9	1	9	8	0	8	А	8659.5479	-1.1
9	1	9	8	0	8	Е	8659.5479	-0.6
9	0	9	8	1	8	А	8628.1339	1.2
9	0	9	8	1	8	Е	8628.1339	1.4
9	2	8	8	1	7	А	9917.1573	-2.9
9	2	8	8	1	7	Е	9917.1573	0.1
9	3	7	8	2	6	А	12452.5144	4.0
9	3	7	8	2	6	Е	12452.4949	-6.8
10	1	10	9	0	9	А	9560.7183	-0.7
10	1	10	9	0	9	Е	9560.7183	-0.3
10	0	10	9	1	9	А	9546.0485	-1.6
10	0	10	9	1	9	Е	9546.0485	-1.3
10	2	9	9	1	8	А	10672.1745	-0.9
10	2	9	9	1	8	Е	10672.1745	1.5
11	1	11	10	0	10	А	10466.4474	-0.8
11	1	11	10	0	10	Е	10466.4474	-0.4
11	0	11	10	1	10	А	10459.7319	1.3
11	0	11	10	1	10	Е	10459.7319	1.6
11	2	10	10	1	9	А	11486.2573	-1.6

11	2	10	10	1	9	Е	11486.2573	0.3
12	1	12	11	0	11	А	11374.4099	0.2
12	1	12	11	0	11	Е	11374.4099	0.5
12	0	12	11	1	11	А	11371.3811	0.1
12	0	12	11	1	11	Е	11371.3811	0.5
12	2	11	11	1	10	А	12341.3331	-0.3
12	2	11	11	1	10	Е	12341.3331	1.2
13	1	13	12	0	12	А	12283.4365	-1.4
13	1	13	12	0	12	Е	12283.4365	-1.1
13	0	13	12	1	12	А	12282.0890	-0.6
13	0	13	12	1	12	Е	12282.0890	-0.2
13	2	12	12	1	11	А	13221.3833	4.2
13	2	12	12	1	11	Е	13221.3833	5.5
14	1	14	13	0	13	А	13192.9649	-3.2
14	1	14	13	0	13	Е	13192.9696	1.7
14	0	14	13	1	13	А	13192.3794	5.1
14	0	14	13	1	13	Е	13192.3700	-3.8
14	2	13	13	1	12	А	14115.4749	-1.4
14	2	13	13	1	12	Е	14115.4749	-0.2
15	1	15	14	0	14	А	14102.7320	-0.6
15	1	15	14	0	14	Е	14102.7320	-0.7
15	0	15	14	1	14	А	14102.4740	0.6
15	0	15	14	1	14	Е	14102.4740	1.3
15	2	14	14	1	13	А	15017.1008	-2.5
15	2	14	14	1	13	Е	15017.1008	-1.3

Table S20. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-H₂¹⁸O.

J^{\prime}	$K_{\rm a}'$	K_{c}'	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}^{\prime\prime}$	State	v_{obs}/MHz	v _{obs-calc} /kHz
6	1	6	5	0	5	А	5868.3006	1.8
6	1	6	5	0	5	Е	5868.3006	2.7
6	0	6	5	1	5	А	5643.8162	-2.0
6	0	6	5	1	5	Е	5643.8162	-2.2
7	1	7	6	0	6	А	6698.2908	1.9
7	1	7	6	0	6	Е	6698.2908	2.6
7	0	7	6	1	6	А	6584.4163	-1.1
7	0	7	6	1	6	Е	6584.4163	-1.1
7	2	6	6	1	5	А	8307.4272	-4.6
7	2	6	6	1	5	Е	8307.4272	-0.7
8	1	8	7	0	7	А	7553.6028	2.5
8	1	8	7	0	7	Е	7553.6028	3.0
8	0	8	7	1	7	А	7498.4381	0.3
8	0	8	7	1	7	Е	7498.4381	0.5
8	2	7	7	1	6	А	8929.3356	-1.9

8	2	7	7	1	6	Е	8929.3356	1.5
9	1	9	8	0	8	А	8423.7875	3.2
9	1	9	8	0	8	Е	8423.7875	3.7
9	0	9	8	1	8	А	8397.9346	0.6
9	0	9	8	1	8	Е	8397.9346	0.8
9	2	8	8	1	7	А	9609.5519	0.5
9	2	8	8	1	7	Е	9609.5519	3.3
10	1	10	9	0	9	А	9301.8275	2.4
10	1	10	9	0	9	Е	9301.8275	2.8
10	0	10	9	1	9	А	9290.0093	0.7
10	0	10	9	1	9	Е	9290.0093	1.0
11	1	11	10	0	10	А	10183.7717	0.2
11	1	11	10	0	10	Е	10183.7717	0.5
11	0	11	10	1	10	А	10178.4745	1.0
11	0	11	10	1	10	Е	10178.4745	1.3
12	1	12	11	0	11	А	11067.5869	-1.8
12	1	12	11	0	11	Е	11067.5869	-1.5
12	0	12	11	1	11	А	11065.2498	-0.1
12	0	12	11	1	11	Е	11065.2498	0.2
13	1	13	12	0	12	А	11952.2797	-2.1
13	1	13	12	0	12	Е	11952.2797	-1.8
13	0	13	12	1	12	А	11951.2597	-2.7
13	0	13	12	1	12	Е	11951.2597	-2.3
14	1	14	13	0	13	А	12837.3780	-1.3
14	1	14	13	0	13	Е	12837.3780	-1.2
14	0	14	13	1	13	А	12836.9376	-2.1
14	0	14	13	1	13	Е	12836.9376	-1.6

Table S21. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-HOD.

J^{\prime}	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}^{\prime\prime}$	State	$v_{\rm obs}/{ m MHz}$	$v_{\rm obs-calc}/kHz$
6	1	6	5	0	5	А	5918.5375	-0.9
6	1	6	5	0	5	Е	5918.5375	0.0
6	0	6	5	1	5	А	5680.5805	1.1
6	0	6	5	1	5	Е	5680.5805	0.9
7	1	7	6	0	6	А	6752.7006	1.7
7	1	7	6	0	6	Е	6752.7006	2.3
7	0	7	6	1	6	А	6630.6855	-0.8
7	0	7	6	1	6	Е	6630.6855	-0.9
8	1	8	7	0	7	А	7612.9537	-0.9
8	1	8	7	0	7	Е	7612.9537	-0.3
8	0	8	7	1	7	А	7553.2154	0.2
8	0	8	7	1	7	Е	7553.2154	0.3
9	1	9	8	0	8	А	8488.7769	0.4

9	1	9	8	0	8	Е	8488.7769	0.8	_
9	0	9	8	1	8	А	8460.4834	-0.9	
9	0	9	8	1	8	Е	8460.4834	-0.7	
10	1	10	9	0	9	А	9372.9289	-2.0	
10	1	10	9	0	9	Е	9372.9289	-1.6	
10	0	10	9	1	9	А	9359.8603	-1.4	
10	0	10	9	1	9	Е	9359.8603	-1.1	
11	1	11	10	0	10	А	10261.2751	-1.2	
11	1	11	10	0	10	Е	10261.2751	-0.8	
11	0	11	10	1	10	А	10255.3591	4.1	
11	0	11	10	1	10	Е	10255.3591	4.4	
12	1	12	11	0	11	А	11151.6503	-0.7	
12	1	12	11	0	11	Е	11151.6503	-0.4	
12	0	12	11	1	11	А	11149.0080	-1.6	
12	0	12	11	1	11	Е	11149.0080	-1.3	
13	1	13	12	0	12	А	12042.9840	-1.4	
13	1	13	12	0	12	Е	12042.9840	-1.1	
13	0	13	12	1	12	А	12041.8208	-1.2	
13	0	13	12	1	12	Е	12041.8208	-0.8	
14	1	14	13	0	13	А	12934.7677	0.7	
14	1	14	13	0	13	Е	12934.7677	0.9	
14	0	14	13	1	13	А	12934.2619	1.9	
14	0	14	13	1	13	Е	12934.2619	2.4	

Table S22. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-DOH.

IIII D	011.							
J'	$K_{\rm a}'$	$K_{\rm c}'$	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}''$	State	$v_{\rm obs}/{ m MHz}$	$v_{\rm obs-calc}/kHz$
6	1	6	5	0	5	А	5984.8251	0.0
6	1	6	5	0	5	Е	5984.8251	1.0
6	0	6	5	1	5	А	5726.4561	0.9
6	0	6	5	1	5	Е	5726.4561	0.6
7	1	7	6	0	6	А	6823.8493	0.2
7	1	7	6	0	6	Е	6823.8493	0.9
7	0	7	6	1	6	А	6689.3310	-0.3
7	0	7	6	1	6	Е	6689.3310	-0.3
8	1	8	7	0	7	А	7690.0535	-0.9
8	1	8	7	0	7	Е	7690.0535	-0.4
8	0	8	7	1	7	А	7623.1852	-1.4
8	0	8	7	1	7	Е	7623.1852	-1.3
9	1	9	8	0	8	А	8572.8404	-0.8
9	1	9	8	0	8	Е	8572.8404	-0.4
9	0	9	8	1	8	А	8540.6936	-0.2
9	0	9	8	1	8	Е	8540.6936	0.0
10	1	10	9	0	9	А	9464.6712	-2.7

10 1 10 9 0 9 E 9464.6712 -2 10 0 10 9 1 9 A 9449.6001 -0	2.3 0.4 0.1
10 0 10 9 1 9 A 9449.6001 -0	0.4 0.1
	0.1
10 0 10 9 1 9 E 9449.6001 -0	
11 1 11 10 0 10 A 10361.1356 1	1.7
11 1 11 10 0 10 E 10361.1356 2	2.1
11 0 11 10 1 10 A 10354.2053 3	3.0
11 0 11 10 1 10 E 10354.2053 3	3.3
12 1 12 11 0 11 A 11259.8684 -1	1.2
12 1 12 11 0 11 E 11259.8684 -0	0.9
12 0 12 11 1 11 A 11256.7326 1	1.2
12 0 12 11 1 11 E 11256.7326 1	1.6
13 1 13 12 0 12 A 12159.6967 -0	0.4
13 1 13 12 0 12 E 12159.6967 -0	0.1
13 0 13 12 1 12 A 12158.2929 -1	1.4
13 0 13 12 1 12 E 12158.2929 -1	1.0

Table S23. Experimental transition frequencies (v_{obs} , MHz) and fit deviations ($v_{obs-calc}$, kHz) of the Isomer II of 4FAP-D₂O.

J'	$K_{\rm a}'$	K_{c}'	$J^{\prime\prime}$	$K_{\rm a}$ "	$K_{\rm c}^{\prime\prime}$	State	v_{obs}/MHz	$v_{obs-calc}/kHz$
6	1	6	5	0	5	А	5864.0282	-3.3
6	1	6	5	0	5	Е	5864.0282	-2.4
6	0	6	5	1	5	А	5621.9033	-1.1
6	0	6	5	1	5	Е	5621.9033	-1.3
7	1	7	6	0	6	А	6688.8948	-0.3
7	1	7	6	0	6	Е	6688.8948	0.4
7	0	7	6	1	6	А	6564.0331	-0.8
7	0	7	6	1	6	Е	6564.0331	-0.9
8	1	8	7	0	7	А	7539.9088	1.8
8	1	8	7	0	7	Е	7539.9088	2.4
8	0	8	7	1	7	А	7478.4270	1.5
8	0	8	7	1	7	Е	7478.4270	1.6
9	1	9	8	0	8	А	8406.6501	2.9
9	1	9	8	0	8	Е	8406.6501	3.3
9	0	9	8	1	8	А	8377.3661	0.1
9	0	9	8	1	8	Е	8377.3661	0.3
10	1	10	9	0	9	А	9281.8677	1.4
10	1	10	9	0	9	Е	9281.8677	1.8
10	0	10	9	1	9	А	9268.2646	0.1
10	0	10	9	1	9	Е	9268.2646	0.4
11	1	11	10	0	10	А	10161.3775	0.7
11	1	11	10	0	10	Е	10161.3775	1.0
11	0	11	10	1	10	А	10155.1787	-1.2
11	0	11	10	1	10	Е	10155.1787	-0.9
12	1	12	11	0	11	А	11042.9763	-1.2

12	1	12	11	0	11	Е	11042.9763	-0.9
12	0	12	11	1	11	А	11040.1967	-1.1
12	0	12	11	1	11	Е	11040.1967	-0.7
13	1	13	12	0	12	А	11925.5718	0.1
13	1	13	12	0	12	Е	11925.5718	0.4
13	0	13	12	1	12	А	11924.3399	-0.7
13	0	13	12	1	12	Е	11924.3399	-0.3
14	1	14	13	0	13	А	12808.6305	-0.8
14	1	14	13	0	13	Е	12808.6305	-0.6
14	0	14	13	1	13	А	12808.0911	-0.8
14	0	14	13	1	13	Е	12808.0911	-0.3

Fig. S2. The structural comparison of 4FAP and isomer II of 4FAP-H₂O in the distance (Å) between the H atoms of -CH₃ and the O atoms of -C=O.

Table S24. Transition frequencies and intensities of isomer I and isomer II of the $4FAP-H_2O$ complex for the population ratio.

	Isom	er I	Isomer II		
	Frequency	Intensity	Frequency	Intensity	
6 ₁₆ ←5 ₀₅	7447.3343	0.0265	6043.1324	0.0157	
7 ₁₇ ←6 ₀₆	8113.7691	0.0179	6891.6204	0.0114	
8 ₁₈ ←7 ₀₇	8764.4813	0.0103	7767.33209	0.0103	
10 ₁₁₀ ←9 ₀₉	10030.0104	0.0071	9560.7178	0.0062	

Table S25. The $r_{\rm s}$ and $r_{\rm e}$ coordinates of the oxygen atom of water in 4FAP-H₂O.

	Atom	a/Å		b/Å		c/Å	
		r_s	r _e	r_s	r _e	r_s	r _e
Isomer I	O18	$\pm 2.8638(5)^{a}$	2.802	±2.7105(6)	2.729	0^{b}	0.113
Isomer II	O18	5.0465(3)	5.049	0.395(4)	0.379	0.06(2)	-0.0491

^{*a*} Errors in parenthesis are given in units of the last digit.

^b Imaginary values, fixed at zero.

		B_{e}^{theo}	B_0^{theo}	$\Delta B_{ m vib}$	B_0^{exp}	B_{e}^{SE}				
	<mark>A/MHz</mark>	<mark>3432.542</mark>	<mark>3439.695</mark>	<mark>-7.153</mark>	<mark>3423.8204(4)^a</mark>	<mark>3416.6674(4)</mark>				
<mark>Normal</mark>	<mark><i>B</i>/MHz</mark>	<mark>432.584</mark>	<mark>427.517</mark>	<mark>5.067</mark>	<mark>433.74560(5)</mark>	438.812600(5)				
	C/MHz	<mark>385.761</mark>	<mark>381.795</mark>	<mark>3.966</mark>	<mark>386.30681(3)</mark>	<mark>390.27281(3)</mark>				
	<mark>A/MHz</mark>	<mark>3426.133</mark>	<mark>3453.576</mark>	<mark>-27.443</mark>	<mark>3416.8482(2)</mark>	<mark>3389.4052(2)</mark>				
$H_2^{18}O$	<i>B</i> /MHz	<mark>414.671</mark>	<mark>410.068</mark>	<mark>4.603</mark>	<mark>415.75543(2)</mark>	<mark>420.35843(2)</mark>				
	C/MHz	<mark>371.379</mark>	<mark>367.933</mark>	<mark>3.446</mark>	<mark>371.89280(1)</mark>	<mark>375.3388(1)</mark>				
	<mark>A/MHz</mark>	<mark>3403.385</mark>	<mark>3433.798</mark>	<mark>-30.413</mark>	<mark>3398.33(2)</mark>	<mark>3367.92(2)</mark>				
HOD	<i>B</i> /MHz	<mark>421.296</mark>	<mark>416.426</mark>	<mark>4.870</mark>	<mark>422.53377(8)</mark>	<mark>420.35843(2)</mark>				
	C/MHz	<mark>376.444</mark>	<mark>372.849</mark>	<mark>3.595</mark>	<mark>377.10998(5)</mark>	<mark>375.3388(1)</mark>				
	<mark>A/MHz</mark>	<mark>3419.975</mark>	<mark>3450.777</mark>	<mark>-30.802</mark>	<mark>3411.030(9)</mark>	<mark>3380.228(9)</mark>				
DOH	<mark><i>B</i>/MHz</mark>	<mark>426.293</mark>	<mark>422.148</mark>	<mark>4.145</mark>	<mark>427.7837(1)</mark>	<mark>431.9287(1)</mark>				
	C/MHz	<mark>380.598</mark>	<mark>377.681</mark>	<mark>2.917</mark>	<mark>381.4084(1)</mark>	<mark>384.3254(1)</mark>				
	<mark>A/MHz</mark>	<mark>3432.542</mark>	<mark>3439.694</mark>	<mark>-7.152</mark>	<mark>3386.049(1)</mark>	<mark>3378.897(1)</mark>				
D ₂ O	<mark><i>B</i>/MHz</mark>	<mark>432.584</mark>	<mark>427.517</mark>	<mark>5.067</mark>	<mark>416.96138(5)</mark>	422.02838(5)				
	C/MHz	<mark>385.761</mark>	<u>381.795</u>	<mark>3.966</mark>	372.51670(3)	376.4827(3)				

Table S26. Theoretical, experimental and semi-experimental rotational constants of $H_2^{18}O$, DOH (with D participating in the HB). HOD, and D₂O isotopologues of isomers L of the 4FAP-H₂O.

^a Values of centrifugal distortion constants were fixed at those of the parent species.

participating in the HB), HOD, and D_2O isotopologues of isomers II of the 4FAP-H ₂ O.									
		B_{e}^{theo}	B_0^{theo}	$\Delta B_{ m vib}$	B_0^{exp}	B_{e}^{SE}			
	<mark>A/MHz</mark>	1481.942	1460.179	<mark>21.763</mark>	1483.5073(5) ^a	1505.2703(5)			
Normal	<i>B</i> /MHz	<mark>655.023</mark>	<mark>646.366</mark>	<mark>8.657</mark>	<mark>652.7972(4)</mark>	<mark>661.4542(4)</mark>			
	C/MHz	<mark>456.402</mark>	<mark>450.180</mark>	<mark>6.222</mark>	<mark>455.0442(6)</mark>	<mark>461.2662(6)</mark>			
	A/MHz	1422.587	1403.450	19.137	1425.0036(5)	1444.1406(5)			
$H_2^{18}O$	<u>B/MHz</u>	<mark>641.637</mark>	<mark>631.644</mark>	<mark>9.993</mark>	<mark>638.9646(6)</mark>	<mark>648.9576(6)</mark>			
	C/MHz	<mark>444.255</mark>	<mark>437.603</mark>	<mark>6.652</mark>	<mark>442.77824(5)</mark>	<mark>461.2662(6)</mark>			
	<mark>A/MHz</mark>	1440.164	1419.317	<mark>20.847</mark>	1444.69(2)	1465.537(2)			
HOD	<mark><i>B</i>/MHz</mark>	<mark>644.435</mark>	<mark>633.764</mark>	10.671	<mark>641.897(5)</mark>	<mark>652.568(5)</mark>			
	C/MHz	<mark>447.393</mark>	<mark>440.154</mark>	<mark>7.239</mark>	<mark>446.14194(5)</mark>	<mark>453.38094(5)</mark>			
	<mark>A/MHz</mark>	1468.448	1449.610	<mark>18.838</mark>	1472.49(2)	1491.328(2)			
DOH	<mark><i>B</i>/MHz</mark>	<mark>647.577</mark>	<mark>637.257</mark>	10.320	<mark>645.481(5)</mark>	<mark>655.801(5)</mark>			
	C/MHz	<mark>451.508</mark>	<mark>444.659</mark>	<mark>6.849</mark>	<mark>450.45796(5)</mark>	<mark>457.30696(5)</mark>			
	<mark>A/MHz</mark>	1428.745	1409.118	<mark>19.627</mark>	1435.580(2)	1455.207(2)			
D ₂ O	<mark><i>B</i>/MHz</mark>	<mark>637.127</mark>	<mark>627.636</mark>	<mark>9.491</mark>	<mark>634.667(5)</mark>	<mark>644.158(5)</mark>			
	C/MHz	<mark>442.768</mark>	<mark>436.214</mark>	<mark>6.554</mark>	<mark>441.7902(4)</mark>	448.3442(4)			

Table S27. Theoretical, experimental and semi-experimental rotational constants of $H_2^{18}O$, DOH (with D

^a Values of centrifugal distortion constants were fixed at those of the parent species.