Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023 # Supporting Information for Manganese Dioxide-Silver Nanostructure-based SERS Nanoplatform for Ultrasensitive Tricyclazole Detection in Rice Samples: Effects of Semiconductor Morphology on Charge Transfer Efficiency and SERS Analytical Performance Dao Thi Nguyet Nga^{a,1}, Quan Doan Mai^{a,1}, Nguyen Le Nhat Trang^a, Minh Khanh Pham^a, Nguyen Quang Hoa^b, Vu Dinh Lam^c, Hoang Van Tuan^a, Ha Anh Nguyen^{a,*}, Anh-Tuan Le^{a,d,**} ^aPhenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam ^bFaculty of Physics, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam ^cInstitute of Materials Science (IMS) and Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam ^dFaculty of Materials Science and Engineering (MSE), Phenikaa University, Hanoi 12116, Vietnam Corresponding authors: *anh.nguyenha@phenikaa-uni.edu.vn (H.A.Nguyen) **tuan.leanh@phenikaa-uni.edu.vn (A.T.Le) ¹ D.T.N. Nga and M.Q.Doan contributed equally to this work #### Calculation of limit of detection (LOD) The standard curve of linear detecting range was given as: $$Y = A + B \times Log(X) \tag{1}$$ where A and B are intercept and slope of regression equation obtained through the plot of the logarithmic SERS intensity (Y) – logarithmic concentration (X). The LOD is calculated using the following equation 1: $$LOD = 10^{\left[(Y_{blank} + 3SD)/Y_{blank} - A \right]/B}$$ (2) where Y_{blank} and SD are the SERS signal and the standard deviation of blank sample, respectively. SD is calculated via the well-known formula: $$SD = \sqrt{\frac{1}{n-1} \times \sum_{i}^{n} (x_i - x_{average})^2}$$ (3) where x_i if the "i" sample of the series of measurements, $x_{average}$ is the average value of SERS signal obtained from the blank sample repeated n times. #### Calculation of relative standard deviation (RSD) The RSD value of repeatability and reproducibility is calculated via the well-known formula: $$RSD = \frac{SD \times 100}{x_{average}}$$ (4) where SD is the standard deviation that calculates using equation 4 and $x_{average}$ is the average value of SERS signal obtained from each measurement. ### Calculation of enhancement factor (EF) The EF value is calculated according to the well-established equation, which was employed in several published studies ^{2, 3}: $$EF = \frac{I_{SERS}}{I_{Raman}} \times \frac{N_{bulk}}{N_{surface}} \tag{5}$$ where I_{SERS} and I_{Raman} are Raman signal intensity of the analyte with and without SERS from the substrate, respectively; and N_{bulk} is the number of analyte molecules that are probed on the Raman spectrum, while $N_{surface}$ is the number of analyte molecules probed using SERS. N_{bulk} can be calculated following: $$N_{bulk} = \frac{A_{laser} \times h \times \rho}{M} \times N_A$$ (6) where A_{laser} , h, ρ and m are the laser spot area, the focal length, the density of the solid analyte and its molecular weight, respectively; and N_A is the Avogadro number. N_{surface} can be expressed as: $$N_{surface} = \frac{C \times V}{A_{substrate}} \times N_A \times A_{laser}$$ (7) where C, V, $A_{substrate}$ are the concentration, the volume drop-casted of the analyte, and the area of the substrate, respectively; N_A is the Avogadro number; and A_{laser} is the laser spot area. Thus, EF can be calculated as: $$EF = \frac{I_{SERS}}{I_{Raman}} \times \frac{N_{bulk}}{N_{surface}} = \frac{I_{SERS}}{I_{Raman}} \times \frac{h \times \rho \times A_{substrate}}{M \times C \times V}$$ (8) In our case, I_{SERS} and I_{Raman} is Raman signal intensity with and without SERS substrate of Tricyclazole (431 cm⁻¹), $h=2~\mu m=2\times 10^{-4}$ cm, $\rho=1.5\pm 0.1~g/cm^3$, M=189.24~g/mol, $A_{substrate}=4\pi~mm^2=4\pi\times 10^{-2}~cm^2$, $C=10^{-7}mol/L$, $V=5~\mu L=5\times 10^{-6}~L$. I_{SERS} and I_{Raman} values of e-AgNPs and MnO₂-s/e-Ag were estimated using the spectra in Figure S6. Figure S1: (a) SEM image, and (b) UV-vis absorption spectrum of MnO₂. Figure S2: SEM images of MnO₂-s. Figure S3: (a) Molecular structure of TCZ, (b) Raman spectrum of TCZ powder. Figure S4: SERS spectrum of MnO_2 -s for TCZ (10⁻³M). Figure S5: (a) CV profiles of various modified electrodes at scan rate 50 mV/s in in 0.1 M KCl containing 5 mM $[Fe(CN)_6]^{3-/4}$. Figure S6: Raman spectrum of TCZ; and SERS spectra of e-Ag and MnO₂-s/e-Ag for TCZ ($10^{-7}M$). Table S1: The enhancement levels of MnO₂/e-Ag nanocomposites at those peaks. | Substrate | Level of enhancement compared to e-Ag substrate (times) | | | | |--------------------------|---|----------------------|-----------------------|--| | | 431 cm ⁻¹ | 595 cm ⁻¹ | 1372 cm ⁻¹ | | | MnO ₂ -s/e-Ag | 6.66 | 7.90 | 5.15 | | | MnO ₂ -r/e-Ag | 2.18 | 1.66 | 1.50 | | | MnO ₂ -w/e-Ag | 1.81 | 1.54 | 1.31 | | Table S2: The recovery values for five concentrations of TCZ in the ST25 rice samples. | Real sample | Analyte | Concentration of TCZ (M) | Recovery (%) | |-------------|---------|--------------------------|--------------| | ST25 rice | TCZ | 10-7 | 108.05 | | | | 10-8 | 102.09 | | | | 10-10 | 100.63 | | | | 10-11 | 99.11 | ## References - (1) Chen, R.; Shi, H.; Meng, X.; Su, Y.; Wang, H.; He, Y. Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum. *Anal. Chem.* **2019**, *91* (5), 3597–3603. https://doi.org/10.1021/acs.analchem.8b05595. - (2) Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. *J. Phys. Chem. C*, 2007, 111, 33, 13794-13803. https://doi.org/10.1021/jp0687908. - (3) Fu, W. L.; Zhen, S. J.; Huang, C. Z; One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. *Analyst*, 2013, **138**, 3075-3081. https://doi.org/10.1039/C3AN00018D.