Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Information

Research on the elimination of low-concentration formaldehyde by Ag loaded onto Mn/CeO₂ catalyst at room temperature

Chaomin Duan,^{#b} Yanlin Zhou,^{#b} Mianwu Meng,^{*ab} Huang Huang,^{*c} Hua Ding,^b Qi Zhang,^b Renyuan Huang^b and Mengjuan Yan^b

^a Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection,

Ministry of Education, Guilin 541004, China

^b College of Environment and Resources, Guangxi Normal University, Guilin 541004, China

^c Guilin Huayue Entech Limited Company, Guilin 541805, China

E-mail addresses: <u>897405894@qq.com</u> (M. Meng), <u>45703155@qq.com</u> (H. Huang).

[#] These authors contributed equally to this work.

^{*} Corresponding authors.

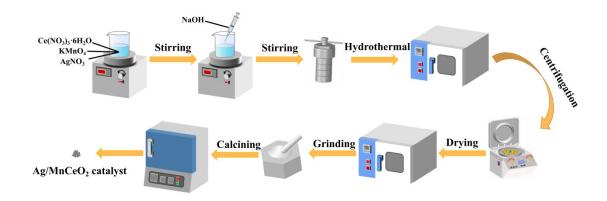


Fig. S1 The preparation process for catalysts.

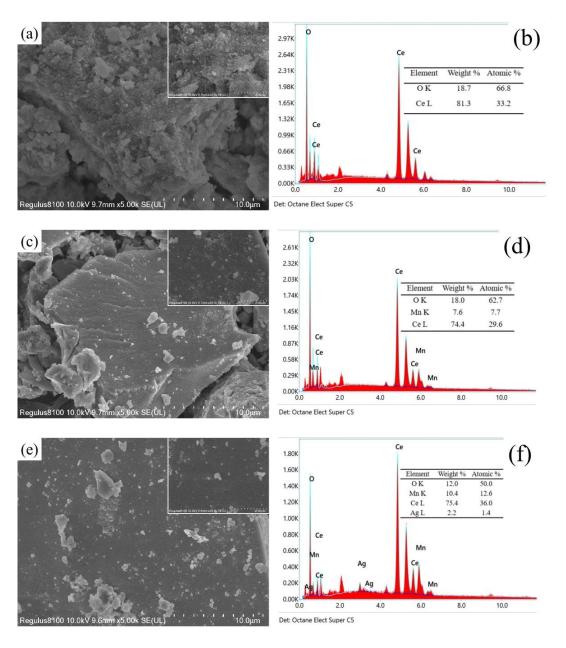


Fig. S2 SEM and EDS images of pure CeO_2 (a and b), Mn/CeO_2 (c and d), and $Ag/Mn/CeO_2$ (e and f).

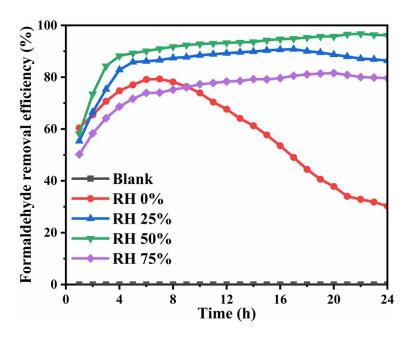


Fig. S3 Formaldehyde removal performance of the Ag/Mn/CeO₂ catalyst at different humidity.