Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Electronic Information for

Charge-transfer state and state mixing in tetracyanoquinodimethane probed using electroabsorption spectroscopy

Ahatashamul Islam, Kensuke Syundo and Toshifumi Iimori*

Department of Sciences and Informatics, Muroran Institute of Technology,

Mizumoto-cho 27-1, Muroran, Hokkaido 050-8585, Japan.

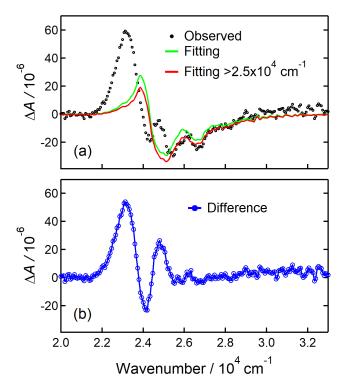


Fig. S1. (a) The electroabsorption (EA) spectrum (black circle), the fitting result using a single set of coefficients and the entire absorption spectrum without band separation at the entire wavenumbers (green line), and the fitting result at higher wavenumbers than 2.5×10^4 cm⁻¹ (red line). (b) Difference between the observed EA spectrum and the fitting spectrum at wavenumbers higher than 2.5×10^4 cm⁻¹.

Gaussian band fitting of absorption and electroabsorption (EA) spectra

In our analysis, the sum of eight Gaussian band shapes was used to reproduce the absorption spectrum.

$$A(\bar{\nu}) = \sum_{i=1}^{8} a_i \exp\left\{-\frac{(\bar{\nu} - c_i)^2}{b_i^2}\right\},\tag{S1}$$

where $\bar{\nu}$ is the wavenumber of light, and a_i , b_i , c_i are parameters representing the maximum amplitude, line width (cm⁻¹), and wavenumber (cm⁻¹) at the maximum, respectively. The parameter values are shown in Table S1.

Table S1. Parameters of the Eight Gaussian Bands

Gaussian band	parameters	values
G-1	a_1	0.0816
	b_1	892.69
	c_1	24014
G-2	a_2	0.2182
	b_2	592.93
	<i>C</i> ₂	24564
G-3	a_3	0.0480
	b_3	424.91
	C3	25092
G-4	<i>a</i> ₄	0.1849
	b_4	701.84
	C4	25411
G-5	a_5	0.1033
	<i>b</i> ₅	702.65
	C5	26381
G-6	a_6	0.0625
	b_6	1191.98
	<i>C</i> ₆	27113
G-7	a_7	0.0657
	b_7	2483
	<i>c</i> ₇	27279
G-8	a_8	0.0296
	b_8	9250.54
	<i>C</i> ₈	40012