Electronic supplenmentary information for

Improved Photoelectrochemical Performances over

Electrochemically Reduced WO₃: Implications of Oxygen Vacancies

Yunni Liu, Wang Yao, Jun Lin*

Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China. Email: jlin@ruc.edu.cn

1. Calculation of charge separation and charge injection efficiency [1, 2]

The photocurrent density generated by PEC water oxidation can be described by the following formula:

 $J_{PEC} = J_{absorbed} \times P_{charge separation} \times P_{charge injection}$

Where $J_{absorbed}$ is the photocurrent density generated by the complete conversion of the the absorbed irradiation absorbed by the material, which is constant with fixed semiconductor photocatalyst and lighting source. $P_{charge separation}$ is the charge separation yield of the photogenerated charge carriers. $P_{charge injection}$ is the charge injection yield from electrode to electrolyte, which reflects the efficiency of water oxidation process. This equation reflects the energy loss in different reaction processes of PEC water oxidation reaction.

To obtain detailed information on the efficiency of each process, the widely used hole scavenger Na_2SO_3 (0.1 M) was added to the electrolyte (0.5 M Na_2SO_4), and all the holes collected on the surface were consumed. By this way, the charge injection efficiency was 100% to further determine the charge separation efficiency. As described above:

 $J_{Na_2SO_3} = J_{absorbed} \times P_{charge separation}$

Therefore, the charge separation and charge injection efficiency can be calculated as follows:

 $P_{\text{charge separation}} = \frac{J_{\text{Na}_2\text{SO}_3}}{J_{\text{absorbed}}}$ $P_{\text{charge injection}} = \frac{J_{\text{water}}}{J_{\text{Na}_2\text{SO}_3}}$

2. Calculation of the carrier concentrations (N_D)and the width of space charge layer (d_{SC}) [1, 3, 4]

The carrier concentrations can be calculated quantitatively according to the Mott-Schottky equation as below:

$$\frac{1}{C^2} = \frac{2}{N_D \, e\varepsilon\varepsilon_0} (E - E_{\rm fb} - \frac{KT}{e})$$

The constant C on the left side of the formula is the space charge capacitance in the semiconductor, while the constants N_D , e, ε_0 and ε on the right side of the formula are the carrier density, elemental charge, permittivity of a vacuum and relative permittivity of the semiconductor, respectively. The constants E, E_{fb} , T and k in parentheses are the applied potential, flat band potential, temperature and Boltzmann constant, respectively. In addition, the carrier density (N_D) and the width of space charge layer (d_{SC}) could also be quantified by the following equation:

$$N_{\rm D} = \frac{2}{e\epsilon_0 \epsilon} \left(\frac{dE}{d\left(\frac{1}{C^2}\right)}\right)$$
$$d_{\rm sc} = \sqrt{\frac{2\epsilon\epsilon_0 \left(E - E_{\rm fb}\right)}{eN_{\rm D}}}$$

where $e = 1.6 \times 10^{-19}$ C, $K = 1.38 \times 10^{-23}$ J/K, T = 298 K, $\epsilon_0 = 8.86 \times 10^{-12}$ F/m and $\epsilon = 20$ F/m for WO₃.

3. The measurement of electrochemical surface area (ECSA) [5, 6]

The ECSA values were estimated by determining the double-layer capacitance of the system from CV. First, a non-Faradaic region was identified from CV in quiescent solution. And all the measured currents in this region were assumed to be from the double-layer charging. Based on this assumption, the charging current (i_c) was equal to the product of electrochemical double layer capacitance, C_{dl} and the scan rate (v), as shown in the following equation:

$$i_c = v C_{dl}$$

Plotting i_c as a function of v yields a straight line with a slope of C_{dl} . So, the ESCA of the photoelectrode can be calculated through dividing C_{dl} by the specific capacitance of the sample as shown in the following equation:

$$ECSA = \frac{C_{dl}}{C_s}$$

Here we used a general specific capacitance of 0.040 mF cm⁻² for the metal oxide.

4. The specific optimization processes of photoanode materials

The electrochemical reduction voltage and time of WO₃ were optimized with respect to the PEC performances for RhB degradation and H₂ evolution. As shown in **Fig. S1-2**, the WO₃ photoanode exhibited the highest PEC performances for the RhB degradation and H₂ evolution after the electrochemical reduction at 3.76 V *vs*. NHE for 60 min. The optimized conditions were also supported by FESEM observations (**Fig. S3**). When the electrochemical reduction voltage exceeds 3.76 V *vs*. NHE, or the electrochemical reduction time was extended for more than 60 min, as observed in **Fig. S4-5**, the monoclinic structure of WO₃ was maintained, but it porous cotton-like morphology collapses, which might be detrimental to a PEC process.

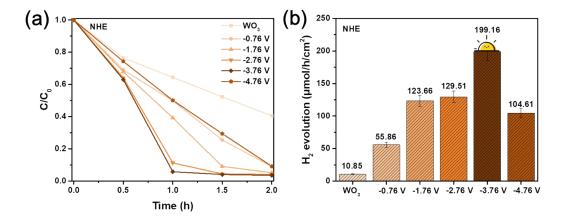


Fig. S1. (a) PEC RhB degradation and (b) H_2 evolution rate over the WO₃ photoanodes electrochemically reduced under different voltages for 40 min.

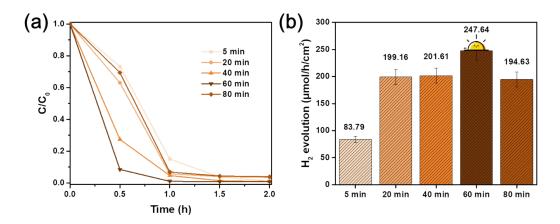
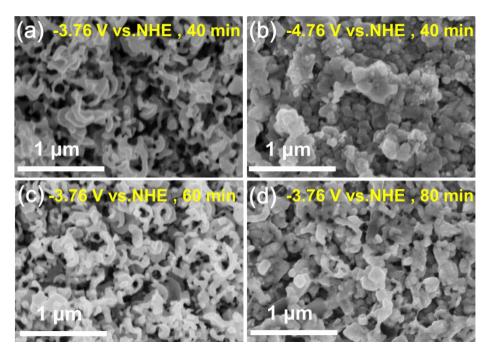



Fig. S2. (a) PEC RhB degradation and H_2 evolution rate over the WO₃ photoanodes electrochemically reduced under -3.76 V *vs*. NHE for different time.

Fig. S3. FESEM images of the porous cotton-like WO₃ photoanodes electrochemically reduced under different conditions: (a) -3.76 V *vs.* NHE for 40 min, (b) -4.76 V *vs.* NHE for 40 min, (c) -3.76 V *vs.* NHE for 60 min, (d) -3.76 V *vs.* NHE for 80 min.

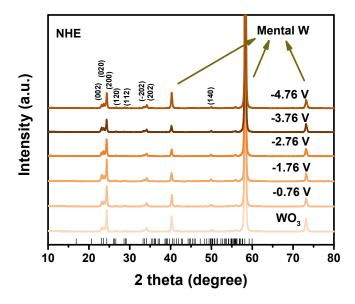
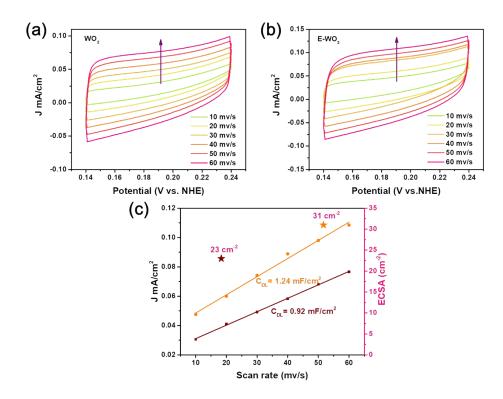



Fig. S4. XRD patterns of the samples with different electrochemical reduction voltages..

Fig. S5. XRD patterns of the samples with different electrochemical reduction times.

Fig. S6. Cyclic voltammograms of (a) WO₃ and (b) E-WO₃ photoanodes respectively. (c) Electrochemical surface area measurements of WO₃ and E-WO₃ photoanodes.

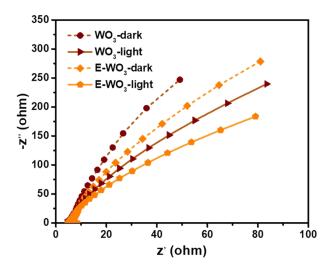


Fig. S7. Nyquist plots of the WO₃ and E-WO₃ photoanodes at open circuit voltage.

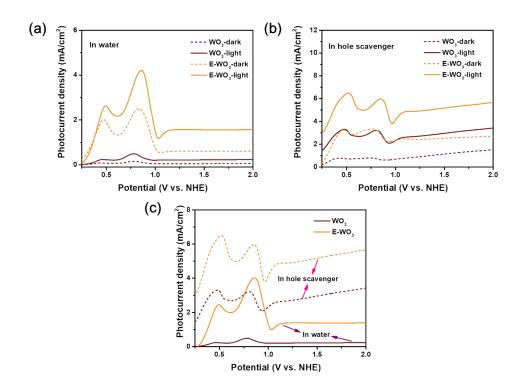


Fig. S8. The linear sweep voltammetry (LSV) measured by WO_3 and E- WO_3 photoanodes (a) in 0.5 M Na₂SO₄ solution (in water) and (b-c) with a further addition of 0.1 M Na₂SO₃ solution (in hole scavenger).

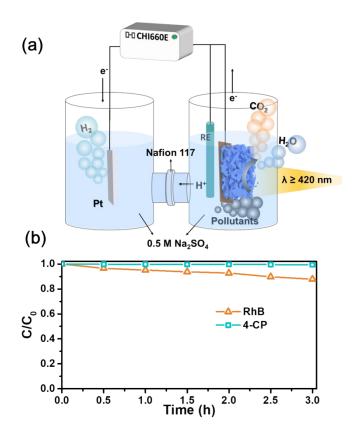


Fig. S9. (a) Schematic illustration for PEC system using the E-WO₃ photoanode. (b) Degradation efficiencies of different pollutants (RhB, and 4-CP) under light irradiation without any catalysts.

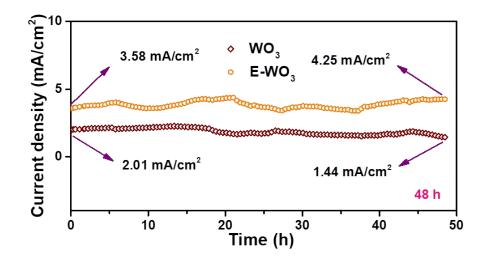
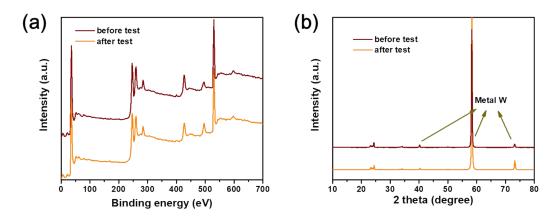



Fig. S10. The current density stability tests for WO_3 and $E-WO_3$ photoanodes in an aqueous solution of Na_2SO_4 (0.5 M).

Fig. S11. (a) XRD patterns (b) XPS survey spectra of the E-WO₃ photoanode after ten cycles of 2 h activity tests.

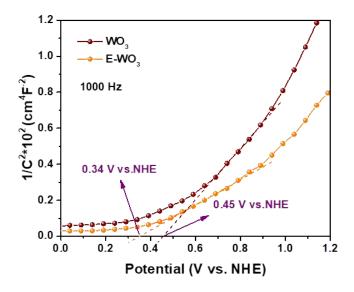


Fig. S12. Mott-Schottky plots of WO_3 and E- WO_3 photoanodes measured at fixed frequencies of 1000 Hz.

Table S1. Fitting results of Mott-Schottky plots and indirect inter-band transition energy for the WO₃ and E-WO₃ photoanodes.

Samples	$E_{ m fb}$	E _{CB}	<i>Eg</i> (eV)	$E_{ m VB}$
WO ₃	0.45	0.02	2.70	2.72
E-WO ₃	0.34	-0.04	2.70	2.66

Table S2. The carrier concentrations (N_D) in WO₃ and E-WO₃ photoanodes obtained by Mott-Schottky plots measured at 1000 Hz and space charge layer (d_{SC}) values.

Samples	WO ₃	E-WO ₃
N _D (cm ⁻³)	7.49×10 ²⁸	1.25×10^{29}
d _{SC} (nm)	9.42	8.21

Table S3. The overview on the application of different WO3 based photoanodes with

Morphology/crystal structure	Synthesis method	Electrolyte	Photocurrent	H ₂ and O ₂ evolution/ Pollutants removal	References
Nanorod, columnar, tree like columnar/ monoclinic	Pulsed laser deposition	0.1 M Na ₂ SO ₄	1.9 mA/cm ² at 1.6 V <i>vs.</i> RHE	H ₂ : 14.8 µmol*h ⁻¹ O ₂ : -	[7]
Layered porous microstructur/ monoclinic	RF plasma sputtering	0.5 M Na ₂ SO ₄ + 1.2 M CH ₃ OH	6.3 mA/cm ² at 1.0 V <i>vs</i> . SCE	H ₂ : 187.6 μmol*h ⁻¹ O ₂ : 93.2 μmol*h ⁻¹	[8]
3D nanowalls/ monoclinic	Hydrothermal	0.1 M Na ₂ SO ₄	1.61 mA/cm ² at 1.23 V <i>vs.</i> RHE	H ₂ : - O ₂ : -	[9]
Nanorods/ monoclinic	Two-step flame heating	0.1 M Na ₂ SO ₄	1.06 mA/cm ² at 1.23 V <i>vs.</i> RHE	H ₂ : - O ₂ : -	[10]
Nanoplate/ monoclinic	Chemical bath deposition method	10 mg/L 4- CP + 0.1 M Na ₂ SO ₄	1.38 mA/cm ² at 1.2 V vs SHE	98.9 % 4-CP	[11]
Nanoplate/ monoclinic	Modified hydrothermal	10 mg/L Phenol + 0.1	2.37 mA/cm ² at 1 V vs. SCE.	58 % Phenol	[12]

different morphologies in PEC field.

	method	M KPB			
Dense layer, nanoplate arrays, tiny particles/ monoclinic	Hydrothermal	0.5 M Na ₂ SO ₄	1.81 mA/cm ² at 1.23 V <i>vs</i> . RHE	H ₂ : - O ₂ : -	[13]
Porous coral-like/ monoclinic	Anodic oxidation	5 mg/L RhB, MB, 4-CP, BPA and PFOA + 0.5 M Na ₂ SO ₄	0.31 mA/cm ² at 0.5 V vs. Ag/AgCl	H ₂ : 16.05 μ mol*h ⁻¹ 100 % RhB, 90 % MB, 60 % MO, 19.2 % 4- CP, 57.1 % BPA and 44.2 % PFOA	[14]
Nanoplates and hexagonal prisms/hexagonal- monoclinic phase junction	a two-step hydrothermal method	20 mg/L BPA +0.1 M Na ₂ SO ₄	5.6 mA/cm ² at 1.2 V <i>vs</i> . RHE	99.8 % of BPA	[15]
Nanoplate/ single crystal	Chemical bath deposition method	20 mg/L TC-HCl + 1 M Na ₂ SO ₄	1.4 mA/cm ² at 1.23 V vs. RHE	99 % TC-HCl, 97.8 % NOR	[16]
Porous cotton-like/ monoclinic	Anodic oxidation	10 mg/L RhB, MO, MB, 4-CP + 0.5 M Na ₂ SO ₄	3.9 mA/cm ² at 0.5 V <i>vs.</i> SCE	H ₂ : 226.81 μmol*h ⁻¹ *cm ⁻² 100 % dyes and 90.8 % 4-CP	Our work

References

[1] S. Kim, S. Ji, K.H. Kim, S.H. Roh, Y. Cho, C.-L. Lee, K.-S. Lee, D.-G. Choi, H. Choi, J.K. Kim, J.H. Park, Revisiting surface chemistry in TiO₂: A critical role of ionic passivation for pH-independent and anti-corrosive photoelectrochemical water oxidation, Chem. Eng. J., 407 (2021) 126929.

[2] R. Zhang, F. Ning, S. Xu, L. Zhou, M. Shao, M. Wei, Oxygen vacancy engineering of WO₃ toward largely enhanced photoelectrochemical water splitting, Electrochim. Acta, 274 (2018) 217-223.

[3] Y. Liu, Q. Li, Z. Lian, J. Fan, Y. Tao, G. Li, H. Li, Polarization field promoted photoelectrocatalysis for synergistic environmental remediation and H₂ production,

Chem. Eng. J., 437 (2022) 135132.

 [4] M. Tayebi, B.-K. Lee, The effects of W/Mo-co-doped BiVO₄ photoanodes for improving photoelectrochemical water splitting performance, Catal. Today, 361 (2021) 183-190.

[5] J.D. Benck, Z. Chen, L.Y. Kuritzky, A.J. Forman, T.F. Jaramillo, Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity, ACS Catal., 2 (2012) 1916-1923.

[6] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, J. Am. Chem. Soc., 137 (2015) 4347-4357.

[7] M. Mai, X. Ma, H. Zhou, M. Ye, T. Li, S. Ke, P. Lin, X. Zeng, Effect of oxygen pressure on pulsed laser deposited WO₃ thin films for photoelectrochemical water splitting, J. Alloys Compd., 722 (2017) 913-919.

[8] G.L. Chiarello, M. Bernareggi, M. Pedroni, M. Magni, S.M. Pietralunga, A. Tagliaferri, E. Vassallo, E. Selli, Enhanced photopromoted electron transfer over a bilayer WO₃ n–n heterojunction prepared by RF diode sputtering, J. Mater. Chem. A, 5 (2017) 12977-12989.

[9] W. Tian, C. Chen, L. Meng, W. Xu, F. Cao, L. Li, PVP Treatment Induced Gradient Oxygen Doping in In₂S₃ Nanosheet to Boost Solar Water Oxidation of WO₃ Nanoarray Photoanode, Adv. Energy Mater., 10 (2020) 1903951.

[10] C. Shao, A.S. Malik, J. Han, D. Li, M. Dupuis, X. Zong, C. Li, Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO₃ photoanode, Nano Energy, 77 (2020) 105190.

[11] X. Liu, H. Zhou, S. Pei, S. Xie, S. You, Oxygen-deficient WO_{3-x} nanoplate array film photoanode for efficient photoelectrocatalytic water decontamination, Chem. Eng. J., 381 (2020) 122740.

[12] Q. Zeng, Y. Gao, L. Lyu, S. Chang, C. Hu, Highly improved photoelectrocatalytic efficiency and stability of WO₃ photoanodes by the facile in situ growth of TiO_2 branch overlayers, Nanoscale, 10 (2018) 13393-13401.

[13] Z. Ma, H. Hou, K. Song, Z. Fang, L. Wang, F. Gao, W. Yang, B. Tang, Y. Kuang, Engineering oxygen vacancies by one-step growth of distributed homojunctions to enhance charge separation for efficient photoelectrochemical water splitting, Chem. Eng. J., 379 (2020) 122266.

[14] D. Pan, S. Xiao, X. Chen, R. Li, Y. Cao, D. Zhang, S. Pu, Z. Li, G. Li, H. Li, Efficient Photocatalytic Fuel Cell via Simultaneous Visible-Photoelectrocatalytic Degradation and Electricity Generation on a Porous Coral-like WO₃/W Photoelectrode, Environ. Sci. Technol., 53 (2019) 3697-3706.

[15] Q. Ma, R. Song, F. Ren, H. Wang, W. Gao, Z. Li, C. Li, Photoelectrocatalytic degradation of refractory pollutants over WO₃/W network photoelectrode with heterophase junction for enhancing mass transportation and charge separation, Appl. Catal. B Environ., 309 (2022) 121292.

[16] J. Wang, L. Jiang, F. Liu, M. Jia, M. Liu, J. Li, Y. Lai, Enhanced photoelectrochemical degradation of tetracycline hydrochloride with FeOOH and Au nanoparticles decorated WO₃, Chem. Eng. J., 407 (2021) 127195.