Experimental and Theoretical Insights into the Structure and Molecular Dynamics of 2,3,3',4'-Tetramethoxy-trans-stilbene – a Chemopreventive Agent

Aleksandra Pajzderska^{1*}, Marcin Wierzchowski², Dawid Łażewski², Agnieszka Gielara-Korzańska², Artur Korzański³, Łukasz Popenda⁴, Jacek Jenczyk⁴, Fanni Jurai⁵, Jan P. Embs⁵, Jan Wąsicki¹

¹ Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland

² Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland

³ Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland

⁴ NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland

⁵ Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland

Table of Contents	pages
1. The synthesis of the 2,3,3',4'-tetramethoxy-trans-stilbene	2
2. Mass spectrometry	3
3. ¹ H and ¹³ C liquid-state NMR	4
4. Crystallographic data	7
5. Computational data	11
6. FT-IR Spectroscopy	16
7. ¹³ C CP MAS solid-state NMR data	18
8. References	22

Supporting Information

1. The synthesis of the 2,3,3',4'-tetramethoxy-trans-stilbene

Synthesis of TeTS was performed according to the Horner–Wadsworth–Emmons reaction. The synthesis (Fig S1) were carried out in N,N-dimethylformamide as a solvent and strong base – sodium methanolate, diethyl 3,4-dimethoxybenzyl)phosphonate and 2,3-dimethyl benzaldehyde. The reaction mixture was kept in temperature range 0 to 25 °C by 30 minutes and next 1h in temperature 100 °C. Cooled reaction mixture was poured into distilled water and precipitated raw product was recrystalized from ethanol. The applied procedure allowed to obtain product with a yield of 52%.

Fig. S1. Scheme describing procedure of synthesis of 2,3,3',4'-tetramethoxy-trans-stilbene

2. Mass spectrometry

Fig. S2. Mass spectra of 2,3,3',4'-tetramethoxy-trans-stilbene

Fig. S3. Mass spectra of 2,3,3',4'-tetramethoxy-trans-stilbene.

3. ¹H and ¹³C liquid-state NMR

Fig. S4. ¹H NMR spectrum of 2,3,3',4'-tetramethoxy-trans-stilbene (DMSO- d_6 , 298 K). The symbols * and ~ indicate DMSO- d_6 and water residual peaks, respectively.

Fig. S5. ¹³*C NMR spectrum of 2,3,3',4'-tetramethoxy-trans-stilbene (DMSO-d₆, 298 K). The symbol * indicates DMSO-d₆ peak.*

Fig. S6. ${}^{1}H{}^{-1}H$ COSY spectrum of 2,3,3',4'-tetramethoxy-trans-stilbene (DMSO-d₆, 298 K). Expansion reveal correlations via ${}^{3}J_{HH}$ within the vinylene and aromatic group.

Fig. S7. ${}^{1}H{}^{-13}C$ HSQC spectrum of 2,3,3',4'-tetramethoxy-trans-stilbene (DMSO-d₆, 298 K). Expanded regions show the one-bond ${}^{1}H{}^{-13}C$ correlations within the vinylene and aromatic groups (top left) and the methyl groups (bottom right).

Fig. S8. ¹H-¹³C HMBC spectrum of 2,3,3',4'-tetramethoxy-trans-stilbene (DMSO-d₆, 298 K).

Fig. S9. Selected region of ${}^{1}H{}^{-13}C$ HMBC spectrum of 2,3,3',4'-tetramethoxy-trans-stilbene (DMSO-d₆, 298 K) presenting two- and three-bond correlations within vinylene and aromatic groups (left) and three-bond correlations between methyl protons and ring carbons (right).

4. Crystallographic data

Fig. S10. View of 2,3,3',4'-tetramethoxy-trans-stilbene, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The figure shows both ways of numbering crystallographic and IUPAC (in brackets).

x	y	Z	U(eq)
-211(2)	4450.5(4)	3428.1(4)	23.2(3)
10197(2)	1822.5(4)	4529.3(4)	19.5(3)
13430(2)	935.2(4)	4433.4(4)	23.2(3)
3442(2)	4301.8(4)	4106.6(4)	24.3(3)
8928(3)	1737.3(6)	3615.4(6)	17.0(3)
10450(3)	1555.1(6)	4039.9(5)	16.7(3)
12072(3)	1079.6(6)	3986.2(6)	18.4(3)
3813(3)	2911.6(6)	3402.4(6)	17.0(3)
7342(3)	2250.1(6)	3674.8(5)	17.8(3)
9059(3)	1436.3(6)	3131.3(6)	18.8(3)
1799(3)	2996.2(6)	3049.5(6)	18.6(3)
4381(3)	3351.3(6)	3769.6(6)	18.1(3)
399(3)	3503.1(6)	3045.5(6)	18.7(3)
12171(3)	786.7(6)	3504.9(6)	20.1(3)
994(3)	3932.6(6)	3401.6(6)	18.0(3)
2997(3)	3851.0(6)	3773.7(5)	18.0(3)
10656(3)	969.7(6)	3081.1(6)	19.8(3)
5298(3)	2382.5(6)	3377.0(6)	18.0(3)
5421(3)	4234.0(7)	4496.2(6)	23.5(4)
-2203(3)	4554.4(7)	3049.6(6)	23.9(4)
12423(3)	2131.8(7)	4705.0(6)	24.4(4)
15340(3)	502.4(6)	4375.5(7)	23.8(4)
	x -211(2) 10197(2) 13430(2) 3442(2) 8928(3) 10450(3) 12072(3) 3813(3) 7342(3) 9059(3) 1799(3) 4381(3) 399(3) 12171(3) 994(3) 2997(3) 10656(3) 5298(3) 5421(3) -2203(3) 12423(3) 15340(3)	x y -211(2)4450.5(4)10197(2)1822.5(4)13430(2)935.2(4)3442(2)4301.8(4)8928(3)1737.3(6)10450(3)1555.1(6)12072(3)1079.6(6)3813(3)2911.6(6)7342(3)2250.1(6)9059(3)1436.3(6)1799(3)2996.2(6)4381(3)3351.3(6)399(3)3503.1(6)12171(3)786.7(6)994(3)3932.6(6)2997(3)3851.0(6)10656(3)969.7(6)5298(3)2382.5(6)5421(3)4234.0(7)-2203(3)4554.4(7)12423(3)2131.8(7)15340(3)502.4(6)	x y z -211(2)4450.5(4)3428.1(4)10197(2)1822.5(4)4529.3(4)13430(2)935.2(4)4433.4(4)3442(2)4301.8(4)4106.6(4)8928(3)1737.3(6)3615.4(6)10450(3)1555.1(6)4039.9(5)12072(3)1079.6(6)3986.2(6)3813(3)2911.6(6)3402.4(6)7342(3)2250.1(6)3674.8(5)9059(3)1436.3(6)3131.3(6)1799(3)2996.2(6)3049.5(6)4381(3)351.3(6)3769.6(6)399(3)3503.1(6)3045.5(6)12171(3)786.7(6)3504.9(6)994(3)3932.6(6)3401.6(6)2997(3)3851.0(6)3773.7(5)10656(3)969.7(6)3081.1(6)5298(3)2382.5(6)3377.0(6)5421(3)4234.0(7)4496.2(6)-2203(3)4554.4(7)3049.6(6)12423(3)2131.8(7)4705.0(6)15340(3)502.4(6)4375.5(7)

Table S1 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 2,3,3',4'-tetramethoxy-trans-stilbene. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table S2 Anisotropic Displacement Parameters (Å²×10³) for 2,3,3',4'-tetramethoxy-transstilbene. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O19	26.1(6)	17.7(5)	25.7(6)	-1.7(4)	-5.5(5)	6.6(5)
09	22.8(6)	20.9(5)	14.7(5)	-3.4(4)	0.7(4)	1.2(4)
07	27.7(6)	22.0(5)	19.8(5)	0.1(4)	-2.4(5)	8.0(5)
O21	31.8(7)	17.1(5)	24.0(6)	-5.5(4)	-6.7(5)	3.5(5)
C1	19.1(8)	14.9(6)	17.0(7)	1.0(5)	2.3(6)	-2.0(6)
C2	20.7(8)	15.2(6)	14.2(7)	-1.0(5)	3.0(6)	-1.4(6)
C3	19.9(8)	17.6(7)	17.8(7)	2.0(6)	0.1(6)	-0.6(6)
C13	19.0(8)	15.8(6)	16.1(7)	2.7(5)	3.4(6)	-0.6(6)
C11	24.0(8)	15.7(6)	13.9(6)	-1.2(5)	1.5(6)	-0.2(6)
C6	23.5(8)	17.0(7)	16.0(7)	0.8(6)	-1.2(6)	-0.5(6)
C18	22.9(8)	17.1(7)	15.7(7)	-0.9(5)	1.6(6)	-2.5(6)
C14	20.5(8)	17.0(7)	16.7(7)	1.7(6)	-1.8(6)	0.9(6)
C17	18.8(8)	20.2(7)	17.0(7)	2.8(6)	-0.9(6)	-0.1(6)

		$2\pi \ln a$		$J \cup [2^{+} \cdots]$.		
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C4	22.7(8)	15.3(7)	22.4(7)	-0.4(6)	4.3(6)	1.8(6)
C16	20.2(8)	14.9(6)	18.9(7)	3.2(6)	3.4(6)	2.6(6)
C15	22.6(8)	16.2(7)	15.3(7)	-0.6(5)	1.6(6)	-0.7(6)
C5	26.1(9)	17.2(7)	16.1(7)	-3.7(6)	2.7(6)	-2.4(6)
C12	23.2(8)	14.8(7)	16.0(7)	-0.8(5)	2.7(6)	-1.7(6)
C22	27.9(9)	21.8(7)	20.7(7)	-5.4(6)	-4.4(7)	-0.1(7)
C20	23.9(9)	23.1(7)	24.6(8)	3.9(6)	-2.3(7)	5.1(7)
C10	29.6(9)	24.1(7)	19.6(7)	-5.5(6)	1.3(7)	-4.1(7)
C8	21.4(8)	20.3(7)	29.8(8)	1.1(6)	-3.2(7)	5.9(6)

Table S2 Anisotropic Displacement Parameters (Å²×10³) for 2,3,3',4'-tetramethoxy-transstilbene. The Anisotropic displacement factor exponent takes the form: - $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$

Table S3 Bond Lengths for 2,3,3',4'-tetramethoxy-trans-stilbene.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O19	C16	1.3687(17)	C3	C4	1.387(2)
O19	C20	1.4264(19)	C13	C18	1.386(2)
09	C2	1.3818(16)	C13	C14	1.412(2)
09	C10	1.4373(19)	C13	C12	1.463(2)
O7	C3	1.3665(18)	C11	C12	1.337(2)
O7	C8	1.4289(18)	C6	C5	1.380(2)
O21	C15	1.3654(17)	C18	C17	1.395(2)
O21	C22	1.4278(19)	C14	C15	1.376(2)
C1	C2	1.393(2)	C17	C16	1.380(2)
C1	C11	1.467(2)	C4	C5	1.390(2)
C1	C6	1.403(2)	C16	C15	1.412(2)
C2	C3	1.406(2)			

Table S4 Bond Angles for 2,3,3',4'-tetramethoxy-trans-stilbene.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C16	019	C20	116.97(12)	C14	C13	C12	122.41(14)
C2	09	C10	115.00(12)	C12	C11	C1	125.70(13)
C3	O7	C8	116.99(12)	C5	C6	C1	120.43(14)
C15	O21	C22	116.94(12)	C13	C18	C17	121.55(14)
C2	C1	C11	119.69(13)	C15	C14	C13	121.08(14)
C2	C1	C6	118.43(13)	C16	C17	C18	119.94(14)
C6	C1	C11	121.80(13)	C3	C4	C5	119.22(14)
09	C2	C1	118.82(13)	019	C16	C17	125.10(14)
09	C2	C3	120.12(13)	019	C16	C15	115.33(13)
C1	C2	C3	120.87(13)	C17	C16	C15	119.57(14)
O7	C3	C2	115.46(13)	O21	C15	C14	125.03(14)

Table S4 Bond Angles for 2,3,3',4'-tetramethoxy-trans-stilbene.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O7	C3	C4	124.67(14)	O21	C15	C16	115.04(13)
C4	C3	C2	119.86(14)	C14	C15	C16	119.90(13)
C18	C13	C14	117.95(13)	C6	C5	C4	121.19(13)
C18	C13	C12	119.63(13)	C11	C12	C13	126.46(14)

Tabl	Table S5Torsion Angles for 2,3,3',4'-tetramethoxy-trans-stilbene.								
Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
O19	C16	C15	O21	-0.04(19)	C6	C1	C2	C3	-0.3(2)
O19	C16	C15	C14	-178.08(13)	C6	C1	C11	C12	23.6(2)
09	C2	C3	O7	-3.7(2)	C18	C13	C14	C15	-0.7(2)
09	C2	C3	C4	175.11(14)	C18	C13	C12	C11	177.23(14)
O 7	C3	C4	C5	178.73(14)	C18	C17	C16	O19	178.75(14)
C1	C2	C3	O7	-178.69(13)	C18	C17	C16	C15	-1.0(2)
C1	C2	C3	C4	0.1(2)	C14	C13	C18	C17	1.4(2)
C1	C11	C12	C13	-174.91(14)	C14	C13	C12	C11	-1.5(2)
C1	C6	C5	C4	-0.1(2)	C17	C16	C15	O21	179.74(13)
C2	C1	C11	C12	-159.62(15)	C17	C16	C15	C14	1.7(2)
C2	C1	C6	C5	0.3(2)	C12	C13	C18	C17	-177.42(13)
C2	C3	C4	C5	0.0(2)	C12	C13	C14	C15	178.10(14)
C3	C4	C5	C6	0.0(2)	C22	O21	C15	C14	-3.2(2)
C13	C18	C17	C16	-0.6(2)	C22	O21	C15	C16	178.88(13)
C13	C14	C15	O21	-178.68(14)	C20	O19	C16	C17	-1.3(2)
C13	C14	C15	C16	-0.9(2)	C20	O19	C16	C15	178.48(13)
C11	C1	C2	09	7.7(2)	C10	09	C2	C1	-114.96(15)
C11	C1	C2	C3	-177.22(14)	C10	09	C2	C3	69.94(17)
C11	C1	C6	C5	177.16(14)	C8	O 7	C3	C2	-172.10(13)
C6	C1	C2	09	-175.35(13)	C8	O 7	C3	C4	9.2(2)

Table S6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 2,3,3',4'-tetramethoxy-trans-stilbene.

Atom	x	У	z	U(eq)
H11	7797	2505	3943	21
H6	8065	1552	2842	23
H18	1372	2708	2810	22
H14	5713	3302	4013	22
H17	-936	3552	2803	22
H4	13238	471	3466	24
Н5	10719	774	2758	24
H12	4767	2112	3129	22
H22A	7029	4170	4319	35

Atom			-	
Atom	X	J	Z	U(eq)
H22B	5030	3914	4721	35
H22C	5534	4573	4710	35
H20A	-1506	4543	2695	36
H20B	-2940	4923	3114	36
H20C	-3505	4267	3085	36
H10A	12644	2465	4487	37
H10B	13910	1893	4675	37
H10C	12202	2244	5071	37
H8A	16537	613	4103	36
H8B	14535	150	4276	36
H8C	16231	454	4708	36

Table S6 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters
$(Å^2 \times 10^3)$ for 2,3,3',4'-tetramethoxy-trans-stilbene.

5. Computational data

Table S7. Atomic coordinates of local minimum 1 of 2,3,3',4'-tetramethoxy-trans-stilbene type x $\begin{bmatrix} A \end{bmatrix}$ y $\begin{bmatrix} A \end{bmatrix}$ z $\begin{bmatrix} A \end{bmatrix}$

type	e x [A]	y [A]	Z [A]
С	-0.320768924	0.706834953	-0.095076281
н	-0.253658134	1.785709489	0.034897106
С	0.818834989	-0.008840559	-0.204983984
н	0.764719112	-1.089040852	-0.298027968
С	2.182138760	0.530278589	-0.196902283
С	2.469051412	1.910835725	-0.284882650
С	3.266342119	-0.36574232H	-0.114277866
С	3.778178510	2.366578010	-0.267790962
С	4.599575670	0.101604935	-0.108520270
С	4.853187274	1.473075365	-0.178839974
Н	1.657016670	2.623892580	-0.377137293
н	3.98048322H	3.431331595	-0.334649151
Н	5.86840593H	1.849828902	-0.175102050
С	-1.691031705	0.187498084	-0.113286631
С	-2.75304469H	1.093382497	0.112183982
С	-2.014058717	-1.15673538C	-0.342402813
С	-4.080018863	0.677940780	0.116855393
С	-3.342340894	-1.587031029	-0.339622159
С	-4.38581716H	-0.688205490	-0.111459829

Н	-2.516213392	2.136387410	0.287954499
Н	-1.233347413	-1.885651884	-0.531480789
н	-3.558440219	-2.632918630	-0.520862385
0	3.029654952	-1.724799002	-0.090235826
С	3.184727932	-2.342083160	1.196618856
н	4.209149574	-2.233310097	1.564194332
Н	2.484940303	-1.911218447	1.922220550
Н	2.956838014	-3.40076712C	1.059201425
0	5.561962297	-0.863869275	-0.036635867
С	6.926314060	-0.44940315C	-0.022454435
Н	7.19007654H	0.090764224	-0.938889125
Н	7.145054194	0.182906400	0.845658661
Н	7.51553245C	-1.364587594	0.039414716
0	-5.709416267	-1.011688912	-0.089980292
С	-6.06774472C	-2.37317422C	-0.314056134
Н	-5.749972510	-2.713813220	-1.306330370
н	-5.637479595	-3.032214530	0.448901241
Н	-7.155593235	-2.40976317C	-0.251095026
0	-5.154136260	1.49304582C	0.328803961
С	-4.90671668H	2.87645554C	0.562459630
Н	-4.300736503	3.030294000	1.463084557
Н	-4.406442080	3.345733619	-0.292809194
н	-5.885700873	3.335313404	0.703870925

Table S8. Atomic coordinates of global minimum 2 of 2,3,3',4'-tetramethoxy-trans-stilbene

type	x [Å]	y [Å]	z [Å]
С	0.335125870	-1.221608100	0.003360400
Н	0.133100197	-2.28218353H	0.145582891
С	-0.705851154	-0.376331510	-0.146705405
Н	-0.524487110	0.690366862	-0.232891537
С	-2.121637742	-0.751881283	-0.184568401
С	-2.562212310	-2.079479233	-0.374368320
С	-3.09594887H	0.255656670	-0.048591315
С	-3.913589602	-2.383204807	-0.400543828
С	-4.472145740	-0.055911363	-0.088789614

С	-4.87971568H	-1.380057760	-0.257374118
Н	-1.832278389	-2.868488502	-0.519473100
Н	-4.234675603	-3.41013133C	-0.547928692
Н	-5.931570274	-1.63629715C	-0.290614026
С	1.756726610	-0.876137805	0.023968813
С	2.235597470	0.425783010	-0.253741319
С	2.695472889	-1.866709995	0.328241313
С	3.590470767	0.72106356H	-0.215838755
С	4.064323117	-1.583949990	0.369728967
С	4.52826096C	-0.298894702	0.103058504
Н	1.529363843	1.204271822	-0.511758256
Н	2.357205609	-2.876584723	0.542247916
Н	4.76289249C	-2.375989560	0.611238760
0	-2.69995141H	1.569714667	0.071217211
С	-2.849474285	2.134167607	1.376894849
Н	-3.899383230	2.149251857	1.684548405
Н	-2.256885480	1.578749130	2.114866358
Н	-2.476073075	3.15846142C	1.311765126
0	-5.321479919	1.00756045H	0.045841052
С	-6.716060729	0.75846086H	-0.024446021
Н	-6.999874627	0.320552044	-0.989738582
Н	-7.052586343	0.094221872	0.782164795
Н	-7.200602353	1.729768183	0.085111202
0	5.834546419	0.085258934	0.113475682
С	6.811222673	-0.895944412	0.418194313
Н	6.670158942	-1.310015439	1.425102008
Н	6.80205610C	-1.717434892	-0.309997158
Н	7.774102324	-0.38530980H	0.371545972
0	4.131878107	1.945864060	-0.472194136
С	3.25073902C	3.005289145	-0.804771750
Н	2.687260714	2.792454560	-1.722501791
Н	2.542471130	3.214908424	0.007408212
Н	3.882040277	3.880384444	-0.965646862

type	x [Å]	y [Å]	z [Å]
С	-0.097992505	-0.347495959	-0.203914775
Н	0.38356672C	-1.310721017	-0.328812110
С	0.681756582	0.752917930	-0.124145101
н	0.193360139	1.723560463	-0.048299194
С	2.143710715	0.858936147	-0.168875512
С	2.694894673	2.15038501C	-0.332568934
С	3.04023674H	-0.22288507H	-0.054442517
С	4.064019650	2.35417565H	-0.391542017
С	4.434992412	-0.01283824H	-0.122835721
С	4.947384630	1.275618214	-0.290230399
н	2.018406189	2.99589746C	-0.417813455
н	4.459485159	3.357209012	-0.520613111
н	6.01582333C	1.444566703	-0.343917223
С	-1.561210320	-0.381957042	-0.167336233
С	-2.361097840	0.751698224	0.109826948
С	-2.212812839	-1.594571403	-0.414287506
С	-3.746156883	0.674138863	0.125722127
С	-3.607880947	-1.688102894	-0.402283039
С	-4.388431905	-0.566589390	-0.136365668
н	-1.882252952	1.698318602	0.324980517
н	-1.62405248C	-2.48196051C	-0.627638439
н	-4.077666464	-2.643676470	-0.602094858
0	2.570886020	-1.510652294	0.079192782
С	2.710226864	-2.073049889	1.388572235
н	3.763341677	-2.15110649H	1.673954774
н	2.167191617	-1.475923042	2.131073698
н	2.272636274	-3.072380517	1.339743987
0	5.202149475	-1.140249805	-0.014089902
С	6.610113252	-1.001251640	-0.112474925
н	6.90778228H	-0.577739252	-1.080030821
н	7.015546952	-0.374150247	0.692189904
н	7.018108647	-2.009006410	-0.021723999

Table S9. Atomic coordinates of local minimum 3 of 2,3,3',4'-tetramethoxy-trans-stilbene

0	-5.749513615	-0.544685984	-0.097069983
С	-6.438716075	-1.757607717	-0.348614031
Н	-6.227697492	-2.143172917	-1.354579053
Н	-6.184834400	-2.529354657	0.389751478
Н	-7.500768199	-1.52098522C	-0.270115342
0	-4.586111094	1.717087525	0.385789727
С	-4.009822877	2.983197445	0.654419110
Н	-3.374911145	2.959570702	1.549908927
Н	-3.41573691H	3.347833124	-0.193876934
Н	-4.845894937	3.662915810	0.825585995

Table S10. Atomic coordinates of local minimum 4 of 2,3,3',4'-tetramethoxy-trans-stilbene

type	x [Å]	y [Å]	z [Å]
С	0.11249447H	-0.147584105	-0.080122552
Н	-0.248635407	0.871027482	-0.168374419
С	-0.792581734	-1.150294812	-0.080928447
Н	-0.420558153	-2.17354795C	-0.052150107
С	-2.25494228C	-1.07892005C	-0.163951582
С	-2.948813634	-2.283741524	-0.419164513
С	-3.02079981H	0.093441890	-0.002592675
С	-4.330156324	-2.318948750	-0.520553344
С	-4.427953603	0.055582787	-0.113784354
С	-5.08305534H	-1.150631620	-0.371929554
Н	-2.374047300	-3.197188450	-0.541283988
Н	-4.837010622	-3.258334762	-0.719929550
Н	-6.16195161H	-1.18768185H	-0.459176491
С	1.56830208C	-0.29934863H	-0.004069713
С	2.371426983	0.83352660C	-0.267649625
С	2.216613099	-1.496281687	0.322253648
С	3.75930907C	0.774385127	-0.226954956
С	3.610142550	-1.56996022H	0.368503716
С	4.396152977	-0.450389957	0.095359103
Н	1.879229630	1.766462524	-0.517152367
Н	1.64036176C	-2.383826000	0.561159933
Н	4.08061469C	-2.510801967	0.628395332

0	-2.407295564	1.306179184	0.221307459
С	-2.515377313	1.799870807	1.561018787
Н	-3.559648584	1.982930585	1.830459940
Н	-2.064768310	1.099097045	2.274150795
Н	-1.964379504	2.74245044C	1.584699712
0	-5.060113867	1.257910959	0.048485850
С	-6.471541945	1.29295107C	-0.086038344
Н	-6.790723035	0.966240323	-1.083796880
Н	-6.969051799	0.671393619	0.669769373
Н	-6.760997773	2.334742210	0.059424370
0	5.75834145C	-0.421745170	0.117016559
С	6.442361260	-1.622170922	0.432817705
Н	6.194303860	-1.978385950	1.441279856
Н	6.222038735	-2.417986352	-0.290674217
Н	7.50563864H	-1.381870610	0.389076207
0	4.59655729H	1.82238696C	-0.475968038
С	4.015226089	3.071172554	-0.808776320
Н	3.41698825H	3.009684962	-1.727251538
Н	3.38301415H	3.455098125	0.002637256
н	4.848827960	3.75668978H	-0.968619716

6. FT-IR Spectroscopy

Fig S11. The experimental FT-IR spectra of 2,3,3',4'-tetramethoxy-trans-stilbene (top) along with simulated spectrum by computational method B3LYP/6-31G(d,p) model (bottom). Theoretical spectra were plotted with a value of FWHM = 12. The wavenumber axis values were scaled by 0.961 factor according to CCCBDB.

struction for selected barras scaling factor is 0.901 according to the reference [51].						
	Observed Main calculated normal					
Band	band modes [cm ⁻¹]		Assignment			
number	maxima [cm ⁻¹]	unscaled	scaled	Assignment		
1	3078	3223	3096	Ring C-H stretching		
2	3041	3197	3072	Vinylene C-H and ring C-H stretching		
3	3000	3149	3026	Asymmetrical CH ₃ C-H stretching		
4	2926	3074	2954	Asymmetrical CH ₃ C-H stretching		
5	2836	3012	2894	Symmetrical CH ₃ C-H stretching		
6	1581	1644	1580	Ring -C=C- stretching		
7	1513	1565	1503	Ring C-H rocking		
8	1467	1518	1458	Ring C-H rocking and CH ₃ C-H bending		
9	1428	1470	1412	Ring C-H rocking and CH ₃ C-H bending		
10	1345	1463	1343	Vinylene C-H rocking		
11	1269	1316	1265	Vinylene C-H rocking and ring C-H rocking		
12	1225	1271	1221	Vinylene C-H rocking and ring C-H rocking		
13	1153	1195	1148	Ring C-H rocking and CH ₃ C-H wagging		
14	1138	1173	1127	Ring C-H rocking		
15	1066	1111	1068	Ring C-H rocking and H ₃ C-O stretching		
16	1025	1064	1023	Ring -C=C- rocking and H ₃ C-O stretching		
17	999	1041	1001	Ring -C=C- breathing and H ₃ C-O stretching		
18	957	1015	975	Vinylene C-H out of plane		
19	854	889	856	Vinylene C-H out of plane and ring C-H out of plane		
20	803	855	822	Ring C-H out of plane		
21	760	812	780	Ring C-H out of plane		
22	740	783	753	Ring -C=C- breathing and ring C-H out of plane		
23	707	748	719	Ring C-H out of plane		
24	630	638	613	Ring C=C bending and CH ₃ C-H wagging		
25	542	554	532	Ring -C=C- bending and CH_3 C-H wagging		

Table S11. Observed and theoretical FT-IR vibrational assignments of 2,3,3',4'-tetramethoxy-transstilbene for selected bands Scaling factor is 0.961 according to the reference [S1].

6. ¹³C CP MAS solid-state NMR data

Fig. S12. ¹³*C CP MAS solid-state NMR spectrum along with assignments of methyl groups and other carbons based on liquid-state NMR (section III.1 of the paper). The asterix denote satellite peaks.*

Table S12

The chemical shift for	carbons in	TeTS derived	from liquid	d and solid	NMR experiments
					4

Carbon nucleus	¹³ C NMR liquid	¹³ C CP/MAS NMR
Carbon nucleus	[ppm]	[ppm]
C_methyl_I or C_methyl_II	55.5	54.5
C methyl I or C methyl II	55.5	55.3
C methyl IV	55.7	55.5
C methyl III	60.5	58.9
C2'	109.6	105.6
C4	111.6	111.8
C5'	111.9	111.8
C6	117.5	118.1
C6'	119.7	122.9
C7	120.3	123.7

C5	124.1	125.5
C8	129.8	127.5
C1'	130.2	130.2
C1	131.0	132.7
C2	146.2	147.3
C4'	148.7	148.2
C3'	148.9	149.9
C3	152.8	154.5

Fig. S13. ¹³C T_1 relaxation data along with simulated BPP curves representing four different methyl groups.

Fig. S13 illustrates four different BPP curves simulated for each individual methyl group relying on both a) ¹³C T₁ experimental data points and b) activation parameters estimated via QENS and ¹H NMR relaxation data. Unfortunately, an experimentally available temperature window does not allow determining the actual position of T₁ minima and hence the relaxation amplitudes remain unknown. However, one can simulate hypothetical curves taking into account a) equal relaxation amplitudes for all individual methyl group reorientations and b) estimated energy barriers corresponding to four inequivalent methyl group positions. It is worth pointing out that the slopes of the BPP curves shoulders fit nicely to the experimental data points. Moreover, simulated BPP formula (dashed line) with the activation energy $E_a=2.6 \text{ kJ/mol}$ determined via QENS, explains clearly relatively long relaxation times observed in the case of the methyl group number III.

REFERENCES

S1. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 18, October 2016, Editor: Russell D. Johnson III http://cccbdb.nist.gov/