Supplementary Information for

Ultrafast Fluorescence Depolarisation in Green Fluorescence Protein Tandem Dimers as Hydrophobic Environment Sensitive Probes

Alejandro Sanchez-Pedreno Jimenez^{1,2,4}, Henry L. Puhl III³, Steven S. Vogel^{3*}, and Youngchan Kim^{1,2,4*}

¹Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK.

²Department of Microbial Sciences, School of Biosciences, University of Surrey, Guilford GU2 7XH, UK.

³Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA. ⁴Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK.

*Corresponding authors. Emails: <u>stevevog@mail.nih.gov; youngchan.kim@surrey.ac.uk</u>

This file includes:

Figures S1-5

Equation S1

Table S1

Instrument response function

To measure the intrument reponse function we used ludox as a scattering sample at the same wavelength of excitation Figure S1. Each curve was fit to a Gaussian function to parametrise the instrument response function (IRF) of the TCSPC system. The full widtlh half maximum (FWHS) of the IRF lies in the range FWHMS = 83.62 ± 1.14 ps.

Figure S1. Instrument response function. Ludox was used as a scattering sample. The curves represent individual measurements.

Fluorescein tail fitting for G-Factor calibration

G-Factor was calculated by tail fitting of fluorescein decay curves using equation S1.

Figure S2. Instrument calibration using Fluorescein 0.5 μ M. a) Steady state fluorescence spectra. b) TCSPC Blue is magic angle red is parallel green is perpendicular (IRF in orange), c) Anisotropy of fluorescein with (blue) and without (red) G-Factor correction.

Individual decay curves

Figure S3. Time resolved fluorescence decay curves of 1 μ M mEGFP in PBS in a range of glycerol concentrations. TCSPC decay curves (a-e). Anisotropy curves (f-j). Each decay curve represents the average of 3 technical replicates.

Figure S4. Time-resolved fluorescence decay curves of 1 μ M dEGFP-TD in PBS in a range of glycerol concentrations. TCSPC decay curves (a-e). Anisotropy curves (f-j). Each decay curve represents the average of 3 technical replicates.

Figure S5. The normalised excitation spectra of a) mEGFP and b) dEGFP-TD at a range of glycerol/PBS mixtures. The fluorescence intensity was measured at 510 nm.

Table S1 The initial anisotropy of mEGFP and dEGFP-TD, which is the value of the anisotropy at t=0 after short pulse excitation. The glycerol percentages are given by volume.

% Glycerol in PBS	Limiting anisotropy (r) ±SD	
	mEGFP	dEGFP-TD
0%	0.37±0.00	0.30±0.02
10%	0.37±0.00	0.31±0.02
25%	0.37±0.01	0.33±0.02
50%	0.37±0.01	0.35±0.02
75%	0.38±0.01	0.36±0.01