Supplementary Information (SI)

Simultaneous adsorption of ciprofloxacin drug and methyl violet dye on boron nitride nanosheets: experimental and theoretical insights

Keivan Javanmard, Saeed Farhadi, and Abedin Zabardasti,

Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68151-44316, Iran

*Corresponding authors: Tel: +986633120611, fax: +986633120618.

Email addresses: farhadi.s@lu.ac.ir (S. Farhadi), zabardasti.a@lu.ac.ir (A. Zabardasti)

Fig. 2S. (a) Linear fitting of adsorption kinetic CIP with pseudo-second-order kinetic model fit, (b) linear fitting of adsorption kinetic MV with pseudo-second-order kinetic model fit, and (c) linear fitting of adsorption kinetic CIP+MV with pseudo-second-

Fig. 3S.(a)Linear fitting of adsorption isotherm CIP with Freundlich isotherm model fit, (b) linear fitting of adsorption isotherm MV with Freundlich isotherm model fit and (c) linear fitting of adsorption isotherm CIP+MV with Freundlich

Fig. 4S. (a)-(c) linear fitting of adsorption thermodynamic CIP, CIP+MV, and MV

Fig. 5S. The NBO atomic charges of atoms for (a) BNNS, (b) CIP, (c) MV, (d) CIP...BN, (e) MV...BN and (f) MV...BN...CIP

Fig.6S. The Molecular surface electrostatic potential (a) BNNS, (b) CIP, (c) MV, (d) CIP...BN, (e) MV...BN and (f) MV...BN...CIP

Molecular structure of CIP in different

		$E(2) \times (1 + 1)$		$\Gamma('') \circ \langle \rangle$			
Donor(1)	Acceptor (1)	$E(2)^{\alpha}(K \text{Jmol}^{-1})$	E(J)-E(1) ^o (a.u.)	F(1,J) ^c (a.u.)			
CIP to BN in CIPBN							
p F ₁₁₆	$\pi^* B_{25} - N_{54}$	5.72	0.46	0.048			
p O ₁₁₁	$\pi^* B_{28} - N_{57}$	4.50	0.35	0.036			
p F ₁₁₆	$\pi^* B_{25} - N_{52}$	2.62	1.12	0.052			
п C ₈₀ - О ₉₁	п* B ₂₇ -N ₅₆	2.71	0.39	0.031			
п C ₁₀₉ - О ₁₁₀	п* B ₃₉ -N ₆₈	1.96	0.41	0.026			
п C ₈₅ - С ₈₉	п* B ₂₆₉ -N ₅₅	1.68	0.34	0.007			
п C ₇₉ - C ₈₃	п* B ₃₀ -N ₅₈	1.53	0.33	0.020			
p O ₁₁₀	п* B ₂₉ -N ₇₀	1.44	0.75	0.031			
p O ₁₁₁	п* B ₂₈ -N ₅₇	1.13	0.66	0.026			
p C ₈₁	п* B ₃₁ -N ₅₉	0.95	0.17	0.014			
σ O ₁₁₁ - H ₁₁₂	п* B ₂₈ -N ₅₇	0.9	0.7	0.025			
p C ₈₆	п* B ₃₉ -N ₆₈	0.75	0.17	0.012			
σ H ₈₄ - C ₈₅	п* B ₂₆ -N ₅₅	0.65	0.58	0.019			
p F ₁₁₆	п* B ₂₅ -N ₅₃	0.53	0.83	0.019			
p F ₁₁₆	п* B ₂₅ -N ₆₁	0.51	0.83	0.019			
BN to CIP in CIPBN							
п B ₂₈ -N ₅₇	σ* O ₁₁₁ - H ₁₁₂	1.02	0.56	0.022			
п B ₃₀ -N ₅₈	п* С ₁₀₉ - О ₁₁₀	0.98	0.24	0.014			
п В31-N59	п* C ₈₀ - О ₉₁	0.46	0.26	0.010			
п В43-N72	σ* C ₉₂ - H ₉₅	0.27	0.72	0.013			
п B ₂₆ -N ₅₅	п* C ₈₅ - C ₈₉	0.25	0.25	0.007			
п B ₄₀ -N ₆₉	п* C ₇₉ - C ₈₃	0.18	0.065	0.012			
п B ₃₃ -N ₆₁	п* C ₈₅ - C ₈₉	0.10	0.27	0.005			
MV to BN in MVBN							
п C ₈₂ - C ₈₅	п* B ₃₉ -N ₆₈	0.57	0.32	0.016			
σ C ₁₀₁ - H ₉₆	п* B ₂₇ -N ₅₅	0.49	0.59	0.007			
п С92- С95	п* B ₂₇ -N ₅₅	0.49	0.32	0.011			
п С ₁₀₁ - С ₁₀₃	п* B ₂₀ -N ₄₉	0.44	0.32	0.011			
п С92- С95	п* B ₁₈ -N ₄₇	0.43	0.32	0.011			
σ C ₁₀₁ - H ₁₀₄	п* B ₂₀ -N ₄₉	0.42	0.59	0.015			
σ C ₈₂ - H ₈₆	п* B ₃₂ -N ₆₀	0.40	0.59	0.011			
п C ₈₂ - C ₈₅	п* B ₃₂ -N ₆₀	0.439	0.32	0.010			
п С ₁₀₁ - С ₁₀₃	п* B ₂₁ -N ₅₀	0.32	0.32	0.009			
σ C ₁₂₂ - H ₁₂₃	п* B ₁₇ -N ₅₇	0.32	0.58	0.013			
σ C ₁₃₀ - H ₁₃₁	п* B ₄₃ -N ₇₂	0.29	0.57	0.012			
п С ₁₀₁ - С ₁₀₃	п* B ₂₅ -N ₅₃	0.27	0.32	0.008			
σ C ₉₅ - H ₉₉	п* B ₁₇ -N ₄₆	0.21	0.59	0.011			
BN to MV in MVBN							
п B ₂₂ -N ₅₁	σ* C ₁₁₄ - H ₁₁₇	1.71	0.70	0.032			
п B ₁₈ -N ₄₇	σ* C ₁₂₂ - H ₁₂₃	1.39	0.70	0.029			
πB_{21} -N ₅₀	σ* C ₁₀₃ - H ₁₀₈	0.26	0.73	0.013			
п В20-N49	σ* C ₁₀₁ - H ₁₀₄	0.24	0.73	0.012			
p N ₇₃	σ* C ₃₀ - H ₁₃₁	0.2	0.65	0.012			
п В27-N55	п* С92- С95	0.14	0.26	0.005			
п В ₂₈ -N ₅₆	σ* C ₉₅ - H ₉₉	0.14	0.71	0.010			
п В32-N60	п* C ₈₂ - C ₈₅	0.12	0.26	0.005			
πB_{21} -N ₅₀	п* С ₁₀₁ - С ₁₀₃	0.11	0.28	0.005			

Table 1S. Second order perturbation theory analysis of Fock matrix in NBO

BN to MV in MV	BNCIP						
п В ₁₈ -N ₄₇	σ* C ₁₂₂ - H ₁₂₃	1.54	0.70	0.031			
п В22-N51	σ* C ₁₁₄ - H ₁₁₇	1.46	0.70	0.030			
p N ₇₃	σ* C ₁₃₀ - H ₁₃₁	0.32	0.64	0.015			
п В20-N49	σ* C ₁₀₁ - H ₁₀₄	0.29	0.73	0.014			
п В21-N50	σ* C ₁₀₃ - H ₁₀₈	0.26	0.73	0.013			
п В ₂₈ -N ₅₆	σ* C ₉₅ - H ₉₉	0.22	0.70	0.012			
п В27-N55	п* С92- С95	0.20	0.26	0.006			
п В32-N60	п* C ₈₂ - C ₈₅	0.17	0.26	0.006			
MV to BN in MVBNCIP							
σ C ₉₂ - H ₉₆	п* B ₂₇ -N ₅₅	0.66	0.06	0.019			
п С92- С95	п* B ₂₇ -N ₅₅	0.54	0.33	0.012			
п С ₁₀₁ - С ₁₀₃	п* B ₂₀ -N ₄₉	0.50	0.32	0.011			
п С ₈₂ - С ₈₅	п* B ₃₉ -N ₆₈	0.49	0.32	0.010			
п С92- С95	п* B ₁₈ -N ₄₇	0.44	0.33	0.011			
σ C ₁₀₁ - H ₁₀₄	п* B ₂₀ -N ₄₉	0.45	0.59	0.016			
σ C ₈₂ - H ₈₆	п* B ₃₉ -N ₆₈	0.41	0.59	0.008			
п С ₈₂ - С ₈₅	п* B ₃₂ -N ₆₀	0.40	0.32	0.010			
σ C ₈₂ - H ₈₆	$\sigma^* B_{25}$	0.31	0.27	0.009			
п С ₁₀₁ - С ₁₀₃	п* B ₂₁ -N ₅₀	0.30	0.31	0.009			
σ C ₉₅ - H ₉₉	п* B ₁₈ -N ₄₇	0.25	0.60	0.007			
BN to CIP in MV	BNCIP						
п B ₁₉ -N ₄₈	п* C ₁₆₄ - О ₁₆₅	0.69	0.25	0.0012			
п B ₁₈ -N ₄₇	σ* O ₁₆₆ - H ₁₆₇	0.59	0.57	0.017			
п B ₂₇ -N ₅₅	п* С ₁₃₅ - О ₁₄₆	0.21	0.26	0.007			
п B ₃₇ -N ₆₆	п* С156- С159	0.18	0.27	0.006			
п B ₃₈ -N ₆₇	п* С ₁₄₀ - С ₁₄₄	0.17	0.28	0.006			
п B ₃₁ -N ₆₁	п* С ₁₄₀ - С ₁₄₄	0.15	0.26	0.006			
CIP to BN in MVBNCIP							
p F ₁₇₁	п* B ₃₉ -N ₆₈	6.09	0.45	0.049			
p O ₁₆₆	п* B ₁₈ -N ₄₇	4.85	0.35	0.038			
п С ₁₃₅ - С ₁₄₆	п* B ₂₇ -N ₅₅	3.49	0.38	0.035			
p F ₁₇₁	п* B ₃₉ -N ₆₈	2.54	1.11	0.051			
p O ₁₄₆	п* B ₂₇ -N ₅₅	1.79	0.74	0.035			
п С ₁₄₀ - С ₁₄₄	п* B ₃₁ -N ₅₉	1.29	0.33	0.019			
p O ₁₆₆	п* B ₁₈ -N ₄₇	1.14	0.66	0.026			
p C ₁₃₆	п* B ₂₆ -N ₅₄	1.05	0.16	0.014			
σ O ₁₆₆ - H ₁₆₇	п* B ₁₈ -N ₄₇	0.93	0.77	0.026			
п С ₁₃₄ - С ₁₃₈	п* B ₁₉ -N ₄₈	0.92	0.33	0.016			
п C ₁₄₃ - N ₁₆₉	п* B ₃₈ -N ₆₇	0.79	0.37	0.016			
p F ₁₇₁	п* B ₃₉ -N ₇₃	0.78	0.81	0.023			
σ C ₁₅₆ - H ₁₆₀	п* B ₃₃ -N ₆₁	0.69	0.59	0.019			
σ H ₁₃₉ - C ₁₄₀	$\pi^* B_{33}-N_{61}$	0.67	0.57	0.019			
п C ₁₅₆ - С ₁₅₉	п* B ₃₇ -N ₆₆	0.65	0.33	0.014			
p O ₁₄₆	п* B ₃₀ -N ₅₇	0.62	0.73	0.020			
p F ₁₇₁	п* B ₃₉ -N ₇₃	0.52	1.48	0.025			
п С ₁₄₄ - F ₁₇₁	п* B ₃₉ -N ₆₈	0.50	1.01	0.022			
п С ₁₄₀ - С ₁₄₄	$\Pi^* B_{32} - N_{60}$	0.50	0.32	0.011			
п C ₁₃₅ - О ₁₄₆	$\pi^* B_{27} - N_{59}$	0.48	0.76	0.017			

^aE (2): Energy of hyperconjugative interaction (stabilization energy). ^b Energy difference between donor and acceptor I and j NBO orbitals. ^cF (*i*,*j*): The fork matrix element between I and j NBO orbitals.