Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023 Mossbauer1 si 24.04.2023.docx / 19 June 2023

Supporting Information

for

⁵⁷Fe Mössbauer and DFT study of the electronic and spatial structure of the iron(II) (pseudo)clathrochelates: the effect of a ligand field strength

Denis V. Balatskiy,^a Alexander S. Chuprin,^{b,c} Semyon V. Dudkin,^{b,c} Luis Felipe Desdín-García,^d Angel Luis Corcho-Valdés,^d Manuel Antuch,^d

Vyacheslav M. Buznik,^c Svetlana Yu. Bratskaya,^a Yan Z. Voloshin^{b,c}

^a Institute of Chemistry, Far Eastern Branch of the Russian Academy of

Sciences, 159 100-letiya Vladivostoka pr., 690022 Vladivostok, Russia

^bNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia

^c Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia

^dCentro de Aplicaciones Tecnológicas y Desarrollo Nuclear, No. 502, Calle 30 y 5ta Ave. Miramar, CP 11300 La Habana, Cuba

1

Experimental ⁵⁷Fe Mössbauer data: δ (Isomer shift, IS, relative to α -Fe) = 0.99 mm/s ΔE_q (Quadrupole splitting, QS) = 3.55 mm/s Fe²⁺@L1

Chemical drawing

Figure S1. General view of the molecule Fe(PzOx)₃(BC₆H₅)Cl High-spin iron(II) complex

Figure S2. General view of the molecule [Fe(AcPyOx)₃(BC₆H₅)](ClO₄) Low-spin iron(II) complex

Experimental ⁵⁷Fe Mössbauer data: δ (Isomer shift, IS, relative to α -Fe) = 0.13 mm/s ΔE_q (Quadrupole splitting, QS) = 0.56 mm/s Fe²⁺@L3

4

Figure S3. General view of the molecule FeNx(HNx)₂(B4-C₆H₄CHO) Low-spin iron(II) complex

Figure S4. General view of the molecule Fe(Cl₂Gm)₃(B3-C₆H₄CHO)₂ Low-spin iron(II) complex

Figure S5. General view of the molecule Fe(S₂-C₆H₄Gm)₃(B3-C₆H₄CHO)₂ Low-spin iron(II) complex

Figure S6. General view of the molecule FeNx₃(B4-C₆H₄CHO)₂ Low-spin iron(II) complex

DFT calculation of QS values

Regarding the quadrupolar splitting, it should be said that the potential caused by a point charge at a certain distance r from a nucleus is given by $\mathbf{V}(\mathbf{r}) = \mathbf{q/r}$. The electric field is the gradient of the potential, taken with a negative sign, i.e. $E = -\nabla V$, and the gradient of the electric field is known as the electric field gradient (EFG), which may be expressed as $EFG = -\nabla^2 V$. The EFG may be written in matrix form, according to Eq. S1.

$$EFG = -\nabla^{2}V = \begin{bmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{bmatrix}$$
(S1),

where $V_{ij} = \partial^2 V / \partial r_i \partial r_j$, where *i* and *j* stand for combinations of the Cartesian coorinates *x*, *y* or *z*.

The hyperfine quadrupole splitting is originated from the coupling of a nuclear electric quadrupole moment (*Q*) for nuclei with nuclear spin I > 1/2 and a non-zero EFG. In the case of the ⁵⁷Fe nucleus, the nuclear transition $I = 1/2 \leftrightarrow I = 3/2$ occurs at 14.41 eV. The spectral difference between the I = 3/2 Kramers doublet $M_I = \pm 3/2$ and $M_I = \pm 1/2$ may be expressed according to Eq. S2.

$$\Delta E_Q = \frac{eQV_{zz}}{2} \sqrt{\left(1 + \frac{\eta^2}{3}\right)}$$
(S2)

where $\eta = (V_{xx} - V_{yy})/(V_{zz})$ is an asymmetry parameter reflecting the asymmetry in the distribution of the electrons around the nucleus; each component is taken as $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$. For the calculation of ΔE_Q it is worth to consider that $e = 1.602 \cdot 10^{-19}C$, for ⁵⁷Fe $Q = 150 - 160 \ mb$ (where $1\ mb = 10^{-31}\ m^2$) and V_{zz} is calculated in atomic units (*a.u.*) via DFT (where $1\ a.u. = 9.717365 \cdot 10^{21}V/m^2$). The product eQV_{zz} has conventional units of $[C][m^2][V/m^2] = [J]$ while $1\ J = 6.242 \cdot 10^{-18}eV$ and $1\ mm/s = 4.805 \cdot 10^{-8}eV$. **Table S1.** Calculation of an electron density at the ⁵⁷Fe nucleus in the complex $(Fe^{2+})@L4$ using the different convergence criteria; B3LYP functional; NRAD = 300

Electron density	Convergence
11578.995020	1.00E-05
11578.995008	1.00E-06
11578.995009	1.00E-07

Table S2. Calculation of an electron density at the 57 Fe nucleus in the complex $(Fe^{2+})@L4$ using the different NRAD values; B3LYP functional;convergence = 1d-06

Electron density	Convergence
11578.995075	100
11578.995010	200
11578.995008	300
11578.995008	400
11578.995010	500

Table S3. Calculation of an electron density at the ⁵⁷Fe nucleus in the complex (Fe²⁺)@L4 using the experimental XRD and DFT-optimized geometries

Method	Electrond density
XRD	11578.995010
DFT	11578.995015

 Table S4. The calculated QS values (mm/s) which were obtained using various

 DFT functionals

Functional	Compound	Vzz (a.u.)	Vyy (a.u.)	Vxx (a.u.)	η	QS_{calcd}	QS _{exp}
	(Fe ²⁺)@L1	1.08	-0.82	-0.26	0.525	1.761	3.55
B3LYP	$(Fe^{2+})@L2$	0.06	-0.05	-0.01	0.632	0.096	0.00
	(Fe ²⁺)@L3	0.31	-0.27	-0.04	0.762	0.531	0.56
	$(Fe^{2+})@L4$	-0.55	0.31	0.24	0.115	-0.867	0.71
	(Fe ²⁺)@L5	-0.16	0.13	0.03	0.592	-0.265	0.70
	(Fe ²⁺)@L6	-0.35	0.31	0.04	0.766	-0.604	0.65
	$(Fe^{2+})@L1$	-0.88	0.82	0.06	0.854	-1.541	3.55
	$(Fe^{2+})@L2$	0.28	-0.15	-0.13	0.089	0.434	0.00
DD0/	$(Fe^{2+})@L3$	0.18	-0.16	-0.024	0.740	0.313	0.56
DF 80	$(Fe^{2+})@L4$	-0.22	0.14	0.08	0.292	-0.342	0.71
	(Fe ²⁺)@L5	-0.10	0.08	0.02	0.589	-0.166	0.70
	$(Fe^{2+})@L6$	0.11	-0.10	-0.005	0.898	0.189	0.65
	$(Fe^{2+})@L1$	-0.81	0.63	0.18	0.553	-1.328	3.55
	$(Fe^{2+})@L2$	0.28	-0.15	-0.13	0.082	0.439	0.00
	$(Fe^{2+})@L3$	0.18	-0.16	-0.03	0.716	0.309	0.56
OLIF	$(Fe^{2+})@L4$	-0.10	0.08	0.02	0.617	-0.162	0.71
	(Fe ²⁺)@L5	-0.85	0.79	0.06	0.855	-1.487	0.70
	$(Fe^{2+})@L6$	0.11	-0.10	-0.007	0.865	0.189	0.65
	$(Fe^{2+})@L1$	-0.85	0.79	0.06	0.855	-1.487	3.55
	$(Fe^{2+})@L2$	0.28	-0.15	-0.13	0.086	0.446	0.00
RPBE	(Fe ²⁺)@L3	0.18	-0.15	-0.025	0.720	0.302	0.56
	$(Fe^{2+})@L4$	-0.20	0.13	0.07	0.298	-0.322	0.71
	(Fe ²⁺)@L5	-0.10	0.077476	0.02	0.609	-0.160	0.70
	(Fe ²⁺)@L6	0.01	-0.092	-0.008	0.833	0.174	0.65
TPSS	$(Fe^{2+})@L1$	0.89	-0.73	-0.15	0.654	1.487	3.55
	$(Fe^{2+})@L2$	0.22	-0.12	-0.10	0.125	0.343	0.00
	$(Fe^{2+})@L3$	0.19	-0.17	-0.023	0.764	0.333	0.56
	$(Fe^{2+})@L4$	-0.26	0.15	0.10	0.202	-0.407	0.71
	(Fe ²⁺)@L5	-0.11	0.083918	0.02	0.590	-0.175	0.70
	$(Fe^{2+})@L6$	0.14	-0.13	-0.007	0.900	0.245	0.65

Basis set	Vzz (a.u.)	Vyy (a.u.)	Vxx (a.u.)	η	QS_{calcd}	QS _{exp}
STO-6G	-0.29	0.17	0.12	0.19	-0.454	0.71
631-G	-0.38	0.22	0.16	0.15	-0.595	
CCT	-0.44	0.25	0.19	0.13	-0.685	
TZV	-0.55	0.31	0.24	0.11	-0.867	
SPKrTZV	-0.45	0.26	0.20	0.13	-0.713	

Table S5. The calculated QS values (mm/s) for the complex $(Fe^{2+})@L4$ which were obtained using various basis sets