Supplementary Information

Mechanistic Insight into Effect of Active Site Motif

Structure on Direct Oxidation of Methane to Methanol over

Cu-ZSM-5

Chengna Dai, Yuchan Zhang, Ning Liu,* Gangqiang Yu, Ning Wang, Ruinian Xu, Biaohua Chen

Faculty of Environment and Life, Beijing University of Technology, Beijing,

100124, China *Correspondence to: liuning@bjut.edu.cn

Table of Content

Theoretical method of ab initio thermodynamics (AIT) analysis **S**1 Fig. S1 Comparisons of DFT calculated energies for the Cu-ZSM-5 models with dicopper active sties **S**3 Fig. S2 TEM-EDX mapping results of elements Cu, Al and Si over Cu-ZSM5-0.3% S4 Fig. S3 Co-FTIR with the Cu-ZSM-5-0.3% being predated under vacuum condition for 30 min and then the CO was introduced into the system with the signal being monitored at T of 50 °C S5 Fig. S4 Activity measurement results of H₂O mediated N₂O-DMTM over Cu-ZSM-5-**S6** n samples (n = 0.1, 0.3, 0.5, 0.8 and 1.2%) for 5 hours. Fig. S5 Pulse test after bubbling the CH₃OH (~2 vol%, He of 40 mL min-1) over CuO/SiO₂ at T = 300 °C and with the m/e signal of 44 (CO₂) being detected by mass spectrometer (MS). **S7** Fig. S6 UV-vis spectra of Cu-ZSM5-0.3% pretreated by N₂O at T of 250 °C; no peaks being related to [Cu-O-Cu]²⁺ species can be observed around 440 nm. **S**8 Fig. S7 NH₃-TPD results of pristine H-ZSM-5 and Cu-ZSM-5-0.3% S9 Fig. S8 Thermogravimetry (TG) and differential thermogravimetric analysis (DTG) curves of the Cu-BEA-0.3% samples being after long-term test in (a) presence and (b)

0
O-
1
of
12
nd
3
14
ng
).
15
ng

Table S4 Elementary steps and kinetic parameters involved in microkinetic modelingover dicopper $[Cu]^+$ -- $[Cu]^+$ site during N2O-DMTM in both presence and absence ofH2O.S16

Theoretical method of ab initio thermodynamics (AIT) analysis

The DFT-based ab initio thermodynamics (AIT) were conducted to evaluate the thermostabilities of diverse active site structures under the reaction condition of present work, including [Cu]⁺, [Cu-O]⁺, [Cu]⁺--[Cu]⁺, [Cu-O-Cu]²⁺ and [Cu-OH]⁺, according to the Eq. S1.

$$\frac{2m - n - 2x - 2y + i}{2} N_2 O + \frac{n - i}{2} H_2 O + yCuO + xFeO + H_i - Z$$

$$f \quad Fe_x Cu_y O_m H_n - Z + \frac{2m - n - 2x - 2y + i}{2} N_2$$
(S1)

The Gibbs free energy difference $[\Delta G(T,P)]$ can be calculated according to the Eq. S2:

$$\Delta G(T, p) = G_{Cu_{y}O_{m}H_{n}-Z} + \frac{2m - n - 2x - 2y + i}{2} \mu_{N_{2}}^{g} - E_{H_{i}-Z} - yE_{CuO} - \frac{n - j}{2} \mu_{H_{2}O}^{g} - \frac{2m - n - 2x - 2y + i}{2} \mu_{N_{2}O}^{g}$$
(S2)

As noted, the bulk CuO as well as H-ZSM-5 (noted as H_i-Z) was calculated by DFT to derive the E_{CuO} and E_{Hi-Z} . As for other reference molecules of N₂, N₂O and H₂O, the related chemical potentials of $\mu_{N_2}^g$, $\mu_{N_2O}^g$ and $\mu_{H_2O}^g$ was employed in Eq.S2, which can be calculated according to the Eqs. S3-S8.

$$\mu_{N_2}^g(T,p) = E_{N_2} + \Delta \mu_{N_2}(T,p)$$
(S3)

$$\mu_{N_{2}O}^{g}(T,p) = E_{N_{2}O} + \Delta \mu_{N_{2}O}(T,p)$$
(S4)
(S5)

$$\mu_{\rm H_{2O}}^{\rm g}(T,p) = E_{\rm H_{2O}} + \Delta \mu_{\rm H_{2O}}(T,p)$$

$$\Delta \mu_{N_2}(T,p) = \Delta \mu_{N_2}(T,p^0) + RT \ln(\frac{p_{N_2}}{p_{N_2}^0})$$
(S6)

$$=H(T, p^{0}, N_{2}) - H(0K, p^{0}, N_{2}) - T[S(T, p^{0}, N_{2}) - S(0K, p^{0}, N_{2})] + RT \ln(\frac{p_{N_{2}}}{p_{N_{2}}^{0}})$$

At $(T, p) = A + (T, p^{0}) + RT \ln(\frac{p_{N_{2}}}{p_{N_{2}}})$

$$\Delta \mu_{N_2 O}(T, p) = \Delta \mu_{N_2 O}(T, p^0) + RT \ln(\frac{p_{N_2 O}}{p_{N_2 O}^0})$$
(S7)

$$=H(T, p^{0}, N_{2}O) - H(0K, p^{0}, N_{2}O) - T[S(T, p^{0}, N_{2}O) - S(0K, p^{0}, N_{2}O)] + RT \ln(\frac{p_{N_{2}O}}{p_{N_{2}O}^{0}})$$

$$\Delta\mu_{u,o}(T, p) = \Delta\mu_{u,o}(T, p^{0}) + RT \ln(\frac{p_{H_{2}O}}{2})$$
(S8)

$$\Delta \mu_{H_{20}}(I,p) = \Delta \mu_{H_{20}}(I,p) + KI \ln(\frac{p_0}{p_{H_{20}}})$$

$$= H(T,p^0,H,Q) - H(0K,p^0,H,Q) - T[S(T,p^0,H,Q) - S(0K,p^0,H,Q)] + RT \ln(\frac{p_{H_{20}}}{p_{H_{20}}})$$
(S8)

$$=H(T, p^{0}, H_{2}O) - H(0K, p^{0}, H_{2}O) - T[S(T, p^{0}, H_{2}O) - S(0K, p^{0}, H_{2}O)] + RT \ln(\frac{P_{H_{2}O}}{p_{H_{2}O}^{0}})$$

The reaction energies of ΔE can be defined as

$$\Delta E = E_{Cu_{y}O_{m}H_{n}-z} + \frac{2m - n - 2y + i}{2}E_{N_{2}} - E_{H_{i}-Z} - yE_{CuO} - \frac{n - i}{2}E_{H_{2}O} - \frac{2m - n - 2x - 2k + i}{2}E_{N_{2}O}$$
(S9)
S1

Above all, the $\Delta G(T,P)$ can be calculated by Eq. S10:

$$\Delta G(T,p) = \Delta E - \frac{2\mathbf{m} - \mathbf{n} - 2\mathbf{x} - 2\mathbf{y} + \mathbf{i}}{2} [\Delta \mu_{N_2}(T,P) - \Delta \mu_{H_2O}(T,P)] - \frac{\mathbf{n} - \mathbf{i}}{2} \Delta \mu_{H_2O}(T,P)$$
(S10)

Fig. S1 Comparisons of DFT calculated energies for the Cu-ZSM-5 models with dicopper active sties being loaded at different T sites. The T2-T11 site was chose as the dicopper site model, which displays the lowest energy.

Fig. S2 TEM-EDX mapping results of elements Cu, Al and Si over Cu-ZSM5-0.3%; the well dispersion of Cu can be observed.

Fig. S3 Co-FTIR with the Cu-ZSM-5-0.3% being predated at T of 100 °C under vacuum condition for 30 min; and then the CO was introduced into the system with the signal being monitored at T of 50 °C.

Fig. S4 Activity measurement results of H₂O mediated N₂O-DMTM over Cu-ZSM-5-n samples (n = 0.1, 0.3, 0.5, 0.8 and 1.2%) for 5 hours; reaction condition: N₂O: CH₄: H₂O: He= 30: 15: 20: 35; GHSV=12,000h⁻¹; T = 300 °C.

Fig. S5 Pulse test after bubbling the CH₃OH (~2 vol%, He of 40 mL min⁻¹) over CuO/SiO₂ at T = 300 °C and with the m/e signal of 44 (CO₂) being detected by mass spectrometer (MS).

Wave length (nm)Fig. S6 UV-vis spectra of Cu-ZSM5-0.3% pretreated by N₂O at T of 250 °C; no peaksbeing related to $[Cu-O-Cu]^{2+}$ species can be observed around 440 nm.

Fig. S7 NH₃-TPD results of pristine H-ZSM-5 and Cu-ZSM-5-0.3%

Note: Fig. S7 displays the NH_3 -TPD of H-ZSM-5 and Cu-ZSM-5-0.3%. As can be seen, after the SSIE of Cu with H-ZSM-5, the acidity was slightly decreased from 0.82 to 0.68 mmol g⁻¹ due to Cu loadings.

Fig. S8 Thermogravimetry (TG) and differential thermogravimetric analysis (DTG) curves of the Cu-BEA-0.3% samples being after long-term test in (a) presence and (b) absence of 20vol% H₂O.

Note: Figs. S8a-S8b display the TG results for the sample of Cu-ZSM-5 being after 50h's long-term reaction, in presence and absence of 20% H₂O. Much more extensive weight decreasing can be obviously found for the scenario of N₂O-DMTM in absence of H₂O, based on which the coke deposition amounts were estimated to be as high as 9.32 wt.%, with respect to 1.25 wt.% for the scenario of N₂O-DMTM in presence of 20 vol% H₂O.

Fig. S9 Theoretical mechanism simulations of H_2O -mediated and H_2O -absence N_2O -DMTM by DFT over Cu-ZSM-5 with $[Cu_3O_2]^{2+}$ active site.

Semula	Т	t	Selectivity (%)						
Samples	(°C)	(h)	CO ₂	C ₂ H ₄	C_2H_6	C ₃ H ₆	CH ₃ OH	C ₂ H ₆ O	Coke
Cu-ZSM5-0.3%	300	5	9.8	4.7	0.4	1.0	4.1	0.6	79.3
Cu-ZSM5-0.3%+10%H ₂ O	300	5	20.3	0.4	0	0	52.3	2.7	24.3
Cu-ZSM5-0.3%+30%H2O	300	5	7.1	0.1	0	0	60.0	1.5	31.3
Cu-ZSM5-0.1%+20%H ₂ O	300	5	15.3	9.8	0.6	1.9	9.9	0.2	62.3
Cu-ZSM5-0.3%+20%H ₂ O	300	5	10.7	0.1	0	0	67.1	2.6	19.8
Cu-ZSM5-0.5%+20%H ₂ O	300	5	53.2	0	0	0	31.2	1.2	14.4
Cu-ZSM5-0.8%+20%H ₂ O	300	5	64.1	0	0	0	23.1	0.7	12.1
Cu-ZSM5-1.2%+20%H ₂ O	300	5	72.6	0	0	0	18.4	0.6	8.4
Cu-ZSM5-0.3%	300	50	31.9	3.5	0.3	0.7	16.4	2.4	44.8
Cu-ZSM5-0.3%+20%H ₂ O	300	50	23.0	0.6	0	0	66.3	4.2	5.9

Table S1 Product selectivity during N₂O-DMTM over Cu-ZSM-5-n samples at T of 300 °C.

No.	Sample	method	CH ₃ OH productivity $(\mu mol \Box g^{-1})^{1}$	CH ₃ OH selectivity (%)	CO ₂ selectivity (%)	Refs.
1	Fe-ZSM-5-2.3%	incipient wetness impregnation	-	3.1	33	[1]
2	Fe-ZSM-5-1%F	freeze-drying	101.6	10.9	76.4 (CO _x)	[2]
3	Fe-ZSM-5-1%-E	incipient wetness impregnation	84.8	9.1	85.8 (CO _x)	[2]
4	Fe-ZSM-5-2.5%	chemical vapor impregnation	61.5	16	-	[3]
5	Fe-ZSM-5-2.0%	incipient wetness impregnation	72.3	62	49.5 (CO _x)	[4]
6	Cu-ZSM-5-4%	ion exchange	62	-	-	[5]
7	Cu-H-ZSM-5	ion exchange	1.81	-	-	[6]
8	Fe-ZSM-5-1.5%	chemical vapor impregnation	-	15.1	13.6	[7]
9	Cu-ZSM-5-1.5%	chemical vapor impregnation	-	89.1	9.9	[7]
10	Cu-ZSM-5-0.1%	solid-state ion exchange	81.7	9.9	15.3	
11	Cu-ZSM-5-0.3%	solid-state ion exchange	194.8	67.1	10.7	
12	Cu-ZSM-5-0.5%	solid-state ion exchange	131.5	31.2	53.2	This work
13	Cu-ZSM-5-0.8%	solid-state ion exchange	110.0	23.1	64.1	
14	Cu-ZSM-5-1.2%	solid-state ion exchange	108.0	18.4	72.6	

Table S2 Comparisons of CH ₃ OH productivity and selectivity for Cu-ZSM-0.3% and
the other samples from reference

Reference

- G. Zhao, E. Benhelal, A. Adesina, E. Kennedy, M. Stockenhuber, Comparison of Direct, Selective Oxidation of Methane by N₂O over Fe-ZSM-5, Fe-Beta, and Fe-FER Catalysts, J. Phys. Chem. C, 123 (2019) 27436-27447.
- [2] L. Fan, D.-g. Cheng, L. Song, F. Chen, X. Zhan, Direct Conversion of CH4 to Oxyorganics by N2O Using Freeze-drying FeZSM-5, Chem. Eng. J., 369 (2019) 522-528.
- [3] Y.K. Chow, N.F. Dummer, J.H. Carter, R.J. Meyer, R.D. Armstrong, C. Williams, G. Shaw, S. Yacob, M.M. Bhasin, D.J. Willock, S.H. Taylor, G.J. Hutchings, A Kinetic Study of Methane Partial Oxidation over Fe-ZSM-5 Using N₂O as an Oxidant, Chem. Phys. Chem, 19 (2018) 402-411.
- [4] M.V. Parfenov, E.V. Starokon, L.V. Pirutko, G.I. Panov, Quasicatalytic and Catalytic Oxidation of Methane to Methanol by Nitrous Oxide over FeZSM-5 Zeolite, J. Catal., 318 (2014) 14-21.
- [5] V.L. Sushkevich, J.A. van Bokhoven, Methane-to-Methanol: Activity Descriptors in Copper-Exchanged Zeolites for the Rational Design of Materials, ACS Catal., 9 (2019) 6293-6304.
- [6] K. Narsimhan, K. Iyoki, K. Dinh, Y. Roman-Leshkov, Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature, ACS Cent. Sci., 2 (2016) 424-429.
- [7] J. Xu, R.D. Armstrong, G. Shaw, N.F. Dummer, S.J. Freakley, S.H. Taylor, G.J. Hutchings, Continuous Selective Oxidation of Methane to Methanol over Cu- and Fe-Modified ZSM-5 Catalysts in a Flow Reactor, Catal. Today, 270 (2016) 93-100.

Step	Elementary Step	Reaction rate equations	$rac{ u_{ m for}}{ m (s^{-1})}$	$v_{\rm rev}$ (s ⁻¹)	ΔE (eV)	$\frac{\Delta E^{-1}}{(\text{eV})}$
R1	$Z\text{-}Cu \Box N_2O(g) \Box Z\text{-}Cu\text{-}N_2O$	$r_{1} = k_{1} P_{N_{2}O} \theta_{\nu} - k_{-1} \theta_{N_{2}}$	0.02	4.50×10 ¹⁸	-	0.70
R2	$Z-Cu-N_2O \Box Z-Cu-O \Box N_2(g)$		2.53×10 ¹²	-	1.41	-
R3	Z -Cu-O+CH ₄ \square Z-Cu-OH-CH ₃		4.61×10 ¹²	4.18×10 ¹⁴	0.09	4.54
R4	Z -Cu-OH-CH ₃ \Box Z-Cu-CH ₃ OH		3.59×10 ¹³	8.73×10 ¹³	0.34	1.38
R5	Z -Cu-CH ₃ OH \Box Z-Cu+CH ₃ OH(g)		4.70×10 ¹⁹	-	1.45	-
R5'	Z -Cu-CH ₃ OH \square ^{HQ} \square Z -Cu+CH OH ₃ (g)		4.70×10 ¹⁹	-	0.55	-

Table S3 Elementary steps and kinetic parameters involved in microkinetic modeling over monomeric $[Cu]^+$ site during N₂O-DMTM in both presence and absence of H₂O.

Step	Elementary Steps	Reaction rate equations	$v_{\mathrm{for}}(\mathrm{s}^{-1})$	$v_{rev}(s^{-1})$	ΔE (eV)	$\frac{\Delta E^{-1}}{(\text{eV})}$
R1	$Z\text{-}Cu_2 \Box N_2O(g) \Box Z\text{-}Cu_2\text{-}N_2O$	$r_{I} \Box k_{I} P_{NO} \Box_{v} \Box k_{I} \Box_{NO}$	0.02	1.17×10 ²¹	-	1.23
R2	$Z\text{-}Cu_2 \text{-}N_2O \Box Z\text{-}Cu_2 \text{-}O\text{+}N_2 \Box g \Box$	$r_2 \Box k_2 \Box_{\mathrm{NO}}$	1.69×10 ¹³	-	0.92	-
R3	$Z-Cu_2 -O+CH_4 \square g \square \square Z-Cu_2 -CH_3-OH$	$r_3 \Box k_3 \Box_{\mathrm{O}} \mathrm{P}_{\mathrm{CH}} \Box k_{-3} \Box_{\mathrm{CH} \ \mathrm{OH}}$	2.25×10 ¹¹	1.07×10 ¹³	0.71	0.73
R4	Z - Cu_2 - CH_3 - $OH \square Z$ - Cu_2 - CH_3OH	$r_4 \square k_4 \square_{\operatorname{CH-OH}} \square k_{-4} \square_{\operatorname{CHOH}}$	7.70×10 ¹²	4.72×10 ¹³	0.08	1.06
R5	Z -Cu ₂ -CH ₃ OH \Box Z-Cu ₂ +CH ₃ OH(g)	$r_5 \Box k_5 \Box_{\operatorname{CH} OH}$	9.77×10 ²¹	-	2.02	-
R5'	$Z-Cu_2-CH_3OH \square \square Z-Cu + CH_2OH_3(g)$	$r_5 \Box k_5 \Box_{\operatorname{CH} OH}_{3}$	9.77×10 ²¹	-	0.01	-

Table S4 Elementary steps and kinetic parameters involved in microkinetic modeling over dicopper $[Cu]^+$ -- $[Cu]^+$ site during N₂O-DMTM in both presence and absence of H₂O.