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Theoretical method of ab initio thermodynamics (AIT) analysis

The DFT-based ab initio thermodynamics (AIT) were conducted to evaluate the 

thermostabilities of diverse active site structures under the reaction condition of 

present work, including [Cu]+, [Cu-O]+, [Cu]+--[Cu]+, [Cu-O-Cu]2+ and [Cu-OH]+, 

according to the Eq. S1. 

(S1)

The Gibbs free energy difference [∆G(T,P)] can be calculated according to the Eq. S2:

(S2)
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Above all, the ∆G(T,P) can be calculated by Eq. S10:

2 2 2N H O
2m - n - 2x - 2y + i n - i( , ) = [ ( , ) ( , )] ( , )

2 2H OG T p E T P T P T P         (S10)
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Fig. S1 Comparisons of DFT calculated energies for the Cu-ZSM-5 models with dicopper 

active sties being loaded at different T sites. The T2-T11 site was chose as the dicopper 

site model, which displays the lowest energy.
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Fig. S2 TEM-EDX mapping results of elements Cu, Al and Si over Cu-ZSM5-0.3%; the 

well dispersion of Cu can be observed.
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Fig. S3 Co-FTIR with the Cu-ZSM-5-0.3% being predated at T of 100 oC under vacuum 

condition for 30 min; and then the CO was introduced into the system with the signal 

being monitored at T of 50 oC. 
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Fig. S4 Activity measurement results of H2O mediated N2O-DMTM over Cu-ZSM-5-n 

samples (n = 0.1, 0.3, 0.5, 0.8 and 1.2%) for 5 hours; reaction condition: N2O: CH4: H2O: 

He= 30: 15: 20: 35; GHSV=12,000h-1; T = 300 oC.
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Fig. S5 Pulse test after bubbling the CH3OH (~2 vol%, He of 40 mL min-1) over CuO/SiO2 

at T = 300 oC and with the m/e signal of 44 (CO2) being detected by mass spectrometer 

(MS).
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Fig. S6 UV-vis spectra of Cu-ZSM5-0.3% pretreated by N2O at T of 250 oC; no peaks 

being related to [Cu-O-Cu]2+ species can be observed around 440 nm.
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Fig. S7 NH3-TPD results of pristine H-ZSM-5 and Cu-ZSM-5-0.3%

Note: Fig. S7 displays the NH3-TPD of H-ZSM-5 and Cu-ZSM-5-0.3%. As can be 

seen, after the SSIE of Cu with H-ZSM-5, the acidity was slightly decreased from 

0.82 to 0.68 mmol g-1 due to Cu loadings.
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Fig. S8 Thermogravimetry (TG) and differential thermogravimetric analysis (DTG) 

curves of the Cu-BEA-0.3% samples being after long-term test in (a) presence and (b) 

absence of 20vol% H2O.

Note: Figs. S8a-S8b display the TG results for the sample of Cu-ZSM-5 being after 

50h’s long-term reaction, in presence and absence of 20% H2O. Much more extensive 

weight decreasing can be obviously found for the scenario of N2O-DMTM in absence 

of H2O, based on which the coke deposition amounts were estimated to be as high as 

9.32 wt.%, with respect to 1.25 wt.% for the scenario of N2O-DMTM in presence of 

20 vol% H2O.
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Fig. S9 Theoretical mechanism simulations of H2O-mediated and H2O-absence N2O-

DMTM by DFT over Cu-ZSM-5 with [Cu3O2]2+ active site.
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Samples

Table S1 Product selectivity during N2O-DMTM over Cu-ZSM-5-n samples at T of 300 oC.

T t Selectivity (%)

(℃) (h) CO2 C2H4 C2H6 C3H6 CH3OH C2H6O Coke

Cu-ZSM5-0.3% 300 5 9.8 4.7 0.4 1.0 4.1 0.6 79.3

Cu-ZSM5-0.3%+10%H2O 300 5 20.3 0.4 0 0 52.3 2.7 24.3

Cu-ZSM5-0.3%+30%H2O 300 5 7.1 0.1 0 0 60.0 1.5 31.3

Cu-ZSM5-0.1%+20%H2O 300 5 15.3 9.8 0.6 1.9 9.9 0.2 62.3

Cu-ZSM5-0.3%+20%H2O 300 5 10.7 0.1 0 0 67.1 2.6 19.8

Cu-ZSM5-0.5%+20%H2O 300 5 53.2 0 0 0 31.2 1.2 14.4

Cu-ZSM5-0.8%+20%H2O 300 5 64.1 0 0 0 23.1 0.7 12.1

Cu-ZSM5-1.2%+20%H2O 300 5 72.6 0 0 0 18.4 0.6 8.4

Cu-ZSM5-0.3% 300 50 31.9 3.5 0.3 0.7 16.4 2.4 44.8

Cu-ZSM5-0.3%+20%H2O 300 50 23.0 0.6 0 0 66.3 4.2 5.9
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Table S2 Comparisons of CH3OH productivity and selectivity for Cu-ZSM-0.3% and 
the other samples from reference

No. Sample method
CH3OH

productivity 
(μmolg-

1cath-1)

CH3OH
selectivity

(%)

CO2

selectivity
(%)

Refs.

1 Fe-ZSM-5-2.3%
incipient 
wetness 

impregnation
- 3.1 33 [1]

2 Fe-ZSM-5-1%F freeze-drying 101.6 10.9 76.4 (COx) [2]

3 Fe-ZSM-5-1%-E
incipient 
wetness 

impregnation
84.8 9.1 85.8 (COx) [2]

4 Fe-ZSM-5-2.5% chemical vapor
impregnation 61.5 16 - [3]

5 Fe-ZSM-5-2.0%
incipient 
wetness

impregnation
72.3 62 49.5 (COx) [4]

6 Cu-ZSM-5-4% ion exchange 62 - - [5]
7 Cu-H-ZSM-5 ion exchange 1.81 - - [6]

8 Fe-ZSM-5-1.5% chemical vapor 
impregnation - 15.1 13.6 [7]

9 Cu-ZSM-5-1.5% chemical vapor 
impregnation - 89.1 9.9 [7]

10 Cu-ZSM-5-0.1% solid-state ion 
exchange 81.7 9.9 15.3

11 Cu-ZSM-5-0.3% solid-state ion 
exchange 194.8 67.1 10.7

12 Cu-ZSM-5-0.5% solid-state ion 
exchange 131.5 31.2 53.2 This 

work

13 Cu-ZSM-5-0.8% solid-state ion 
exchange 110.0 23.1 64.1

14 Cu-ZSM-5-1.2% solid-state ion
exchange 108.0 18.4 72.6
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Table S3 Elementary steps and kinetic parameters involved in microkinetic modeling over monomeric [Cu]+ site during N2O-DMTM in both 
presence and absence of H2O.

Step Elementary Step Reaction rate equations vfor

(s-1)
vrev

(s-1)
ΔE 

(eV)
ΔE-1 

(eV)

R1 Z-Cu  N2O(g)  Z-Cu-N2O 2 21 1 1N O v N Or k P k   0.02 4.50×1018 - 0.70

R2 Z-Cu-N2O  Z-Cu-O N2 (g) 2.53×10 12 - 1.41 -

R3 Z-Cu-O+CH4  Z-Cu-OH-CH3 4.61×10 12 4.18×10 14 0.09 4.54

R4 Z-Cu-OH-CH3  Z-Cu-CH3OH 3.59×10 13 8.73×10 13 0.34 1.38

R5 Z-Cu-CH3OH Z-Cu+CH3OH(g) 4.70×10 19 - 1.45 -

R5’ Z-Cu-CH OH H2OZ-Cu+CH OH(g)
3 3

4.70×10 19 - 0.55 -
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Table S4 Elementary steps and kinetic parameters involved in microkinetic modeling over dicopper [Cu]+--[Cu]+ site during N2O-DMTM in 
both presence and absence of H2O.

Step Elementary Steps Reaction rate equations vfor (s-1) vrev (s-1) ΔE 
(eV)

ΔE-1 

(eV)

R1 Z-Cu2  N2O(g)  Z-Cu2 -N2O r1  k1PN Ov  k-1N O  
2 2

0.02 1.17×10 21 - 1.23

R2 Z-Cu2 -N2O  Z-Cu2 -O+N2 g r2  k2N O  2
1.69×10 13 - 0.92 -

R3 Z-Cu2 -O+CH4 g  Z-Cu2 -CH3-OH r3  k3OPCH  k-3CH OH
4 3

2.25×10 11 1.07×10 13 0.71 0.73

R4 Z-Cu2 -CH3 -OH  Z-Cu2 -CH3OH r4  k4CH -OH  k-4CH OH
3 3

7.70×10 12 4.72×10 13 0.08 1.06

R5 Z-Cu2 -CH3OH Z-Cu2 +CH3OH(g) r5  k5CH OH
3

9.77×10 21 - 2.02 -

R5’ Z-Cu  -CH OH 2H2OZ-Cu  +CH OH(g)
2 3 2 3

r5  k5CH OH
3

9.77×10 21 - 0.01 -


