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Theoretical method of ab initio thermodynamics (AIT) analysis
The DFT-based ab initio thermodynamics (AIT) were conducted to evaluate the
thermostabilities of diverse active site structures under the reaction condition of
present work, including [Cu]*, [Cu-O]*, [Cu]"--[Cu]*, [Cu-O-Cu]*" and [Cu-OH]",

according to the Eq. S1.
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The Gibbs free energy difference [AG(T,P)] can be calculated according to the Eq. S2:
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As noted, the bulk CuO as well as H-ZSM-5 (noted as H;-Z) was calculated by DFT to derive

the Ec,0 and Ey;z. As for other reference molecules of N,, N,O and H,O, the related chemical

potentials of 4y , 4y o and u; , was employed in Eq.S2, which can be calculated according

to the Egs. S3-S8.
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The reaction energies of AE can be defined as
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Above all, the AG(T,P) can be calculated by Eq. S10:

2m-n-2x-2y+i

AG(T, p)=AE — [Apy, (T, P) = Aty o (T, P)] _nT_iAIUHZO(T ,P) (810)
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Fig. S1 Comparisons of DFT calculated energies for the Cu-ZSM-5 models with dicopper
active sties being loaded at different T sites. The T2-T11 site was chose as the dicopper

site model, which displays the lowest energy.
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Cu, Al, Si

Fig. S2 TEM-EDX mapping results of elements Cu, Al and Si over Cu-ZSM5-0.3%; the

well dispersion of Cu can be observed.
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Fig. S3 Co-FTIR with the Cu-ZSM-5-0.3% being predated at 7 of 100 °C under vacuum

condition for 30 min; and then the CO was introduced into the system with the signal

being monitored at 7" of 50 °C.
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Fig. S4 Activity measurement results of H,O mediated N,O-DMTM over Cu-ZSM-5-n
samples (n = 0.1, 0.3, 0.5, 0.8 and 1.2%) for 5 hours; reaction condition: N2O: CH4: H>O:
He=30: 15: 20: 35; GHSV=12,000h!; 7= 300 °C.
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Fig. S5 Pulse test after bubbling the CH30H (~2 vol%, He of 40 mL min') over CuO/SiO>

at T = 300 °C and with the m/e signal of 44 (COz) being detected by mass spectrometer
(MS).
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Fig. S6 UV-vis spectra of Cu-ZSMS5-0.3% pretreated by N>O at 7 of 250 °C; no peaks

being related to [Cu-O-Cu]?" species can be observed around 440 nm.
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Fig. S7 NH;-TPD results of pristine H-ZSM-5 and Cu-ZSM-5-0.3%

Note: Fig. S7 displays the NH;-TPD of H-ZSM-5 and Cu-ZSM-5-0.3%. As can be

seen, after the SSIE of Cu with H-ZSM-5, the acidity was slightly decreased from
0.82 to 0.68 mmol g due to Cu loadings.
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Fig. S8 Thermogravimetry (TG) and differential thermogravimetric analysis (DTQ)

curves of the Cu-BEA-0.3% samples being after long-term test in (a) presence and (b)

absence of 20vol% H,O.

Note: Figs. S8a-S8b display the TG results for the sample of Cu-ZSM-5 being after

50h’s long-term reaction, in presence and absence of 20% H,0. Much more extensive

weight decreasing can be obviously found for the scenario of N,O-DMTM in absence

of H,O, based on which the coke deposition amounts were estimated to be as high as

0.4

DTG (ug-min™?)

--1.0

--1.2

9.32 wt.%, with respect to 1.25 wt.% for the scenario of N;O-DMTM in presence of

20 vol% H,0.
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Fig. S9 Theoretical mechanism simulations of HO-mediated and H,O-absence N,O-

DMTM by DFT over Cu-ZSM-5 with [Cuz0,]*" active site.
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Table S1 Product selectivity during N;O-DMTM over Cu-ZSM-5-n samples at T of 300 °C.

T t Selectivity (%)
Samples

cO) (h) CO, C2Hy C2Hs CsHs CH3;0H C2HeO  Coke
Cu-ZSM5-0.3% 300 5 9.8 4.7 0.4 1.0 4.1 0.6 79.3
Cu-ZSM5-0.3%+10%H>0 300 5 20.3 0.4 0 0 52.3 2.7 243
Cu-ZSM5-0.3%+30%H>0 300 5 7.1 0.1 0 0 60.0 1.5 31.3
Cu-ZSM5-0.1%+20%H>0 300 5 15.3 9.8 0.6 1.9 9.9 0.2 62.3
Cu-ZSM5-0.3%+20%H>0 300 5 10.7 0.1 0 0 67.1 2.6 19.8
Cu-ZSM5-0.5%+20%H>0 300 5 53.2 0 0 0 31.2 1.2 14.4
Cu-ZSM5-0.8%+20%H>0 300 5 64.1 0 0 0 23.1 0.7 12.1
Cu-ZSM5-1.2%+20%H>0 300 5 72.6 0 0 0 18.4 0.6 8.4
Cu-ZSM5-0.3% 300 50 31.9 3.5 0.3 0.7 16.4 2.4 448
Cu-ZSM5-0.3%+20%H20 300 50 23.0 0.6 0 0 66.3 4.2 5.9
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Table S2 Comparisons of CH30H productivity and selectivity for Cu-ZSM-0.3% and
the other samples from reference

CH3;0H CH3;0H CO»
No. Sample method productivity selectivity ~ selectivity — Refs.
(pmoll /g (%) (%)
Lt Jh™D
incipient
1 Fe-ZSM-5-2.3% wetness - 3.1 33 [1]
impregnation
2 Fe-ZSM-5-1%F freeze-drying 101.6 10.9 76.4 (COx) [2]
incipient
3 Fe-ZSM-5-1%-E wetness 84.8 9.1 85.8 (COx) [2]
impregnation
hemical
4  FeZSM-52.5%  C CHcaVapor 61.5 16 i 3]
impregnation
incipient
5 Fe-ZSM-5-2.0% wetness 72.3 62 49.5 (COx)  [4]
impregnation
6 Cu-ZSM-5-4% ion exchange 62 - - [5]
7 Cu-H-ZSM-5 ion exchange 1.81 - - [6]
hemical
8  Fe-ZSM-5-1.5%  C cnicaivapor - 15.1 13.6 7]
impregnation
9 Cu-ZSM-5-15y ~ Chemical vapor - 89.1 9.9 7]
1mpregnation
10 Cu-zSM-s-0.1%  Sclidstateion 81.7 9.9 153
exchange
solid-state ion
11 Cu-ZSM-5-0.3% 194.8 67.1 10.7
exchange
12 CuzSM-5.0.50  Sclidstaeion 131.5 31.2 532 s
exchange work
13 Cu-zSM-s-0.8%  Soldstateion 110.0 23.1 64.1
exchange
14 Cu-zSMs-129  Solidstateion 108.0 18.4 72.6

exchange
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Table S3 Elementary steps and kinetic parameters involved in microkinetic modeling over monomeric [Cu]* site during NoO-DMTM in both
presence and absence of H>O.

Step Elementary Step Reaction rate equations (‘;f(ir) (‘;relv) (ﬁ\lj) (Aefi/;
RI Z-Cu 11 N,0(g) T Z-Cu-N,0 h=kPy o0, —k,0y 0.02 4.50x10'% - 0.70
R2 Z-Cu-N,O [J Z-Cu-OLl N, (g) 2.53x10 12 - 1.41 -
R3 Z-Cu-O+CH, [] Z-Cu-OH-CH, 4.61x10 12 4.18x10 14 0.09 4.54
R4 7Z-Cu-OH-CH, [] Z-Cu-CH,0OH 3.59x10 13 8.73x10 13 0.34 1.38
R5 Z-Cu-CH,0OH [1Z-Cu+CH,OH(g) 4.70x10 1 - 1.45 -
RS’ Z-Cu-CH OH [*?1Z-Cu+CH OH(g) 4.70x10 1 - 0.55 -
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Table S4 Elementary steps and kinetic parameters involved in microkinetic modeling over dicopper [Cu]*--[Cu]* site during NoO-DMTM in
both presence and absence of H>O.

Step Elementary Steps Reaction rate equations Veor (s71) Vrev (s71) AE AL
(eV) (eV)
R1 Z-Cu,[1 N,O(g) [1Z-Cu,-N,O r, ] k]P§VODv O k_IZDNO 0.02 1.17x10 %! - 1.23
R2 Z-Cu, -N,O [1 Z-Cu, -O+N, [ Jg[ ] 20k lyo 1.69x10 13 - 0.92 -
R3 Z-Cu, -O+CH,4 [gl ] [J Z-Cu, -CH5-OH ry ] /€3DOP§H O k_3D3CH DOH 2.25x10 1 1.07x10 13 0.71 0.73
R4 Z-Cu,-CH,-OH (] Z-Cu,-CH,OH 7y K enon ) KyHenon 7.70%10 12 472x103  0.08 1.06
RS Z-Cu,-CH,OH [1Z-Cu,+CH,OH(g) rs L ksHenon 9.77x10 2! - 2.02 -
RS’ rs ] kSDCSH oH 9.77x10 2! - 0.01 -

Z-Cu -CH OH (%] Z-Cu +CH OH(g)
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