Supplementary Information

Mechanistic Insight into Effect of Active Site Motif

Structure on Direct Oxidation of Methane to Methanol over

Cu-ZSM-5

Chengna Dai, Yuchan Zhang, Ning Liu,* Gangqiang Yu, Ning Wang, Ruinian Xu, Biaohua Chen

Faculty of Environment and Life, Beijing University of Technology, Beijing,

100124, China *Correspondence to: liuning@bjut.edu.cn

Table of Content

Theoretical method of ab initio thermodynamics (AIT) analysis S1 **Fig. S1** Comparisons of DFT calculated energies for the Cu-ZSM-5 models with dicopper active sties S3 **Fig. S2** TEM-EDX mapping results of elements Cu, Al and Si over Cu-ZSM5-0.3% S4 **Fig. S3** Co-FTIR with the Cu-ZSM-5-0.3% being predated under vacuum condition for 30 min and then the CO was introduced into the system with the signal being monitored at *T* of 50 °C S5 **Fig.** S4 Activity measurement results of H_2O mediated N_2O -DMTM over Cu-ZSM-5n samples ($n = 0.1, 0.3, 0.5, 0.8$ and 1.2%) for 5 hours. S6 **Fig.** S5 Pulse test after bubbling the CH₃OH (\sim 2 vol%, He of 40 mL min-1) over CuO/SiO₂ at T = 300 °C and with the m/e signal of 44 (CO₂) being detected by mass spectrometer (MS). S7 **Fig.** S6 UV-vis spectra of Cu-ZSM5-0.3% pretreated by N₂O at T of 250 °C; no peaks being related to $\lceil Cu-O-Cu \rceil^{2+}$ species can be observed around 440 nm. **Fig.** S7 NH₃-TPD results of pristine H-ZSM-5 and Cu-ZSM-5-0.3% S9 **Fig. S8** Thermogravimetry (TG) and differential thermogravimetric analysis (DTG) curves of the Cu-BEA-0.3% samples being after long-term test in (a) presence and (b)

over dicopper $[Cu]^{+}$ -- $[Cu]^{+}$ site during N₂O-DMTM in both presence and absence of $H_2O.$ S16

Theoretical method of ab initio thermodynamics (AIT) analysis

The DFT-based ab initio thermodynamics (AIT) were conducted to evaluate the thermostabilities of diverse active site structures under the reaction condition of present work, including $[Cu]^+$, $[Cu-O]^+$, $[Cu]^+$ - $[Cu]^+$, $[Cu-O-Cu]^2$ ⁺ and $[Cu-OH]^+$, according to the Eq. S1.

$$
\frac{2m-n-2x-2y+i}{2}N_2O + \frac{n-i}{2}H_2O + yCuO + xFeO + H_i - Z
$$

\n
$$
f \quad Fe_xCu_yO_mH_n - Z + \frac{2m-n-2x-2y+i}{2}N_2
$$
\n(S1)

The Gibbs free energy difference [∆*G*(T,P)] can be calculated according to the Eq. S2:

$$
\Delta G(T, p) = G_{\text{Cu}_y\text{O}_m\text{H}_n \cdot Z} + \frac{2\text{m} \cdot \text{n} - 2\text{x} - 2\text{y} + \text{i}}{2} \mu_{\text{N}_2}^g - E_{\text{H}_1 \cdot Z} - \text{y}E_{\text{CuO}} - \frac{\text{n} - \text{j}}{2} \mu_{\text{H}_2\text{O}}^g - \frac{2\text{m} - \text{n} - 2\text{x} - 2\text{y} + \text{i}}{2} \mu_{\text{N}_2\text{O}}^g
$$
(S2)

As noted, the bulk CuO as well as H-ZSM-5 (noted as H_i-Z) was calculated by DFT to derive the E_{CuO} and $E_{\text{Hi-Z}}$. As for other reference molecules of N₂, N₂O and H₂O, the related chemical potentials of $\mu_{N_2}^g$, $\mu_{N_2O}^g$ and $\mu_{H_2O}^g$ was employed in Eq.S2, which can be calculated according to the Eqs. S3-S8.

$$
\mu_{N_2}^g(T, p) = E_{N_2} + \Delta \mu_{N_2}(T, p) \tag{S3}
$$

$$
\mu_{N_2O}^g(T, p) = E_{N_2O} + \Delta \mu_{N_2O}(T, p) \tag{S4}
$$

$$
\mu_{H_{2}O}^{g}(T, p) = E_{H_{2}O} + \Delta \mu_{H_{2}O}(T, p)
$$
\n
$$
\Delta \mu_{N_{2}}(T, p) = \Delta \mu_{N_{2}}(T, p^{0}) + RT \ln(\frac{p_{N_{2}}}{p_{N_{2}}^{0}})
$$
\n
$$
= H(T, p^{0}, N_{2}) - H(0K, p^{0}, N_{2}) - T[S(T, p^{0}, N_{2}) - S(0K, p^{0}, N_{2})] + RT \ln(\frac{p_{N_{2}}}{p_{N_{2}}^{0}})
$$
\n(S6)

$$
\Delta \mu_{N_2}(T, p) = \Delta \mu_{N_2}(T, p^0) + RT \ln(\frac{P_{N_2}}{p_{N_2}})
$$
\n
$$
= H(T, p^0, N_2) - H(0K, p^0, N_2) - T[S(T, p^0, N_2) - S(0K, p^0, N_2)] + RT \ln(\frac{p_{N_2}}{p_{N_2}})
$$
\n
$$
(S6)
$$

$$
\Delta \mu_{N_2O}(T, p) = \Delta \mu_{N_2O}(T, p^0) + RT \ln(\frac{p_{N_2O}}{p_{N_2O}})
$$
\n
$$
= H(T, p^0, N_2O) - H(0K, p^0, N_2O) - T[S(T, p^0, N_2O) - S(0K, p^0, N_2O)] + RT \ln(\frac{p_{N_2O}}{p_{N_2O}})
$$
\n(S7)

$$
=H(T, p^{0}, N_{2}O)-H(0K, p^{0}, N_{2}O)-T[S(T, p^{0}, N_{2}O)-S(0K, p^{0}, N_{2}O)]+RT\ln(\frac{p_{N_{2}O}}{p_{N_{2}O}^{0}})
$$

\n
$$
\Delta\mu_{H,O}(T, p) = \Delta\mu_{H,O}(T, p^{0})+RT\ln(\frac{p_{H_{2}O}}{p_{N_{2}O}^{0}})
$$
\n(S8)

$$
\Delta \mu_{H_2O}(T, p) = \Delta \mu_{H_2O}(T, p^0) + RT \ln(\frac{p_{H_2O}}{p_{H_2O}})
$$
\n
$$
= H(T, p^0, H_2O) - H(0K, p^0, H_2O) - T[S(T, p^0, H_2O) - S(0K, p^0, H_2O)] + RT \ln(\frac{p_{H_2O}}{p_{H_2O}})
$$
\n(S8)

$$
=H(T, p^{0}, H_{2}O)-H(0K, p^{0}, H_{2}O)-T[S(T, p^{0}, H_{2}O)-S(0K, p^{0}, H_{2}O)]+RT\ln(\frac{FH_{2}O}{p^{0}})
$$

The reaction energies of ∆*E* can be defined as

$$
\Delta E = E_{\text{Cu}_{y}\text{O}_{m}\text{H}_{n}-z} + \frac{2\text{m}-\text{n}-2\text{y}+\text{i}}{2}E_{\text{N}_{2}} - E_{\text{H}_{1}-z} - \text{y}E_{\text{CuO}} - \frac{\text{n}-\text{i}}{2}E_{\text{H}_{2}\text{O}} - \frac{2\text{m}-\text{n}-2\text{x}-2\text{k}+\text{i}}{2}E_{\text{N}_{2}\text{O}}
$$
\n
$$
\text{(S9)}\tag{S9}
$$

Above all, the ∆*G*(T,P) can be calculated by Eq. S10:

$$
\Delta G(T, p) = \Delta E - \frac{2m - n - 2x - 2y + i}{2} [\Delta \mu_{N_2}(T, P) - \Delta \mu_{H_2O}(T, P)] - \frac{n - i}{2} \Delta \mu_{H_2O}(T, P) \tag{S10}
$$

Fig. S1 Comparisons of DFT calculated energies for the Cu-ZSM-5 models with dicopper active sties being loaded at different T sites. The T2-T11 site was chose as the dicopper site model, which displays the lowest energy.

Fig. S2 TEM-EDX mapping results of elements Cu, Al and Si over Cu-ZSM5-0.3%; the well dispersion of Cu can be observed.

Fig. S3 Co-FTIR with the Cu-ZSM-5-0.3% being predated at *T* of 100 °C under vacuum condition for 30 min; and then the CO was introduced into the system with the signal being monitored at *T* of 50 °C.

Fig. S4 Activity measurement results of H_2O mediated N_2O -DMTM over Cu-ZSM-5-n samples (n = 0.1, 0.3, 0.5, 0.8 and 1.2%) for 5 hours; reaction condition: N₂O: CH₄: H₂O: He= 30: 15: 20: 35; GHSV=12,000h⁻¹; *T* = 300 °C.

Fig. S5 Pulse test after bubbling the CH₃OH (\sim 2 vol%, He of 40 mL min⁻¹) over CuO/SiO₂ at $T = 300$ °C and with the m/e signal of 44 (CO₂) being detected by mass spectrometer (MS).

Fig. S6 UV-vis spectra of Cu-ZSM5-0.3% pretreated by N₂O at *T* of 250 °C; no peaks

Fig. S7 NH3-TPD results of pristine H-ZSM-5 and Cu-ZSM-5-0.3%

Note: Fig. S7 displays the NH3-TPD of H-ZSM-5 and Cu-ZSM-5-0.3%. As can be seen, after the SSIE of Cu with H-ZSM-5, the acidity was slightly decreased from 0.82 to 0.68 mmol g⁻¹ due to Cu loadings.

Fig. S8 Thermogravimetry (TG) and differential thermogravimetric analysis (DTG) curves of the Cu-BEA-0.3% samples being after long-term test in (a) presence and (b) absence of 20vol% H₂O.

Note: Figs. S8a-S8b display the TG results for the sample of Cu-ZSM-5 being after 50h's long-term reaction, in presence and absence of 20% H₂O. Much more extensive weight decreasing can be obviously found for the scenario of $N_2O-DMTM$ in absence of H2O, based on which the coke deposition amounts were estimated to be as high as 9.32 wt.%, with respect to 1.25 wt.% for the scenario of $N_2O-DMTM$ in presence of 20 vol% H_2O .

Fig. S9 Theoretical mechanism simulations of H_2O -mediated and H_2O -absence N₂O-DMTM by DFT over Cu-ZSM-5 with $\text{[Cu}_3\text{O}_2\text{]}^{2+}$ active site.

	\overline{T}		Selectivity $(\%)$						
Samples	$(^{\circ}C)$	(h)	CO ₂	C_2H_4	C_2H_6	C_3H_6	CH ₃ OH	C_2H_6O	Coke
Cu-ZSM5-0.3%	300	5	9.8	4.7	0.4	1.0	4.1	0.6	79.3
Cu-ZSM5-0.3%+10% H_2O	300	5	20.3	0.4	$\overline{0}$	$\boldsymbol{0}$	52.3	2.7	24.3
Cu-ZSM5-0.3%+30% H_2O	300	5	7.1	0.1	$\mathbf{0}$	$\mathbf{0}$	60.0	1.5	31.3
Cu-ZSM5-0.1%+20% H_2O	300	5	15.3	9.8	0.6	1.9	9.9	0.2	62.3
Cu-ZSM5-0.3%+20% H_2O	300	5	10.7	0.1	$\mathbf{0}$	$\mathbf{0}$	67.1	2.6	19.8
Cu-ZSM5-0.5%+20% H_2O	300	5	53.2	$\boldsymbol{0}$	$\mathbf{0}$	$\mathbf{0}$	31.2	1.2	14.4
Cu-ZSM5-0.8%+20% H_2O	300	5	64.1	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{0}$	23.1	0.7	12.1
Cu-ZSM5-1.2%+20% H_2O	300	5	72.6	$\boldsymbol{0}$	$\overline{0}$	$\mathbf{0}$	18.4	0.6	8.4
$Cu-ZSM5-0.3%$	300	50	31.9	3.5	0.3	0.7	16.4	2.4	44.8
$Cu-ZSM5-0.3\%+20\%H_2O$	300	50	23.0	0.6	$\mathbf{0}$	$\boldsymbol{0}$	66.3	4.2	5.9

Table S1 Product selectivity during N₂O-DMTM over Cu-ZSM-5-n samples at T of 300 °C.

Table S2 Comparisons of CH3OH productivity and selectivity for Cu-ZSM-0.3% and the other samples from reference

Reference

- [1] G. Zhao, E. Benhelal, A. Adesina, E. Kennedy, M. Stockenhuber, Comparison of Direct, Selective Oxidation of Methane by N_2O over Fe-ZSM-5, Fe-Beta, and Fe-FER Catalysts, J. Phys. Chem. C, 123 (2019) 27436-27447.
- [2] L. Fan, D.-g. Cheng, L. Song, F. Chen, X. Zhan, Direct Conversion of CH4 to Oxyorganics by N2O Using Freeze-drying FeZSM-5, Chem. Eng. J., 369 (2019) 522-528.
- [3] Y.K. Chow, N.F. Dummer, J.H. Carter, R.J. Meyer, R.D. Armstrong, C. Williams, G. Shaw, S. Yacob, M.M. Bhasin, D.J. Willock, S.H. Taylor, G.J. Hutchings, A Kinetic Study of Methane Partial Oxidation over Fe-ZSM-5 Using N2O as an Oxidant, Chem. Phys. Chem, 19 (2018) 402-411.
- [4] M.V. Parfenov, E.V. Starokon, L.V. Pirutko, G.I. Panov, Quasicatalytic and Catalytic Oxidation of Methane to Methanol by Nitrous Oxide over FeZSM-5 Zeolite, J. Catal., 318 (2014) 14-21.
- [5] V.L. Sushkevich, J.A. van Bokhoven, Methane-to-Methanol: Activity Descriptors in Copper-Exchanged Zeolites for the Rational Design of Materials, ACS Catal., 9 (2019) 6293-6304.
- [6] K. Narsimhan, K. Iyoki, K. Dinh, Y. Roman-Leshkov, Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature, ACS Cent. Sci., 2 (2016) 424-429.
- [7] J. Xu, R.D. Armstrong, G. Shaw, N.F. Dummer, S.J. Freakley, S.H. Taylor, G.J. Hutchings, Continuous Selective Oxidation of Methane to Methanol over Cu- and Fe-Modified ZSM-5 Catalysts in a Flow Reactor, Catal. Today, 270 (2016) 93-100.

Step	Elementary Step	Reaction rate equations	v_{for} (s^{-1})	v_{rev} (s^{-1})	ΔE (eV)	ΔE^{-1} (eV)
R ₁	Z -Cu \Box N ₂ O(g) \Box Z-Cu-N ₂ O	$r_1 = k_1 P_{N,Q} \theta_v - k_{-1} \theta_{N}$	0.02	4.50×10^{18}	\sim	0.70
R ₂	Z-Cu-N ₂ O \Box Z-Cu-O \Box N ₂ (g)		2.53×10^{12}		1.41	$\overline{}$
R ₃	Z -Cu-O+CH ₄ \Box Z-Cu-OH-CH ₃		4.61×10^{12}	4.18×10^{14}	0.09	4.54
R4	Z -Cu-OH-CH ₃ \Box Z-Cu-CH ₃ OH		3.59×10^{13}	8.73×10^{13}	0.34	1.38
R ₅	Z -Cu-CH ₃ OH \Box Z-Cu+CH ₃ OH(g)		4.70×10^{19}	$\overline{}$	1.45	$\overline{}$
R5'	Z-Cu-CH OH $\Box^{\underline{H}}\Box$ Z-Cu+CH OH(g)		4.70×10^{19}	Ξ.	0.55	$\overline{}$

Table S3 Elementary steps and kinetic parameters involved in microkinetic modeling over monomeric [Cu]⁺ site during N₂O-DMTM in both presence and absence of H₂O.

Step	Elementary Steps	Reaction rate equations	$v_{\text{for}}(s^{-1})$	$v_{\text{rev}}(s^{-1})$	ΔE (eV)	ΔE^{-1} (eV)
R ₁	$Z-Cu_2 \Box N_2O(g) \Box Z-Cu_2-N_2O$	$r_{I} \square k_{I} P_{N} O \square_{v} \square k_{I} \square_{N} O$	0.02	1.17×10^{-21}	$\overline{}$	1.23
R ₂	Z-Cu ₂ -N ₂ O \Box Z-Cu ₂ -O+N ₂ \Box g \Box	$r_2 \Box k_2 \Box_{\rm NO}$	1.69×10^{13}		0.92	\blacksquare
R ₃	Z-Cu ₂ -O+CH ₄ \Box g \Box \Box Z-Cu ₂ -CH ₃ -OH	$r_{3} \Box k_{3} \Box_{\text{O}} \text{P}_{\text{CH}} \Box k_{\text{-}3} \Box_{\text{CH}\ \Box\text{OH}}$	2.25×10^{-11}	1.07×10^{13}	0.71	0.73
R ₄	Z -Cu ₂ -CH ₃ -OH \Box Z-Cu ₂ -CH ₃ OH	$r_4 \Box k_4 \Box_{\text{CH-OH}} \Box k_{\text{-}4} \Box_{\text{CH OH}}$	7.70×10^{-12}	4.72×10^{13}	0.08	1.06
R ₅	Z -Cu ₂ -CH ₃ OH \Box Z-Cu ₂ +CH ₃ OH(g)	$r_5 \Box k_5 \Box_{\text{CH OH}}$	9.77×10^{21}		2.02	\blacksquare
R5'	$Z-Cu$ ₋ CH ₂ OH H^4 $Z-Cu$ + CH OH(g)	$r_5 \Box k_5 \Box_{\text{CH OH}}$	9.77×10^{21}		0.01	$\overline{}$

Table S4 Elementary steps and kinetic parameters involved in microkinetic modeling over dicopper [Cu]+--[Cu]+ site during N2O-DMTM in both presence and absence of H_2O .