Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Information

Fabrication of Porous and Visible Light Active ZnO Nanorods and ZnO@TiO₂ Core-Shell Photocatalysts for Self-Cleaning Applications

Ajay Kumar^a, Dipali Nayak^b, Pooja Sahoo^b, Barun Kumar Nandi^a, V.K. Saxena^a, R.Thangavel ^{b*} ^aDepartment of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India

^bDepartment of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad,

826004, Jharkhand, India

*rthangavel@iitism.ac.in

Fig. S1 Schematic representation of ZnO NRs and ZnO@TiO2 core-shell.

Fig. S2 HAADF-STEM and EDX elemental mapping images of O, Ti and Zn of the ZnO@TiO₂: 2 cycle core-shell

Fig. S3 2D, 3D and section profile AFM image of (a-c) ZnO NRs, (d-f) ZnO@TiO₂: 1 cycle, (g-i) ZnO@TiO₂: 2 cycle and (j-l) ZnO@TiO₂: 3 cycle.

Fig. S4 Comparative peak shift of Zn (a) $2p_{1/2}$ and (b) $2p_{3/2}$ states of ZnO NRs and ZnO@TiO₂:2 cycle CS.

Fig. S5 a', b', c' d' is the respective kinetic study of a, b, c and d under UV light irradiation and e', f', g' h' is the respective kinetic study of e, f, g and h under sunlight irradiation.

Fig. S6 Nyquist plot of the pristine ZnO NRs and ZnO@TiO₂: 2 cycle sample.