Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary information

Influence of Cu induced crystallographic disorder on the optical and lattice vibrational properties of ZnO nanoparticles

Md. Abdullah Zubair^{1*}, Tasnim Kamal Mouri², Mohammed Tareque Chowdhury³

¹Department of Nanomaterials and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka – 1000, Bangladesh

²Institute of Energy Conversion and Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA

³Institute of Energy Science, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission (BAEC), Dhaka – 1000, Bangladesh

*Corresponding Author Email: <u>mazubair2017@gmail.com</u> (M. A. Zubair)

Supplementary note 1:

Table S1. Observed vibrational frequencies of different modes in 400°C annealed nanoparticles [1-5]

Vibrational frequency (cm ⁻	Vibrational mode
1)	
$\sim \! 3400 - 3500$	O – H stretching
~2925	-CH ₂ - stretching
~2850	-CH ₃ - stretching
~2340	CO ₂ molecule
$\sim \! 1650 - 1550$	H–O–H bending
	C – O symmetric & asymmetric bending
	Amino (–NH ₂) group
~1390	COO ⁻ symmetric stretching from metal (Zn) complex
1465, 1422 – 1350	-CH ₂ - bending
1470 - 1430	CH ₃ - asymmetric
$\sim 1000 - 1100$	Zn – OH stretching and deformation
	– CO stretching
	Other organic groups with Zn-hydroxy-acetate
~680	Cu - Zn - O stretching
$\sim \!\! 400 - 500$	Zn – O stretching

Fig. S1. A comparison between the typical FTIR spectra of 5% Cu incorporated ZnO before and after annealing, exhibiting strong suppression of associate with various complex forming organic group and hydroxyl group after annealing the dry precursor at 400°C, leading to formation and enrichment of oxide phase. Similar type of noticeable suppression in absorption spectra has been observed for other samples. (Here, CO_b corresponds to symmetric and asymmetric vibration of CO)

Supplementary note 2:

	EDX elemental composition in mass% with standard deviation				
	Cu Zn O C				
ZnO	-	73.5 ± 2.9	14.8 ± 1.9	10.3 ± 3.7	
3% Cu_ZnO	1.8 ± 0.6	70.9 ± 2.6	17.7 ± 1.4	9.2 ± 2.5	
5% Cu_ZnO	2.9 ± 0.8	71.3 ± 2.3	19.9 ± 1.8	5.9 ± 2.9	
10% Cu_ZnO	6.5 ± 0.5	70.1 ± 2.9	21.2 ± 1.7	4.8 ± 2.7	

Table. S2. EDX standard-less semi-quantitative elemental composition data

Supplementary note 3:

Atom	www.alr	S O E*		••	-	$D/104 mm^{2}$
Atom	wycĸ	5.0.F	X	У	Z	B/10 pills
			ZnO			
0	2b	0.980000	0.333333	0.666667	0.3812(3)	0.7(1)
Zn	2b	1.000000	0.333333	0.666667	0.000000	0.29(2)
			3%Cu_ZnC)		
0	2b	0.980000	0.333333	0.666667	0(1)	0.8(3)
Zn	2b	0.970000	0.333333	0.666667	0.000000	0.6(2)
Cu	2b	0.030000	0.333333	0.666667	0.000000	0.6(3)
			5%Cu_ZnC)		
0	2b	0.995000	0.333333	0.666667	0(2)	0.6(5)
Zn	2b	0.950000	0.333333	0.666667	0.000000	0.7(4)
Cu	2b	0.050000	0.333333	0.666667	0.000000	0.5(4)
10%Cu_ZnO						
0	2b	1.000000	0.333333	0.666667	0.4(2)	0.7(2)
Zn	2b	0.900000	0.333333	0.666667	0.000000	0.3(3)
Cu	2b	0.100000	0.333333	0.666667	0.000000	0.3(2)

Table. S3. Occupancy, atomic fractional coordinates and B_{iso} from Rietveld data

*S.O.F: Site occupancy factor (fixed for Zn/Cu site in this report)

Supplementary note 4:

Sample ID	ZnO	3%Cu_ZnO	5%Cu_ZnO	10%Cu_ZnO		
Williamson Hall , UDM						
<i>D</i> (nm)	55.46	20.39	22.00	20.09		
$\langle \varepsilon \rangle$	1.40×10 ⁻³	1.50×10 ⁻³	2.20×10 ⁻³	2.40×10 ⁻³		
* ϑ (cm ⁻²)	3.25×10^{10}	2.40×10 ¹¹	2.06×10 ¹¹	2.47×10^{11}		
R ²	0.9996	0.9995	0.9996	0.9949		
	Wi	lliamson Hall, US	DM			
^D (nm)	51.35	19.65	21.01	18.99		
σ (MPa)	162	178	253.3	271.67		
$**\langle \varepsilon \rangle_{avg.}$	1.30(7)×10 ⁻³	1.42(8)×10 ⁻³	2.03(12)×10 ⁻³	2.17(12)×10 ⁻³		
ϑ (cm ⁻²)	3.79×10^{10}	2.58×10 ¹¹	2.26×10 ¹¹	2.77×10 ¹¹		
R ²	0.9771	0.9771	0.9971	0.9749		
	Will	iamson Hall, UDI	EDM			
D (nm)	53.32	19.97	21.66	19.52		
$\ddagger^{\sigma_{avg.}}$ (MPa)	170(5)	187(6)	266 (8)	285(9)		
$\langle \varepsilon \rangle_{avg}$.	1.35(4)×10 ⁻³	1.49(4)×10 ⁻³	2.12(6)×10 ⁻³	2.27(7)×10 ⁻³		
u (J/m ³)	1.15×10 ⁵	1.39×10 ⁵	2.81×10 ⁵	3.23×10 ⁵		
ϑ (cm ⁻²)	3.51×10^{10}	2.50×10 ¹¹	2.13×10 ¹¹	2.62×10 ¹¹		
R ²	0.9937	0.9937	0.9921	0.9903		
	Si	ize-Strain Plot (SS	P)			
D (nm)	42.01	17.71	18.24	16.50		
$\langle \varepsilon \rangle$	6.32×10 ⁻³	9.15×10 ⁻³	1.09×10 ⁻²	1.26×10 ⁻²		
ϑ (cm ⁻²)	3.52×10 ¹⁰	3.18×10 ¹¹	3.00×10 ¹¹	3.67×10 ¹¹		
R ²	0.9995	0.9999	0.9993	0.9990		
Approximation model						
D (nm)	49.58	19.00	22.06	20.65		
(ε)	1.56×10 ⁻³	1.88×10 ⁻³	2.87×10 ⁻³	3.26×10 ⁻³		
ϑ (cm ⁻²)	4.06×10^{10}	2.76×10 ¹¹	2.05×10 ¹¹	2.34×10 ¹¹		

Table S4. Crystallographic parameters extracted from different models for X-ray line broadening analysis

 $\frac{v(\text{cm}^{-2})}{* \vartheta = 1/D^2}$ is the dislocation line density, $**(\varepsilon)_{avg.}$ is the crystallographic average of micro-strain, $\ddagger^{\sigma_{avg.}}$ is the crystallographic average of stress.

Supplementary note 5:

Fig. S2. Variation in Texture coefficient and relative peak intensity of the (hkl) diffraction planes for (a) ZnO (B) 3%Cu_ZnO (c) 5%Cu_ZnO and (d) 10%Cu_ZnO nanoparticles

The texture coefficient (T_c) of the individual crystallographic planes given in Table S2 above has been calculated using the equation given by [6]:

$$T_{\mathcal{C}} = \frac{I_i(hkl)}{I_{oi}(hkl)} \times \left[\left(N^{-1} \right) \times \sum_{i=1}^{N} \frac{I_i(hkl)}{I_{oi}(hkl)} \right]^{-1}$$
(1)

Where, $I_i(hkl)$ the measured intensity of the ith hkl plane, $I_{oi}(hkl)$ is the standard intensity of the ith hkl plane and N is the number of reflections. Here the values of $I_{oi}(hkl)$ were obtained from ICDD 01-080-3003 reference pattern.

Supplementary note 6:

Sample ID	ZnO	3%Cu_ZnO	5%Cu_ZnO	10%Cu_ZnO
2 ^θ 100(°)	31.755	31.801	31.772	31.765
$2^{\theta_{101}(^{\mathrm{o}})}$	36.242	36.279	36.246	36.240
β_{100} (rad)	4.213×10 ⁻³	8.869×10 ⁻³	9.001×10 ⁻³	9.812×10 ⁻³
β_{101} (rad)	4.494×10 ⁻³	9.231×10 ⁻³	9.522×10 ⁻³	10.402×10 ⁻³
β_{101}/β_{100}	1.066	1.041	1.058	1.060
m_{100}/eta_{100}	0.690	0.855	0.747	0.732
n_{101}/eta_{101}	0.456	0.268	0.395	0.410
$m_{100}(rad)$	2.907×10-3	7.585×10 ⁻³	6.723×10 ⁻³	7.183×10 ⁻³
<i>n</i> ₁₀₁ (rad)	2.049×10-3	2.474×10 ⁻³	3.761×10 ⁻³	4.265×10 ⁻³
D(nm)	49.585	19.006	21.441	20.070
$\langle \varepsilon \rangle$	1.565×10 ⁻³	1.887×10 ⁻³	2.873×10 ⁻³	3.258×10 ⁻³

Table. S5. Data for crystallite size and micro-strain calculation adopting the approximation method

Supplementary note 7:

Peak	$2^{\theta_{avg}}$	ZnO	3%Cu_ZnO	3%Cu_ZnO	10%Cu_ZnO	۸ ۱/ <i>۱</i> /۱/۱
index	(°)		Shape	factor (ψ_{hkl})		Average <i>Phil</i>
(100)	31.773	0.6549	0.6895	0.6808	0.6891	0.6786(0.0163)
(002)	34.387	0.6551	0.6881	0.6807	0.6890	0.6782(0.0158)
(101)	36.251	0.6552	0.6871	0.6806	0.6890	0.6780(0.0156)
(102)	47.524	0.6562	0.6834	0.6803	0.6889	0.6772(0.0144)
(110)	56.619	0.6573	0.6823	0.6802	0.6889	0.6772(0.0137)
(103)	62.828	0.6582	0.6822	0.6801	0.6889	0.6774(0.0133)
(200)	66.408	0.6588	0.6824	0.6801	0.6890	0.6776(0.0131)
(112)	67.957	0.6589	0.6825	0.6801	0.6889	0.6776(0.0131)
(201)	69.115	0.6592	0.6826	0.6801	0.6890	0.6777(0.0129)
$\psi_{avg.}$		0.657(2)	0.684(3)	0.6804(3)	0.6889(6)	

Table. S6. Peak shape factors as a function of (*hkl*) plane and Cu content.

Supplementary note 8:

Table. S7. Variation in Raman mode intensity (I) ratios given by: $E_1(LO)/E_2(high)$ and 2LO/LO with respect to crystallite size and Cu content

Sample ID	$E_1(LO)/E_2(high)$	2LO/LO	D (nm)
ZnO	0.2675 (0.0108)	2.40 (0.501)	53.4
3%Cu_ZnO	0.5589 (0.0409)	0.844 (0.087)	20.5
5%Cu_ZnO	0.4995 (0.0336)	0.748 (0.071)	21.5

Table. S8. Pearson IV profile parameters

Sample ID	Shape parameter (m)	Left width at half maxima (L _w)	Right width at half maxima (R _w)	Asymmetry L _w /R _w
ZnO	14.4	11.4542	8.5972	1.3323
3%Cu_ZnO	17.3	8.9086	7.2438	1.2298
5%Cu_ZnO	25.1	8.3465	6.6920	1.2472

References:

1. K. Vidhya, M. Saravanan, G. Bhoopathi, V. P. Devarajan, S. Subanya, Appl. Nanosci., 2015, 5, 235–243.

2. A. Sangeetha, S. Jaya Seeli, K. P. Bhuvana, M. Abdul Kader, S. K. Nayak, J. Solgel Sci. Technol., 2019, 91, 261–272.

3. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater., 2012, 34, 1946–1953.

4. M. Darroudia, Z. Sabouri, R. K. Oskuee, A. K. Zak, H. Kargar, M. H. N. A. Hamid, Ceram. Int., 2014, 40, 4827–4831.

5. M. S. Corobea, A, M. Stoenescu, M. Miculescu, V. Raditoiu, R. C. Fierascu, I. Sirbu, Z. Vuluga, S. I. Voicu, Dig. J. Nanomater. Biostructures, 2014, 9, 1339 – 1347.

6. M. A. Zubair, M. T. Chowdhury, M. S. Bashar, M. A. Sami and M. F. Islam, *AIP Advances*, 2019, **9**, 045123