Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Material for

Modulating the resistive switching stability of HfO2-based RRAM

through Gd doping engineering: DFT+U

Dong-lan Zhang,^a Jiong Wang,^{*a} Qing Wu,^b Yong Du^a

^a State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

^b Information and Network Center, Central South University, Changsha, Hunan, 410083, China

*E-mail: wangjionga@csu.edu.cn

Fig. S1 (a) The doping formation energy of Gd-doped HfO_2 system and the configurations of HfO_2 with single V_0 (b) before and (c) after Gd doping.

Fig. S2 The density of states calculated with (a) different U^d and a fixed $U^p = 5.4 \text{ eV}$, (b) different U^p and a fixed $U^d = 8 \text{ eV}$ and (c) different U^f and a fixed $U^d = 8 \text{ eV}$, a fixed $U^p = 10 \text{ eV}$.

Fig. S3 The electronic structures of m-HfO₂ containing (a) and (b) single V₀₃ and (c) and (d) single V₀₄ before and after the applying U^d and U^p value.

To further analyse the changes in the characteristics of the chemical bonding before and after Gd doping, we have analyzed the electron localization function (ELF) distributions, as shown in Fig. S4 below. The ELF value is between 0 and 1, with the upper limit value ELF=1 meaning complete electron localization, the lower limit value ELF=0 meaning complete electron delocalization or no electron, and the middle value ELF=1/2 meaning the electron-gas-like pair probability. It can be seen from Fig. S4 that compared with perfect HfO₂ (Figs. (a) and (d)), when the system contains V_0 (Figs. (b) and (e)), there will be obvious electron localization around the V_0 , and when Gd is doped (Figs. (c) and (f)), the electrons are not only localized around the V₀, but also around the dopant Gd. There is an obvious charge interaction between Gd and its surrounding O atoms, with the Hf-O bond replaced by a Gd-O bond. The charge state of Gd and the surrounding O atoms also changes significantly compared to that before Gd doping, which will inevitably cause distortion of the local geometry, as shown in Fig. 4 in the manuscript. These results further indicate that Gd doping can cause local distortion of the geometrical configuration, strengthen the charge interaction between atoms, and improve the conductivity of the system.

Fig. S4 Electron localization function (ELF) distributions of (a) and (d) perfect *m*-HfO₂, (b) *m*-HfO₂ containing single V_{O3} , (c) Gd-doped *m*-HfO₂ containing single V_{O3} , (e) *m*-HfO₂ containing single V_{O4} , and (f) Gd-doped *m*-HfO₂ containing single V_{O4} .

Systems	Method	$\begin{array}{c} Generation \\ of V_O \end{array}$	Randomicity of V_0 formation	Migration barrier of V_0	Coulombic interaction	Stability of device
Gd-doped HfO ₂	GGA ¹	\uparrow	\downarrow		\uparrow	1
Gd-doped HfO ₂	GGA+U ²	\uparrow		_	\uparrow	—
Gd-doped HfO ₂	Exp. ³	—	\downarrow	\downarrow	—	\uparrow
Gd-doped Ta ₂ O _{5-x}	Exp. ⁴	\downarrow		\uparrow	—	\uparrow
Mg-doped HfO _x	Exp. and GGA-1/2 ⁵	\uparrow	—	\uparrow		\uparrow
This work	GGA+U	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow

Table S1 Comparative analysis of the characterization for different metal-doped RRAM devices

Meaning of symbols:

Vo represents oxygen vacancy; " \uparrow " represents promotion (enhancement); " \downarrow " represents suppression (reduction); "—"represents not clearly mentioned.

References

- 1 L. Wang, H. Tu, Y. Xiong, W. Xiao, J. Du, J. Wang and G. Huang, *J. Appl. Phys.*, 2014, **116**, 123505.
- 2 W. Zhang and Z. F. Hou, J. Appl. Phys., 2014, 115, 124104.

- 3 H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang and B. Yu, *Appl. Phys. Lett.*, 2011, **98**, 042105.
- 4 K. Shi, H. Xu, Z. Wang, X. Zhao, W. Liu, J. Ma and Y. Liu, *Appl. Phys. Lett.*, 2017, **111**, 223505.
- 5 L.-H. Li, K.-H. Xue, L.-Q. Zou, J.-H. Yuan, H. Sun and X. Miao, *Appl. Phys. Lett.*, 2021, **119**, 153505.