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1. Basic Theory

The Hamiltonian of an isolated three level system in the rotating frame is represented by the following equation.

H̃(t) = ∆ωIZ − ω1IX +
2∑
q=2

R
(2)−q
L (t)T (2)qeiqωt (1)

In the above equation, ∆ω = ω − ω0 represents the chemical shift offset in the rotating frame, while, ‘ω1’ and
‘ω’ represent the amplitude and frequency of the oscillating magnetic field. The term ‘ω0’ depicts the effective
precessional frequency of the nucleus (in the presence of chemical shift interactions). The last term represents
the quadrupolar interaction. For convenience, the quadrupolar interaction is commonly expressed in terms of
irreducible spatial (R(2)−q) and spin tensor operators (T (2)q). Often the spatial tensors are defined in the principle
axis systems (PAS)and are transformedinto the laboratory frame through a series of transformations employing the
Wigner rotations matrices. Depending on the nature of these transformations, the form of the spatial coefficients
differ and are summarised below.

R
(2)q
L =

∑
m=±2,0

R
(2)m
PASDm,q (ΩPL) (for static single crystal) (2)

R
(2)q
L =

2∑
m,m=−2

R
(2)m
PASDm,m (ΩPM )Dm,q (ΩML) (for static powder sample) (3)

For the sake of continuity, a brief description of the spatial and spin tensor operators is given below.

R
(2)0
Q,PAS = ωQ , R

(2)±1
Q,PAS = 0 , R

(2)±2
Q,PAS = −ωQη√

6
(ωQ = 3(2π)

2I(2I−1)CQ,CQ = e2qQ
h )

T (2)0 = 1√
6

(
3I2Z − I2

)
, T (2)±1 = ∓1

2 (IZI± + I±IZ), T (2)±2 = 1
2I

2
±

Unlike the excitation in spin I=1/2 systems, the magnitude of the quadrupolar interactions (both time-
dependent and time independent) in the rotating frame often exceeds the amplitude of the pulse often resulting in
the selective excitation. Depending on the relative magnitudes of the quadrupolar frequency ‘ωQ’ and the effective
Larmor frequency ‘ω0’ of the nucleus under study, the time-dependent terms (commonly referred to as“second-
order” quadrupolar interactions) do play an important role in the excitation process and would be described
in the following sections. To pedagogically outline the role of the various interactions terms (such as offsets,
second-order quadrupolar interactions etc.) in the examination process (i.e. the excitation of double-quantum
(DQ)transitions (transitions from m=1 to m=-1), we begin the discussion in the presence of both off-sets and
second-order quadrupolar interactions under static conditions.

To facilitate analytic descriptions in multi-level systems and draw parallels with standard two-level systems
(I=1/2), the Hamiltonian in the rotating frame is re-expressed in terms of the fictitious spin-operators.

H̃ = 2

ω −
ω0 −

ω
(1)
Q (αβγ)

6

 I12Z −
√

2ω1I
12
X + 2

ω −
ω0 +

ω
(1)
Q (αβγ)

6

 I23Z −
√

2ω1I
23
X (4)

When the frequency of the oscillating field is adjusted to the precessional frequency of the nucleus under study
(i.e. ω = ω0), the above Hamiltonian reduces to the

H̃ =
ω
(1)
Q (αβγ)

3
I12Z −

√
2ω1I

12
X︸ ︷︷ ︸−

ω
(1)
Q (αβγ)

3
I23Z −

√
2ω1I

23
X︸ ︷︷ ︸ (5)

In the above equation, ω
(1)
Q (αβγ) denotes contributions from the first order quadrupolar interactions and is

dependent on the nature of the sample under consideration (i.e. ω
(1)
Q (αβγ) = R

(2)0
L )
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Since second-order quadrupolar interactions become relevant in systems with large quadrupolar coupling con-
stants and plays an important role in the excitation process, the time-dependent contributions (due to quadrupolar
interactions) in the rotating frame are incorporated through averaging methods.
Accordingly, the Hamiltonian in the rotating frame incorporating offsets and second-order quadrupolar interactions
is represented by the following equations.

H̃ =
ω
(1)
Q (αβγ)

3
I12Z −

√
2ω1I

12
X︸ ︷︷ ︸−

ω
(1)
Q (αβγ)

3
I23Z −

√
2ω1I

23
X︸ ︷︷ ︸+

(
∆ω + ω

(2)
Q (αβγ)

)
2I13Z (6)

In the above equation, the term ω
(2)
Q (αβγ) denotes the second-order quadrupolar correction and is represented by

the following equation.

ω
(2)
Q (αβγ) =

1

12ω0

[
R

(2)1
L R

(2)−1
L −R(2)2

L R
(2)−2
L

]
(7)

2. Additional Simulations

2.1 Effective fields in three level system

A. DQ excitation under on-resonance conditions (in the presence of first-order quadrupolar inter-
actions)

In the simulations depicted below, the validity of the effective field approach is examined in systems with lower
quadrupolar coupling constants (ranging from 25kHz to 500kHz) at different Rf amplitudes in both sungle crystal
and powder samples.

Figure S1: In the simulations depicted (first row (single crystal), second row (powder sample)), excitation profile
for different CQ (all regimes) in the presence of first order quadrupolar interaction is illustrated for a given RF
amplitude, ν1 = 40 kHz. The following parameters are employed in the simulations: (A) CQ = 25 kHz; (B)
CQ = 100 kHz; (C) CQ = 200 kHz; (D) CQ = 500 kHz. In all the simulations, the following quadrupolar param-
eters are employed:η= 0,ΩPM = (30◦, 40◦, 60◦). The powder simulations were performed over 28656 orientations
(zcw28656).
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Figure S2: In the simulations depicted (first row (single crystal), second row (powder sample)), excitation profile
for different CQ (all regimes) in the presence of first order quadrupolar interaction is illustrated for a given
RF amplitude, ν1 = 80 kHz. The following parameters are employed in the simulations: (A) CQ = 25 kHz;(B)
CQ = 100 kHz;(C) CQ = 200 kHz;(D) CQ = 500 kHz. In all the simulations, the following quadrupolar parameters
are employed: η= 0,ΩPM = (30◦, 40◦, 60◦). The powder simulations were performed over 28656 orientations
(zcw28656).

B. DQ excitation under off-resonance conditions (in the presence of both first and second-order
quadrupolar interactions)

In the simulations depicted below, the role of the offsets in the compensation of second-order quadrupolar inter-
actions is discussed in both single crystal and powder samples. To deduce the optimal value of the offset value in
a powder sample, the orientation dependence of the second-order quadrupolar interactions in various crystallites
is depicted below in Figure 3
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Figure S3: Figure depicts the distribution of second order quadrupolar couplings in a powder sample for different
values of coupling constants. Quadrupolar coupling constant for different simulations are (A1) 1000 kHz; (A2)
2000 kHz; (A3) 4000 kHz. The powder simulations were performed over 28656 orientations

Based on the above simulations (Figure S3), the optimal value of the offsets in powder samples is deduced
based on the contributions emerging from maximum number of crystallites in a powder samples. In the simulations
depicted below, the off set compensation is examined at different RF amplitudes.

(i) Off set Compensation for CQ=1 MHz (ν1=40 kHz)

Figure S4: In the simulations depicted (first row (single crystal), second row (powder sample)), the role of
offsets (∆ω = +ve(red), ∆ω = 0(black) and ∆ω = −ve(blue)in the compensation of second order quadrupolar
interactions is illustrated for a given RF amplitude, ν1 = 40 kHz. The following parameters are employed in the
simulations: (A1) ∆ω = 1.8 kHz; (B1) ∆ω = 0 kHz; (C1) ∆ω = −1.8 kHz; (A2) ∆ω = 2.16 kHz; (B2) ∆ω = 0
kHz; (C2) ∆ω = −2.16 kHz. In all the simulations, the following quadrupolar parameters are employed: Cq=1.0
MHz, η= 0,ΩPM = (30◦, 40◦, 60◦). The powder simulations were performed over 28656 orientations (zcw28656).
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(i) Off set Compensation for CQ=1 MHz (ν1=80 kHz)

Figure S5: In the simulations depicted (first row (single crystal), second row (powder sample)), the role of offsets
(∆ω = +ve(red),∆ω = 0(black) and ∆ω = −ve(blue)in the compensation of second order quadrupolar interactions
is illustrated for a given RF amplitude, ν1 = 80 kHz. The following parameters are employed in the simulations:
(A1) ∆ω = 1.8 kHz; (B1) ∆ω = 0 kHz; (C1) ∆ω = −1.8 kHz; (A2) ∆ω = 2.16 kHz; (B2) ∆ω = 0 kHz; (C2)
∆ω = −2.16 kHz. In all the simulations, the following quadrupolar parameters are employed: Cq=1.0 MHz,
η= 0,ΩPM = (30◦, 40◦, 60◦). The powder simulations were performed over 28656 orientations (zcw28656).
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(i) Off set Compensation for CQ=2 MHz (ν1=40 kHz)

Figure S6: In the simulations depicted (first row (single crystal), second row (powder sample)), the role of
offsets (∆ω = +ve(red), ∆ω = 0(black) and ∆ω = −ve(blue)in the compensation of second order quadrupolar
interactions is illustrated for a given RF amplitude, ν1 = 40 kHz. The following parameters are employed in the
simulations: (A1) ∆ω = 7.3 kHz; (B1) ∆ω = 0 kHz; (C1) ∆ω = −7.3 kHz; (A2) ∆ω = 8.64 kHz; (B2) ∆ω = 0
kHz; (C2) ∆ω = −8.64 kHz. In all the simulations, the following quadrupolar parameters are employed: Cq=1.0
MHz, η= 0,ΩPM = (30◦, 40◦, 60◦). The powder simulations were performed over 28656 orientations (zcw28656).
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(i) Off set Compensation for CQ=2 MHz (ν1=80 kHz)

Figure S7: In the simulations depicted (first row (single crystal), second row (powder sample)), the role of
offsets (∆ω = +ve(red), ∆ω = 0(black) and ∆ω = −ve(blue)in the compensation of second order quadrupolar
interactions is illustrated for a given RF amplitude, ν1 = 80 kHz. The following parameters are employed in the
simulations: (A1) ∆ω = 7.3 kHz; (B1) ∆ω = 0 kHz; (C1) ∆ω = −7.3 kHz; (A2) ∆ω = 8.64 kHz; (B2) ∆ω = 0
kHz; (C2) ∆ω = −8.64 kHz. In all the simulations, the following quadrupolar parameters are employed: Cq=1.0
MHz, η= 0,ΩPM = (30◦, 40◦, 60◦). The powder simulations were performed over 28656 orientations (zcw28656).
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(i) Off set Compensation for CQ=4 MHz (ν1=40 kHz)

Figure S8: In the simulations depicted (first row (single crystal), second row (powder sample)), the role of
offsets (∆ω = +ve(red), ∆ω = 0(black) and ∆ω = −ve(blue)in the compensation of second order quadrupolar
interactions is illustrated for a given RF amplitude,ν1 = 40 kHz. The following parameters are employed in the
simulations: (A1) ∆ω = 24.5 kHz; (B1) ∆ω = 0 kHz; (C1) ∆ω = −24.5 kHz; (A2) ∆ω = 34.59 kHz;(B2) ∆ω = 0
kHz; (C2) ∆ω = −34.59 kHz. In all the simulations, the following quadrupolar parameters are employed: Cq=4.0
MHz,η= 0,ΩPM = (30◦, 40◦, 60◦). The powder simulations were performed over 28656 orientations (zcw28656).
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(i) Off set Compensation for CQ=4 MHz (ν1=80 kHz)

Figure S9: In the simulations depicted (first row (single crystal), second row (powder sample)), the role of
offsets (∆ω = +ve(red), ∆ω = 0(black) and ∆ω = −ve(blue)in the compensation of second order quadrupolar
interactions is illustrated for a given RF amplitude, ν1 = 80 kHz. The following parameters are employed in the
simulations: (A1) ∆ω = 24.5 kHz; (B1) ∆ω = 0 kHz; (C1) ∆ω = −24.5 kHz; (A2) ∆ω = 34.59 kHz;(B2) ∆ω = 0
kHz; (C2) ∆ω = −34.59 kHz. In all the simulations, the following quadrupolar parameters are employed: Cq=4.0
MHz, η= 0,,ΩPM = (30◦, 40◦, 60◦). The powder simulations were performed over 28656 orientations (zcw28656).
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2.2 Effective fields in coupled system (I=1/2,S=1)

In the simulations depicted below, a comparison of the time-domain and frequency-domain signal emerging from
analytic and numerical methods is illustrated.

Figure S10: In the simulations depicted, the role of off-sets is varied along the column (∆ωS = 0.72 kHz (first
column), ∆ωS = 0 kHz (second column), ∆ωS = −0.72 kHz (third column)). Numerical simulations are depicted
through solid lines and analytical results are depicted through dots (first row) and dashed lines (third row). All
the simulations contain second order quadrupolar interactions. In all the simulations, the following parameters
were employed: dipolar coupling constant, ωIS=8.6 kHz, CQ=1 MHz, η= 1.0, ΩPM = (0◦, 90◦, 0◦), νRF,S = 0 kHz.
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Figure S11: In the simulations depicted, the role of off-sets is varied along the column (∆ωS = 0.72 kHz (first
column), ∆ωS = 0 kHz (second column), ∆ωS = −0.72 kHz (third column)). Numerical simulations are depicted
through solid lines and analytical results are depicted through dots (first row) and dashed lines (third row). All
the simulations contain second order quadrupolar interactions. In all the simulations, the following parameters
were employed: ωIS=8.6 kHz, CQ=1 MHz, η= 1.0, ΩPM = (0◦, 90◦, 0◦), νRF,S = 60 kHz
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Figure S12: In the simulations depicted, the role of off-sets is varied along the column (∆ωS = 0.72 kHz (first
column), ∆ωS = 0 kHz (second column), ∆ωS = −0.72 kHz (third column)). Numerical simulations are depicted
through solid lines and analytical results are depicted through dots (first row) and dashed lines (third row). All
the simulations contain second order quadrupolar interactions. In all the simulations, the following parameters
were employed: ωIS=8.6 kHz, CQ=1 MHz, η= 1.0, ΩPM = (0◦, 90◦, 0◦), νRF,S = 120 kHz

2.3 Effective fields in rotating solids

In MAS experiments, the anisotropic components of the internal interactions (CSA, dipolar and quadrupolar
interaction) are represented through the following standard expression.

ω
(m)
λ =

2∑
m1=−2

R
(2)m1

P,λ

2∑
m2=−2

Dm1m2 (ΩPM )Dm2m (ΩMR) dm0 (βRL) (8)

Here, R
(2)m1

P,λ represents the component of the spatial tensor (λ= CSA, dipolar or quadrupolar interaction)
defined in the principal axis system (PAS), while Dm1m2 (ΩAB) denotes the Wigner Rotation matrix. In the
principal axis system, the R-coefficients of various interactions are defined as follows.

R
(2)0
P,CSA = δaniso , R

(2)±2
P,CSA = − 1√

6
δanisoη , R

(2)±1
P,CSA = 0 (9)

R
(2)0
P,dipolar =

√
6b

(
b = −µ0γIγS

4πr3IS

)
, R

(2)±2
P,dipolar = R

(2)±1
P,dipolar = 0 (10)

R
(2)0
P,Quad = ωQ , R

(2)±2
P,Quad = − 1√

6
ωQη

(
ωQ = 2π

3CQ
2I(2I − 1)

, CQ = e2qQ

)
, R

(2)±1
P,Quad = 0 (11)

The coefficients (AX,p and BY,p) in the time-dependent rf part can be expressed in terms of bessel functions
as.

AX,p ∝
∑
n1

Jn1 (A1)
∑
n2

Jn2 (A2)
∑
n3

Jn3 (A3)
∑
n4

Jn4 (A4) ; n1 + n2 + n3 + n4 = p (12)
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BY,p ∝
∑
n1

Jn1 (A1)
∑
n2

Jn2 (A2)
∑
n3

Jn3 (A3)
∑
n4

Jn4 (A4) ; n1 + n2 + n3 + n4 = p (13)

A1 =
ω
(1)
Q − ω

(−1)
Q

2iωr
, A2 =

ω
(1)
Q + ω

(−1)
Q

2ωr
, A3 =

ω
(2)
Q − ω

(−2)
Q

4iωr
, A4 =

ω
(2)
Q + ω

(−2)
Q

4ωr
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