Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting information

M Supported on Al-Defective $Al_{2-\delta}O_3$ (M=Fe, Co, Ni, Cu, Ag, Au) as Catalyst for acetylene semi-hydrogenation: A Theoretical Perspective.

Bing-Bing Li^a, Hong-Yan Ma^{a*}, Gui-Chang Wang ^{b*}

(^a Tianjin RenAi College, Tianjin 301636, China; ^b Frontiers Science Center for New Organic Matter and Tianjin Key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

* Corresponding author.

E-mail address: mahongyan@mail.nankai.edu.cn (H.Y. Ma);

wangguichang@nankai.edu.cn (G.C. Wang)

Part S1. Calculation details of $E_{(formation)}$

The formation energy (E_f) of $M_1/Al_{2-\delta}O_3$ is defined as:

$$E_f = E(M_1/Al_{2-\delta}O_3) - E(Al_2O_3) + E_{(bulk-Al)} - E_{(bulk-M)}$$

where $E(M_1/Al_{2-\delta}O_3)$ and $E(Al_2O_3)$ stand for the energy of the $M_1/Al_{2-\delta}O_3$ and Al_2O_3 . $E_{(bulk-Al)}$ and $E_{(bulk-M)}$ are from the energies of bulk Al and the M in the bulk phase.

For the $M_1(OH)_n/Al_{2-\delta}O_{3-\theta}$, E_f is definded as:

 $E_{f} = E(M_{1}(OH)_{n}/Al_{2-\delta}O_{3-\theta}) - E(Al_{2}O_{3}) + E_{(bulk-Al)} - n/2 \times E(H_{2}) - E_{(bulk-M)}$

where $E(M_1/Al_{2-\delta}O_3)$ and $E(H_2)$ stand for the energy of the $M_1/Al_{2-\delta}O_3$ and the energy of H_2 in gas phase.

Figure S 1 The variety of total energy with the increase in ion steps at 800K.

Figure S 2 The configurations of the intermediates on the Cu₁/Al_{2- δ}O₃, Cu₁(OH)₁/Al_{2- δ}O_{3- θ}, and Cu₁(OH)₂/Al_{2- δ}O_{3- θ}.

Figure S 3 The adsorption energies of the intermediates on the $Cu_1/Al_{2-\delta}O_3$ and $Cu_1(OH)_n/Al_{2-\delta}O_{3-\theta}$ (n=1, 2).

Figure S 4 The structures of possible TSs on the $Cu_1/Al_{2-\delta}O_3$.

Figure S 5 The structures of possible TSs on the $Cu_1(OH)_1/Al_{2-\delta}O_3$.

Figure S 6 The structures of possible TSs on the $Cu_1(OH)_2/Al_{2-\delta}O_3$.

Figure S 7 The structures of ${\rm Cu}_4/{\rm Al}_{2\text{-}\delta}O_3$ and ${\rm Cu}_8/{\rm Al}_{2\text{-}\delta}O_3$ and the AIMD simulation at

800K.

Figure S 8 The structures of possible TSs on the $Cu_4/Al_{2-\delta}O_3$.

Figure S 9 The structures of possible TSs on the $Cu_8/Al_{2-\delta}O_3$.

Figure S 10 The adsorption energies of the intermediates on the clean and H precovered $Cu_n/Al_{2-\delta}O_3$ (n=1, 4, 8).

Figure S 11 The formation energy(E_f) of M₁/Al_{2- δ}O₃ and M₁(OH)_n/Al_{2- δ}O_{3- θ} (n=1, 2).

Figure S 12 The configuration of C_2H_4 on the $M_1(OH)_1/Al_{2-\delta}O_3$ (M=Fe, Co, Ni, Cu, Ag, Au) after 15 ps AIMD simulation at 463.15K.

Figure S 13 The structures of possible TSs on the $Fe_1/Al_{2-\delta}O_3$.

Figure S 14 The structures of possible TSs on the $Co_1/Al_{2-\delta}O_3$.

Figure S 15 The structures of possible TSs on the $Ni_1/Al_{2-\delta}O_3$.

Figure S 16 The structures of possible TSs on the $Ag_1/Al_{2-\delta}O_3$.

Figure S 17 The structures of possible TSs on the $Au_1/Al_{2-\delta}O_3$.

Figure S 18 The structures of possible TSs on the Ni_1 -Cu₁/Al_{2- δ}O₃.

		C ₂ H ₂	C ₂ H ₃	C ₂ H ₄	C ₂ H ₅	C ₂ H ₆	1,3-C ₄ H ₆
$\mathrm{Fe}_{1}/\mathrm{Al}_{2}\mathrm{O}_{3}(100)$	PBE	-0.13	-2.39	-0.39	-2.00	-0.01	-0.39
	rPBE-vdW	-0.60	-2.60	-1.03	-2.14	-0.37	-1.05
Co ₁ /Al ₂ O ₃ (100)	PBE	-0.08	-2.36	-0.30	-1.99	0.04	-0.37
	rPBE-vdW	-0.63	-2.65	-0.97	-2.18	-0.60	-1.00
Ni ₁ /Al ₂ O ₃ (100)	PBE	-0.10	-2.47	-0.31	-2.15	-0.03	-0.31
	rPBE-vdW	-0.58	-2.77	-0.94	-2.36	-0.63	-0.98
Cu ₁ /Al ₂ O ₃ (100)	PBE	-0.07	-2.39	-0.03	-1.95	-0.02	-0.22
	rPBE-vdW	-0.51	-2.67	-0.45	-2.01	-0.54	-0.94
Ag ₁ /Al ₂ O ₃ (100)	PBE	-0.11	-0.87	-0.07	-0.74	-0.01	-0.29
	rPBE-vdW	-0.48	-1.10	-0.46	-0.91	-0.53	-0.82
Au ₁ /Al ₂ O ₃ (100)	PBE	-0.04	-1.03	-0.01	-0.89	-0.02	-0.26
	rPBE-vdW	-0.47	-1.31	-0.32	-1.00	-0.38	-0.84

Table S 1 The adsorption energies (eV) of the intermdiates on the $M_1/Al_{2\text{-}\delta}O_3$ (M=Fe, Co, Ni, Cu, Ag, Au).

Elementray step	,	/eV	/s ⁻¹		
H _{2(g)} +2*=2H*	E _{a,+}	0.80	A_+	4.2×10 ¹¹	
	<i>E_{a,-}</i>	3.00	<i>A</i> _	2.1×10 ¹³	
$C_2H_{2(g)}+^*=C_2H_2^*$	<i>E</i> _{<i>a</i>,+}	0.00	A_+	6.7×10 ⁷	
	<i>E</i> _{<i>a</i>,-}	0.51	А.	4.9×10 ¹⁷	
$C_2H_2^*+H^*=C_2H_3^*+^*$	<i>E</i> _{<i>a</i>,+}	0.76	A_+	1.4×10 ¹³	
	<i>E</i> _{<i>a</i>,-}	1.24	А.	1.6×10 ¹³	
$C_2H_3^*+H^*=C_2H_4^*+^*$	<i>E</i> _{<i>a</i>,+}	1.43	A_+	1.4×10 ¹³	
	<i>E</i> _{<i>a</i>,-}	0.62	А.	1.5×10 ¹³	
$C_2H_4^*+H^*=C_2H_5^*+^*$	<i>E</i> _{<i>a</i>,+}	1.57	A_+	1.5×10 ¹³	
	<i>E</i> _{<i>a</i>,-}	2.93	А.	1.8×10 ¹³	
$C_2H_5^*+H^*=C_2H_{6(g)}+2^*$	<i>E</i> _{<i>a</i>,+}	1.59	A_+	1.4×10 ¹³	
	<i>E_{a,-}</i>	1.75	<i>A</i> .	1.7×10 ¹³	
$2C_2H_3^*=C_4H_6^*+^*$	<i>E</i> _{<i>a</i>,+}	1.70	A_+	1.6×10 ¹³	
	<i>E_{a,-}</i>	2.30	<i>A</i> .	1.6×10 ¹³	
$C_4H_6^*=C_4H_{6(g)}+^*$	<i>E</i> _{<i>a</i>,+}	0.89	A_+	1.0×10 ¹⁸	
	<i>E_{a,-}</i>	0.00	<i>A</i> .	4.7×10 ⁷	
$C_2H_4^*=C_2H_{4(g)}^++*$	<i>E</i> _{<i>a</i>,+}	0.45	A_+	5.4×10 ¹⁷	
	<i>E_{a,-}</i>	0.00	<i>A</i> _	6.5×10 ⁷	

Table S 2 The parameter of the pathways on the $Cu_1/Al_{2\text{-}\delta}O_3$ in the microkinetic modeling.

Surface	C ₂ H ₂	C_2H_3	C ₂ H ₄	C ₂ H ₅	C ₂ H ₆	1, 3- C ₄ H ₆	Surface	C ₂ H ₂	C ₂ H ₄
Fe ₁ /Al _{2-δ} O ₃	-0.60	-2.92	-0.70	-2.56	-0.92	-0.90	$Fe_1(OH)_1/Al_{2-\delta}O_{3-\theta}$	-1.55	-1.23
$Co_1/Al_{2-\delta}O_3$	-0.64	-2.93	-0.66	-2.54	-0.44	-1.00	$Co_1(OH)_1/Al_{2\text{-}\delta}O_{3\text{-}\theta}$	-1.16	-1.19
$Ni_1/Al_{2-\delta}O_3$	-0.58	-3.03	-0.65	-2.70	-0.59	-1.02	$Ni_{1}(OH)_{1}/Al_{2\text{-}\delta}O_{3\text{-}\theta}$	-0.71	-0.90
$Ag_1/Al_{2-\delta}O_3$	-0.47	-1.27	-0.46	-1.21	-0.57	-0.92	$Ag_1(OH)_1/Al_{2\text{-}\delta}O_{3\text{-}\theta}$	-1.79	-0.59
$Au_1/Al_{2-\delta}O_3$	-0.10	-1.40	-0.32	-1.44	-0.46	-0.83	$Au_1(OH)_1/Al_{2\text{-}\delta}O_{3\text{-}\theta}$	-0.98	-0.79

Table S 3 The adsorption energies of possible intermediates (eV).