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S.1 Adiabatic to diabatic transformation (ADT) equations for Four state  
 
One way to obtain the ADT matrix for a 4-state sub-Hilbert space is by considering a specific order of 

multiplication for the elementary rotation matrices as following: 

 

𝐴( 𝛾12, 𝛾13, 𝛾14, 𝛾23, 𝛾24 , 𝛾34)= 

 

(

𝑐𝑜𝑠 𝛾14(𝑄) 0         0       𝑠𝑖𝑛 𝛾14(𝑄)
0 1 0                     0
0

−𝑠𝑖𝑛 𝛾14(𝑄)
0
0

1
0

    
                0
𝑐𝑜𝑠 𝛾14(𝑄)

) . (

1 0 0                   0
0 𝑐𝑜𝑠 𝛾24(𝑄) 0 𝑠𝑖𝑛 𝛾24(𝑄)

0
0

0
−𝑠𝑖𝑛 𝛾24(𝑄)

1
0

0
𝑐𝑜𝑠 𝛾24(𝑄)

) . (

1 0 0                   0
0 𝑐𝑜𝑠 𝛾23(𝑄) 𝑠𝑖𝑛 𝛾23(𝑄) 0

0
0

𝑠𝑖𝑛 𝛾23(𝑄)
0

𝑐𝑜𝑠 𝛾23(𝑄)

0
0
1

) 

. (

𝑐𝑜𝑠 𝛾13(𝑄) 0 𝑠𝑖𝑛 𝛾13(𝑄) 0
0 1      0               0

−𝑠𝑖𝑛 𝛾13(𝑄)
0

0
0

𝑐𝑜𝑠 𝛾13(𝑄)

0
0
1

) . (

𝑐𝑜𝑠 𝛾12(𝑄) 𝑠𝑖𝑛 𝛾12(𝑄) 0 0
−𝑠𝑖𝑛 𝛾12(𝑄) 𝑐𝑜𝑠 𝛾12(𝑄) 0 0

0
0

0
0

1
0

0
1

) . (

1 0 0                 0
0 1 0                0
0
0

0
0

𝑐𝑜𝑠 𝛾34(𝑄)

−𝑠𝑖𝑛 𝛾34(𝑄)

𝑠𝑖𝑛 𝛾34(𝑄)

𝑐𝑜𝑠 𝛾34(𝑄)

) (S1) 

 

Numerical stability can be challenging to achieve when multiplying matrices as shown in Eq. (S1), as there 

are multiple possible orders for the matrices. Typically, the most stable solution involves transforming the 

strongest coupling term, (such as 𝜏34) such that 𝛾34 appears in the last matrix of the product. 

For a four-dimensional Hilbert space with the four states, antisymmetric non-adiabatic coupling matrix 𝝉 is 

given in the form     
 

                  

𝝉 = (

0 𝛕12 𝛕13 𝛕14

−𝛕12 0 𝛕23 𝛕24

−𝝉13 −𝛕23 0 τ34

−𝛕14 −𝛕24 −τ34 0

)                                                                                             (S2)  

 

 

After substituting Eqs. (S1) and (S2) into adiabatic-to-diabatic transformation (ADT) condition (Eq. (S3)),  

 

𝛁. 𝐴(𝑸) +  𝝉. 𝐴(𝑸) = 0                                                                                                               (S3) 

 

We obtain explicit coupled first-order differential equations for the various elements of matrix A: 

 

𝛁𝛾12 = −  𝑠𝑒𝑐𝛾13(𝜏24 𝑐𝑜𝑠𝛾23𝑠𝑒𝑐𝛾24𝑠𝑖𝑛𝛾14 − .5  𝜏13 𝑠𝑖𝑛𝛾23  𝑠𝑒𝑐𝛾14 − τ34  𝑠𝑖𝑛𝛾14 𝑠𝑖𝑛𝛾23 −

0.5   𝜏34  𝑠𝑒𝑐𝛾14 𝑠𝑖𝑛𝛾24𝑡𝑎𝑛𝛾13 + 𝜏13 𝑠𝑖𝑛𝛾24  𝑡𝑎𝑛𝛾13  𝑠𝑖𝑛𝛾14 + 𝑐𝑜𝑠𝛾14(𝜏12 𝑠𝑒𝑐𝛾24𝑐𝑜𝑠𝛾23 − 0.5 𝜏13𝑠𝑖𝑛𝛾23 −
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0.5  τ34  𝑠𝑖𝑛𝛾24  𝑡𝑎𝑛𝛾13) + 𝜏13 𝑠𝑖𝑛𝛾23  𝑠𝑖𝑛𝛾14 𝑡𝑎𝑛𝛾14 + 𝜏34 𝑠𝑖𝑛𝛾14𝑠𝑖𝑛𝛾24 𝑡𝑎𝑛𝛾13𝑡𝑎𝑛𝛾14 +

𝜏23 𝑠𝑖𝑛𝛾24 𝑡𝑎𝑛𝛾13𝑡𝑎𝑛𝛾24)                                                  (S4.a) 

  

𝛁𝛾13 = −𝜏34𝑐𝑜𝑠𝛾23 𝑠𝑖𝑛𝛾14 − 𝜏24 𝑠𝑖𝑛𝛾23𝑠𝑒𝑐𝛾24𝑠𝑖𝑛𝛾14 + 7

8
   𝜏23 𝑡𝑎𝑛𝛾23  𝑡𝑎𝑛𝛾13𝑐𝑜𝑠𝛾24 −

7

8
   𝜏23 𝑡𝑎𝑛𝛾23  𝑡𝑎𝑛𝛾13𝑠𝑒𝑐𝛾24 − 𝜏13 𝑠𝑖𝑛𝛾14𝑠𝑖𝑛𝛾24 𝑡𝑎𝑛𝛾13𝑡𝑎𝑛𝛾23 − 𝑐𝑜𝑠𝛾14(𝜏13 𝑐𝑜𝑠𝛾23 + 𝜏12𝑠𝑖𝑛𝛾23𝑠𝑒𝑐𝛾24 −

  τ34  𝑠𝑖𝑛𝛾24  𝑡𝑎𝑛𝛾13 𝑡𝑎𝑛𝛾23) − 1

8
𝜏23 𝑠𝑖𝑛𝛾24  𝑡𝑎𝑛𝛾24 𝑡𝑎𝑛𝛾13𝑡𝑎𝑛𝛾23                                                                                                                                         

(S4.b) 

 

𝛁𝛾14 = −𝜏14 + 𝑠𝑒𝑐𝛾23(𝜏34 𝑐𝑜𝑠𝛾14 − 𝜏13 𝑠𝑖𝑛𝛾14 )𝑡𝑎𝑛𝛾13 − (𝜏12𝑐𝑜𝑠𝛾14  + 𝜏24 𝑠𝑖𝑛𝛾14 +

𝜏23 𝑠𝑒𝑐𝛾23  𝑡𝑎𝑛𝛾13) 𝑡𝑎𝑛𝛾24                                                                                 (S4.c) 

 

𝛁𝛾23 = −(𝑠𝑒𝑐𝛾13)2(𝜏23 𝑠𝑒𝑐𝛾24(𝑐𝑜𝑠2 𝛾13 +  𝑐𝑜𝑠2𝛾24) + 𝑠𝑖𝑛𝛾24(𝜏34𝑐𝑜𝑠𝛾14 − 𝜏13𝑠𝑖𝑛𝛾14 )) +

(𝑠𝑒𝑐𝛾24 𝑐𝑜𝑠𝛾23(𝜏12𝑐𝑜𝑠𝛾14 + 𝜏24𝑠𝑖𝑛𝛾14 ) − 𝑠𝑖𝑛𝛾23(𝜏12𝑐𝑜𝑠𝛾14 + 𝜏34𝑠𝑖𝑛𝛾14 ))𝑡𝑎𝑛𝛾13                          (S4.d)                   

 

𝛁𝛾24 = −𝜏24𝑐𝑜𝑠𝛾14 + 𝜏12 𝑠𝑖𝑛𝛾14 + (𝑐𝑜𝑠𝛾24(𝜏34 𝑐𝑜𝑠𝛾14 − 𝜏13 𝑠𝑖𝑛𝛾14 ) − 𝜏23 𝑠𝑖𝑛𝛾24)𝑡𝑎𝑛𝛾23                                         

(S4.e)                                                                              

 

𝛁𝛾34 = 𝑠𝑒𝑐𝛾13 𝑠𝑒𝑐𝛾23(𝑐𝑜𝑠𝛾24(−𝜏34𝑐𝑜𝑠𝛾14 + 𝜏13 𝑠𝑖𝑛𝛾14) + 𝜏23𝑠𝑖𝑛𝛾24 )                                                                          

(S4.f)                                                                                   

The presence of a conical intersection can be tested by integrating the circular non adiabatic coupling terms 
(NACTs) around a closed loop and examining the resulting phase change. It is important to note that the 
contours we have considered specially surround a conical intersection (CI), such as CIs (1,2) or (3,4) if they 
exist. When a contour surrounds a CI, the corresponding ADT angle is π, indicating the presence of a CI within 
the contour. However, if a closed contour does not surround a CI, then the NACT matrix elements between 
the corresponding adiabatic electronic states will be significantly small or close to zero. Therefore, if the 
contour surrounds the conical intersection of electronic states 1 and 2 (between two A'), and the interaction 
with other states in this region is negligible, then the NACT matrix elements between these two states will 
dominant, while the matrix elements between other electronic states may be significantly smaller or close 
to zero. Since the DDR method implemented in the MOLPRO package can only determine NACTs between 
electronic states with the same symmetry, such as between two states with A' symmetry (states 1 and 2) or 
between two states with A'' symmetry (states 3 and 4), we were unable to calculate NACTs between states 
with different symmetries, such as states 1 and 3, 1 and 4, 2 and 3, 2 and 4. However, our analysis confirms 
that these interactions may be significantly small or almost zero because the adiabatic states 1 and 2 are 
separated from states 3 and 4 in the regions we have considered, as shown in the configurations of the SO2 

molecule in Fig. 7 with q=0.30 Å and Fig. 11 with q=0. 35 Å in the manuscript.  
Fig. S1 and Fig. S2 display the adiabatic potential energies for states 1 1A1 , 1 1B2 in C2v, (1A’ in Cs), 1 1B1 , 1 
1A2  in C2v, (1A'’ in Cs), and the NACTs for states 1,2(τ𝜑12 coupling between states 1 1A1 and  11B2 in C2v/ 1 1A' 

and 2 1A' in Cs) and 3,4(τ𝜑34 coupling between states 11B1 and 11A2 in C2v/ 1 1A'' and 2 1A'' in Cs)  along the 

𝜑 coordinate for the configurations shown in Figs. 7 and 11 in the manuscript, respectively. Our results in 
Fig. S1, considering the intersection between states 1 1A1 and 1 1B2 (𝝉𝝋𝟏𝟐) show that the circle contour with 

a radius of q=0.30 Å approaches the (2,3) conical intersection. Therefore, we cannot expect very small values 



 

 

of NACTs between states 2 and 3 in this region. However, it is possible to neglect the effect of τ𝜑23 on γ12 

for q = 0.30 Å, since τ𝜑23 can be directly found in one of terms of Eq. (S4.a) which multiplies 

𝑠𝑖𝑛𝛾24 𝑡𝑎𝑛𝛾13𝑡𝑎𝑛𝛾24 , and these trigonometric functions are nearly zero. Consequently, NACTs between 
these electronic states may be significantly small or close to zero. Considering  𝜏13 = 𝜏14 = 𝜏23 = 𝜏24 = 0 , 
Eqs. (S4) can be simplified as follows:  
𝛁𝛾12 = −  𝑠𝑒𝑐𝛾13(− τ34  𝑠𝑖𝑛𝛾14 𝑠𝑖𝑛𝛾23 − 0.5   𝜏34  𝑠𝑒𝑐𝛾14 𝑠𝑖𝑛𝛾24𝑡𝑎𝑛𝛾13 + 𝑐𝑜𝑠𝛾14(𝜏12 𝑠𝑒𝑐𝛾24𝑐𝑜𝑠𝛾23 −

0.5  τ34  𝑠𝑖𝑛𝛾24  𝑡𝑎𝑛𝛾13) + 𝜏34 𝑠𝑖𝑛𝛾14𝑠𝑖𝑛𝛾24 𝑡𝑎𝑛𝛾13𝑡𝑎𝑛𝛾14)            (S5.a)   

                                                                                                                                                           

 𝛁𝛾13 = −𝜏34𝑐𝑜𝑠𝛾23 𝑠𝑖𝑛𝛾14 − 𝑐𝑜𝑠𝛾14( 𝜏12𝑠𝑖𝑛𝛾23 𝑠𝑒𝑐𝛾24 −   τ34  𝑠𝑖𝑛𝛾24  𝑡𝑎𝑛𝛾13 𝑡𝑎𝑛𝛾23)                       

                                                                                                                                                          (S5.b) 

𝛁𝛾14 = 𝑠𝑒𝑐𝛾23𝜏34 𝑐𝑜𝑠𝛾14 𝑡𝑎𝑛𝛾13 − 𝜏12𝑐𝑜𝑠𝛾14  𝑡𝑎𝑛𝛾24                                                          (S5.c) 

 

𝛁𝛾23 = −(𝑠𝑒𝑐𝛾13)2𝑠𝑖𝑛𝛾24𝜏34𝑐𝑜𝑠𝛾14 + (𝜏12𝑠𝑒𝑐𝛾24 𝑐𝑜𝑠𝛾23𝑐𝑜𝑠𝛾14 − 𝑠𝑖𝑛𝛾23(𝜏12𝑐𝑜𝑠𝛾14 +

𝜏34𝑠𝑖𝑛𝛾14 ))𝑡𝑎𝑛𝛾13                                                                                                                         (S5d) 

 

𝛁𝛾24 = 𝜏12 𝑠𝑖𝑛𝛾14 + (𝜏34 𝑐𝑜𝑠𝛾24 𝑐𝑜𝑠𝛾14  − 𝜏23 𝑠𝑖𝑛𝛾24)𝑡𝑎𝑛𝛾23                                            (S5e) 

 

𝛁𝛾34 = −𝜏34  𝑠𝑒𝑐𝛾13 𝑠𝑒𝑐𝛾23 𝑐𝑜𝑠𝛾24  𝑐𝑜𝑠𝛾14                                                                             (S5f) 

Since the coupling between states 1 and 2 with the other states is weak, 𝛾13 = 𝛾14 = 𝛾23 = 𝛾24 = 0, Eqs. 

(S5) can be written by  

 

𝛁𝛾12 = −𝜏12                                                         (S6.a) 
𝛁𝛾13 = 0                                                                (S6.b) 
𝛁𝛾14 = 0                                                           (S6.c) 
𝛁𝛾23 = 0                                                                (S6.d) 
𝛁𝛾24 = 0                                                                 (S6.e) 
𝛁𝛾34 = −𝜏34                                                          (S6.f) 

 

𝛾12(𝑸) and 𝛾34(𝑸) are evaluated by integration over open path nuclear coordinates: 

𝛾12(𝑸) = − ∫ 𝑑𝑸  𝜏12(𝑸)
𝑄

𝑄0
                             (S7.a) 

𝛾34(𝑸) = − ∫ 𝑑𝑸  𝜏34(𝑸)
𝑄

𝑄0
                             (S7.b) 

 

Eq. (S7.a) corresponds to Eq. (22) in the manuscript for a two-state system. Therefore, to calculate 

𝛾12(𝑸), 𝛾34(𝑸), it is not necessary to integrate coupled Eqs. (S4.a-S4.f). It is worth noting that our numerical 

study is based on a specific set of two-state NACTs.  

The same rationale can be applied to the conical intersection of electronic states 3 and 4 (between two A”) .

We can also derive the aforementioned equations for the conical intersection of electronic states 3 and 4 



 

 

(between two A”). It is crucial to ensure accuracy when transitioning from a four-state calculation to two 

calculations for a two-state system. 

 

 

Fig. S1  (a) adiabatic potential energies for the 1 1A1 , 1 1B2 in C2v, (1A’ in Cs), 1 1B1 , 1 1A2  in C2v, (1A'’ in Cs), states and (b) NACT for states 1,2(τ𝜑12 coupling 

between states 1 1A1 and  11B2 in C2v/ 1 1A' and 2 1A' in Cs) and 3,4(τ𝜑34 coupling between states 11B1 and 11A2 in C2v/ 1 1A'' and 2 1A'' in Cs)  are plotted along 𝜑 

coordinate for the configuration shown of SO2 in Fig. 7 in the manuscript and q=0. 30 Å  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2 (a) adiabatic potential energies for the 1 1A1 , 1 1B2 in C2v, (1A’ in Cs), 1 1B1 , 1 1A2  in C2v, (1A'’ in Cs), states and (b) NACT for states 1,2(τ𝜑12 coupling between 

states 1 1A1 and  11B2 in C2v/ 1 1A' and 2 1A' in Cs) and 3,4(τ𝜑34 coupling between states 11B1 and 11A2 in C2v/ 1 1A'' and 2 1A'' in Cs)  are plotted along 𝜑 coordinate 

for the configuration shown of SO2 in Fig. 11 in the manuscript and q=0. 35 Å  

 

 

 

 

 

 



 

 

S.2  Subroutine for calculating diabatic potentials and couplings for any point of the nuclear 
configuration space of SO2 molecule 

 

 
***,SO2 Diabatization and NACME calculation 

 

gprint,orbitals,civector 

memory,800,m 

symmetry,x 

orient,noorient           !noorient should always be used for diabatization 

geometry={s; 

          o1,s,r1; 

          o2,s,r2,o1,theta} 

 

basis=aug-cc-pvqz        !basis set  

 

r1=2.7063                !Reference geometry 

theta=[121.25] 

 

r=[3.0463]               !Displaced geometries 

dr=[0,0.01,-0.01]        !Samll displacements for finite difference NACME calculation 

 

reforb1=2140.2           !Orbital dumprecord at reference geometry 

refci=6000.2             !MRCI record at reference geometry 

savci=6100.2             !MRCI record at displaced geometries 

 

text,compute wavefunction at reference geometry (C2v) 

r2=r1 

 

{hf;occ,14,4;wf,32,2,4;orbital,2100.2} 

 

{multi;occ,14,4;closed,6,1; 

wf,32,2;state,2;            !1B1(1A") and 1A2(2A") states 

natorb,reforb1              !Save reference orbitals on reforb1 

noextra}                    !Dont use extra symmetries 

 

{ci;occ,14,4;closed,6,1;    !MRCI at reference geometry 

wf,32,2,0;state,2;          !1B1(1A") and 1A2(2A") states 

orbital,reforb1             !Use orbitals from previous CASSCF 

save,refci}                 !Save MRCI wavefunction 

 

Text,Displaced geometries 

 

do i=1,#r                   !Loop over different r values 

data,truncate,savci+1       !truncate dumpfile after reference 

reforb=reforb1 

 

do j=1,3                    !Loop over small displacements for NACME 

r2=r(i)+dr(j)               !Set current r2 

 

{multi;occ,14,4;closed,6,1; 

wf,32,2,0;state,2;          !Wavefunction definition 

start,reforb                !Starting orbitals 

orbital,3140.2+j;           !Dumprecord for orbitals 

diab,reforb                 !Generate diabatic orbitals relative to reference geometry 

noextra}                    !Dont use extra symmetries 

 

reforb=3141.2               !Use orbitals for j=1 as reference for j=2,3 

 

{ci;occ,14,4;closed,6,1; 

wf,32,2,0;state,2; 

orbital,diabatic            !Use diabatic orbitals 

save,savci+j}               !Save MRCI for displaced geometries 

 

eadia=energy                !Save adiabatic energies for use in ddr 

if(j.eq.1) then 

e1(i)=energy(1)             !Save adiabatic energies for table printing 

e2(i)=energy(2) 

end if 

 

{ci;trans,savci+j,savci+j;  !Compute transition densities at R2+DR(j) 



 

 

dm,7000.2+j}                !Save transition densities on this record 

{ci;trans,savci+j,refci;    !Compute transition densities between R2+DR(j) and R1 

dm,7100.2+j}                !Save transition densities on this record 

{ci;trans,savci+j,savci+1;  !Compute transition densities between R and R2+DR(j) 

dm,7200.2+j}                !Save transition densities on this record 

 

{ddr 

density,7000.2+j,7100.2+j   !Densities for <R2+DR||R2+DR> and <R2+DR||R1> 

orbital,3140.2+j,2140.2     !Orbitals for <R2+DR||R2+DR> and <R2+DR||R1> 

energy,eadia(1),eadia(2)    !Adiabatic energies 

mixing,1.2,2.2}             !Compute mixing angle and diabatic energies 

 

if(j.eq.1) then             !Store diabatic energies for R2  (DR(1)=0) 

  mixci(i)=mixangci(1)      !Mixing angle obtained from ci vectors only 

  h11ci(i)=hdiaci(1)        !Diabatic energies obtained from ci vectors only 

  h21ci(i)=hdiaci(2)        !HDIA contains the lower triangle of the diabatic hamiltonian 

  h22ci(i)=hdiaci(3) 

  mixtot(i)=mixang(1)       !Mixing angle from total overlap (including first-order correction) 

  h11(i)=hdia(1)            !Diabatic energies obtained from total overlap 

  h21(i)=hdia(2) 

  h22(i)=hdia(3) 

end if 

 

mix(j)=mixang(1)            !Store mixing angles for R2+DR(j) 

 

enddo                       !End loop over j 

 

dchi(i)=(mix(3)-mix(2))/(dr(2)-dr(3))*pi/180  !Finite difference derivative of mixing angle 

 

{ddr 

density,7201.2,7202.2,7203.2   !Compute NACME using 3-point formula 

orbital,3141.2,3142.2,3143.2 

states,2.2,1.2} 

nacmeci(i)=nacme 

 

{table,r,mixci,mixtot,dchi,nacmeci 

Title,Mixing angles and non-adiabatic coupling matrix elements for SO2 

format,'(f10.2,4f14.4)' 

sort,1 

} 

 

{table,r,e1,e2,h11ci,h22ci,h21ci 

Title,Diabatic energies for SO2, obtained from CI-vectors 

format,'(f10.2,5f16.8)' 

sort,1} 

 

{table,r,e1,e2,h11,h22,h21 

title,Diabatic energies for SO2, obtained from CI-vectors and orbital correction 

format,'(f10.2,5f16.8)' 

sort,1} 

 

enddo 
 


