Supplementary Material

Non-adiabatic Coupling in the Potential Energy Surfaces of SO_{2} Molecule

Sedigheh Pourestarabadia,b and Maryam Dehestani*

S. 1 Adiabatic to diabatic transformation (ADT) equations for Four state

One way to obtain the ADT matrix for a 4-state sub-Hilbert space is by considering a specific order of multiplication for the elementary rotation matrices as following:
$A\left(\gamma_{12}, \gamma_{13}, \gamma_{14}, \gamma_{23}, \gamma_{24}, \gamma_{34}\right)=$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\cos \gamma_{14}(Q) & 0 & 0 & \sin \gamma_{14}(Q) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sin \gamma_{14}(Q) & 0 & 0 & \cos \gamma_{14}(Q)
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \gamma_{24}(Q) & 0 & \sin \gamma_{24}(Q) \\
0 & 0 & 1 & 0 \\
0 & -\sin \gamma_{24}(Q) & 0 & \cos \gamma_{24}(Q)
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \gamma_{23}(Q) & \sin \gamma_{23}(Q) & 0 \\
0 & \sin \gamma_{23}(Q) & \cos \gamma_{23}(Q) & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \cdot\left(\begin{array}{cccc}
\cos \gamma_{13}(Q) & 0 & \sin \gamma_{13}(Q) & 0 \\
0 & 1 & 0 & 0 \\
-\sin \gamma_{13}(Q) & 0 & \cos \gamma_{13}(Q) & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
\cos \gamma_{12}(Q) & \sin \gamma_{12}(Q) & 0 & 0 \\
-\sin \gamma_{12}(Q) & \cos \gamma_{12}(Q) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \gamma_{34}(Q) & \sin \gamma_{34}(Q) \\
0 & 0 & -\sin \gamma_{34}(Q) & \cos \gamma_{34}(Q)
\end{array}\right)(\mathrm{S} 1)
\end{aligned}
$$

Numerical stability can be challenging to achieve when multiplying matrices as shown in Eq. (S1), as there are multiple possible orders for the matrices. Typically, the most stable solution involves transforming the strongest coupling term, (such as τ_{34}) such that γ_{34} appears in the last matrix of the product.
For a four-dimensional Hilbert space with the four states, antisymmetric non-adiabatic coupling matrix $\boldsymbol{\tau}$ is given in the form
$\boldsymbol{\tau}=\left(\begin{array}{cccc}0 & \boldsymbol{\tau}_{12} & \boldsymbol{\tau}_{13} & \boldsymbol{\tau}_{14} \\ -\boldsymbol{\tau}_{12} & 0 & \boldsymbol{\tau}_{23} & \boldsymbol{\tau}_{24} \\ -\boldsymbol{\tau}_{13} & -\boldsymbol{\tau}_{23} & 0 & \tau_{34} \\ -\boldsymbol{\tau}_{14} & -\boldsymbol{\tau}_{24} & -\tau_{34} & 0\end{array}\right)$

After substituting Eqs. (S1) and (S2) into adiabatic-to-diabatic transformation (ADT) condition (Eq. (S3)),

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot A(\boldsymbol{Q})+\boldsymbol{\tau} \cdot A(\boldsymbol{Q})=0 \tag{S3}
\end{equation*}
$$

We obtain explicit coupled first-order differential equations for the various elements of matrix A:

$$
\begin{aligned}
& \nabla \gamma_{12}=-\sec \gamma_{13}\left(\tau_{24} \cos \gamma_{23} \sec \gamma_{24} \sin \gamma_{14}-.5 \tau_{13} \sin \gamma_{23} \sec \gamma_{14}-\tau_{34} \sin \gamma_{14} \sin \gamma_{23}-\right. \\
& 0.5 \tau_{34} \sec \gamma_{14} \sin \gamma_{24} \tan \gamma_{13}+\tau_{13} \sin \gamma_{24} \tan \gamma_{13} \sin \gamma_{14}+\cos \gamma_{14}\left(\tau_{12} \sec \gamma_{24} \cos \gamma_{23}-0.5 \tau_{13} \sin \gamma_{23}-\right.
\end{aligned}
$$

$\left.0.5 \tau_{34} \sin \gamma_{24} \tan \gamma_{13}\right)+\tau_{13} \sin \gamma_{23} \sin \gamma_{14} \tan \gamma_{14}+\tau_{34} \sin \gamma_{14} \sin \gamma_{24} \tan \gamma_{13} \tan \gamma_{14}+$
$\left.\tau_{23} \sin \gamma_{24} \tan _{13} \tan _{24}\right)$

$$
\begin{align*}
& \nabla \gamma_{13}=-\tau_{34} \cos \gamma_{23} \sin \gamma_{14}-\tau_{24} \sin \gamma_{23} \sec \gamma_{24} \sin \gamma_{14}+\frac{7}{8} \tau_{23} \tan \gamma_{23} \tan \gamma_{13} \cos \gamma_{24}- \\
& \frac{7}{8} \tau_{23} \tan \gamma_{23} \tan \gamma_{13} \sec \gamma_{24}-\tau_{13} \sin \gamma_{14} \sin \gamma_{24} \tan \gamma_{13} \tan \gamma_{23}-\cos \gamma_{14}\left(\tau_{13} \cos \gamma_{23}+\tau_{12} \sin \gamma_{23} \sec \gamma_{24}-\right. \\
& \left.\tau_{34} \sin \gamma_{24} \tan \gamma_{13} \tan \gamma_{23}\right)-\frac{1}{8} \tau_{23} \sin \gamma_{24} \tan \gamma_{24} \tan \gamma_{13} \tan \gamma_{23} \tag{S4.b}
\end{align*}
$$

$\nabla \gamma_{14}=-\tau_{14}+\sec \gamma_{23}\left(\tau_{34} \cos \gamma_{14}-\tau_{13} \sin \gamma_{14}\right) \tan \gamma_{13}-\left(\tau_{12} \cos \gamma_{14}+\tau_{24} \sin \gamma_{14}+\right.$ $\left.\tau_{23} \sec \gamma_{23} \tan \gamma_{13}\right) \tan \gamma_{24}$
$\nabla \gamma_{23}=-\left(\sec \gamma_{13}\right)^{2}\left(\tau_{23} \sec \gamma_{24}\left(\cos 2 \gamma_{13}+\cos 2 \gamma_{24}\right)+\sin \gamma_{24}\left(\tau_{34} \cos \gamma_{14}-\tau_{13} \sin \gamma_{14}\right)\right)+$
$\left(\sec \gamma_{24} \cos \gamma_{23}\left(\tau_{12} \cos \gamma_{14}+\tau_{24} \sin \gamma_{14}\right)-\sin \gamma_{23}\left(\tau_{12} \cos \gamma_{14}+\tau_{34} \sin \gamma_{14}\right)\right) \tan \gamma_{13}$
$\nabla \gamma_{24}=-\tau_{24} \cos \gamma_{14}+\tau_{12} \sin \gamma_{14}+\left(\cos \gamma_{24}\left(\tau_{34} \cos \gamma_{14}-\tau_{13} \sin \gamma_{14}\right)-\tau_{23} \sin \gamma_{24}\right) \tan \gamma_{23}$
(S4.e)
$\nabla \gamma_{34}=\sec \gamma_{13} \sec \gamma_{23}\left(\cos \gamma_{24}\left(-\tau_{34} \cos \gamma_{14}+\tau_{13} \sin \gamma_{14}\right)+\tau_{23} \sin \gamma_{24}\right)$
(S4.f)
The presence of a conical intersection can be tested by integrating the circular non adiabatic coupling terms (NACTs) around a closed loop and examining the resulting phase change. It is important to note that the contours we have considered specially surround a conical intersection (CI), such as $\mathrm{Cls}(1,2)$ or $(3,4)$ if they exist. When a contour surrounds a Cl , the corresponding ADT angle is π, indicating the presence of a Cl within the contour. However, if a closed contour does not surround a Cl , then the NACT matrix elements between the corresponding adiabatic electronic states will be significantly small or close to zero. Therefore, if the contour surrounds the conical intersection of electronic states 1 and 2 (between two A^{\prime}), and the interaction with other states in this region is negligible, then the NACT matrix elements between these two states will dominant, while the matrix elements between other electronic states may be significantly smaller or close to zero. Since the DDR method implemented in the MOLPRO package can only determine NACTs between electronic states with the same symmetry, such as between two states with A' symmetry (states 1 and 2) or between two states with $A^{\prime \prime}$ symmetry (states 3 and 4), we were unable to calculate NACTs between states with different symmetries, such as states 1 and 3,1 and 4,2 and 3,2 and 4 . However, our analysis confirms that these interactions may be significantly small or almost zero because the adiabatic states 1 and 2 are separated from states 3 and 4 in the regions we have considered, as shown in the configurations of the SO_{2} molecule in Fig. 7 with $q=0.30 \AA$ and Fig. 11 with $q=0.35 \AA$ in the manuscript.
Fig. S1 and Fig. S2 display the adiabatic potential energies for states $1^{1} A_{1}, 1^{1} B_{2}$ in $C_{2 v},\left({ }^{1} A^{\prime}\right.$ in $\left.C_{s}\right), 1{ }^{1} B_{1}, 1$ ${ }^{1} A_{2}$ in $C_{2 v}$, $\left({ }^{1} A^{\prime \prime}\right.$ in $\left.C_{s}\right)$, and the NACTs for states $1,2\left(\tau_{\varphi 12}\right.$ coupling between states $1^{1} A_{1}$ and $1^{1} B_{2}$ in $C_{2} v / 1^{1} A^{\prime}$ and $2{ }^{1} A^{\prime}$ in C_{s}) and $3,4\left(\tau_{\varphi 34}\right.$ coupling between states $1^{1} B_{1}$ and $1^{1} A_{2}$ in $C_{2} v / 1^{1} A^{\prime \prime}$ and $2{ }^{1} A^{\prime \prime}$ in $\left.C_{s}\right)$ along the φ coordinate for the configurations shown in Figs. 7 and 11 in the manuscript, respectively. Our results in Fig. S1, considering the intersection between states $1^{1} \mathrm{~A}_{1}$ and $1^{1} \mathrm{~B}_{2}\left(\boldsymbol{\tau}_{\boldsymbol{\varphi} \mathbf{1 2}}\right)$ show that the circle contour with a radius of $q=0.30 \AA$ approaches the $(2,3)$ conical intersection. Therefore, we cannot expect very small values
of NACTs between states 2 and 3 in this region. However, it is possible to neglect the effect of $\tau_{\varphi 23}$ on γ_{12} for $q=0.30 \AA$, since $\tau_{\varphi 23}$ can be directly found in one of terms of Eq. (S4.a) which multiplies $\sin \gamma_{24} \tan \gamma_{13} \tan \gamma_{24}$, and these trigonometric functions are nearly zero. Consequently, NACTs between these electronic states may be significantly small or close to zero. Considering $\tau_{13}=\tau_{14}=\tau_{23}=\tau_{24}=0$, Eqs. (S4) can be simplified as follows:
$\nabla \gamma_{12}=-\sec \gamma_{13}\left(-\tau_{34} \sin \gamma_{14} \sin \gamma_{23}-0.5 \quad \tau_{34} \sec \gamma_{14} \sin \gamma_{24} \tan \gamma_{13}+\cos \gamma_{14}\left(\tau_{12} \sec \gamma_{24} \cos \gamma_{23}-\right.\right.$ $\left.\left.0.5 \tau_{34} \sin \gamma_{24} \tan \gamma_{13}\right)+\tau_{34} \sin \gamma_{14} \sin \gamma_{24} \tan \gamma_{13} \tan \gamma_{14}\right)$
$\boldsymbol{\nabla} \gamma_{13}=-\tau_{34} \cos \gamma_{23} \sin \gamma_{14}-\cos \gamma_{14}\left(\tau_{12} \sin \gamma_{23} \sec \gamma_{24}-\tau_{34} \sin \gamma_{24} \tan \gamma_{13} \tan \gamma_{23}\right)$
$\boldsymbol{\nabla} \gamma_{14}=\sec \gamma_{23} \tau_{34} \cos \gamma_{14} \tan \gamma_{13}-\tau_{12} \cos \gamma_{14} \tan \gamma_{24}$
$\nabla \gamma_{23}=-\left(\sec \gamma_{13}\right)^{2} \sin \gamma_{24} \tau_{34} \cos \gamma_{14}+\left(\tau_{12} \sec \gamma_{24} \cos \gamma_{23} \cos \gamma_{14}-\sin \gamma_{23}\left(\tau_{12} \cos \gamma_{14}+\right.\right.$ $\left.\left.\tau_{34} \sin \gamma_{14}\right)\right) \tan _{13}$
$\boldsymbol{\nabla} \gamma_{24}=\tau_{12} \sin \gamma_{14}+\left(\tau_{34} \cos \gamma_{24} \cos \gamma_{14}-\tau_{23} \sin \gamma_{24}\right) \tan \gamma_{23}$
$\nabla \gamma_{34}=-\tau_{34} \sec \gamma_{13} \sec \gamma_{23} \cos \gamma_{24} \cos \gamma_{14}$
Since the coupling between states 1 and 2 with the other states is weak, $\gamma_{13}=\gamma_{14}=\gamma_{23}=\gamma_{24}=0$, Eqs.
(S5) can be written by

$$
\begin{align*}
\boldsymbol{\nabla} \gamma_{12} & =-\tau_{12} \tag{S6.a}\\
\boldsymbol{\nabla} \gamma_{13} & =0 \tag{S6.b}\\
\boldsymbol{\nabla} \gamma_{14} & =0 \tag{S6.c}\\
\boldsymbol{\nabla} \gamma_{23} & =0 \tag{S6.d}\\
\boldsymbol{\nabla} \gamma_{24} & =0 \tag{S6.e}\\
\boldsymbol{\nabla} \gamma_{34} & =-\tau_{34} \tag{S6.f}
\end{align*}
$$

$\gamma_{12}(\boldsymbol{Q})$ and $\gamma_{34}(\boldsymbol{Q})$ are evaluated by integration over open path nuclear coordinates:

$$
\begin{align*}
& \gamma_{12}(\boldsymbol{Q})=-\int_{Q_{0}}^{Q} d \boldsymbol{Q} \tau_{12}(\boldsymbol{Q}) \tag{S7.a}\\
& \gamma_{34}(\boldsymbol{Q})=-\int_{Q_{0}}^{Q} d \boldsymbol{Q} \tau_{34}(\boldsymbol{Q}) \tag{S7.b}
\end{align*}
$$

Eq. (S7.a) corresponds to Eq. (22) in the manuscript for a two-state system. Therefore, to calculate $\gamma_{12}(\boldsymbol{Q}), \gamma_{34}(\boldsymbol{Q})$, it is not necessary to integrate coupled Eqs. (S4.a-S4.f). It is worth noting that our numerical study is based on a specific set of two-state NACTs.

The same rationale can be applied to the conical intersection of electronic states 3 and 4 (between two A"). We can also derive the aforementioned equations for the conical intersection of electronic states 3 and 4
(between two $\mathrm{A}^{\prime \prime}$). It is crucial to ensure accuracy when transitioning from a four-state calculation to two calculations for a two-state system.

Fig. S1 (a) adiabatic potential energies for the $1^{1} \mathrm{~A}_{1}, 1{ }^{1} \mathrm{~B}_{2}$ in $\mathrm{C}_{2 v},\left({ }^{1} \mathrm{~A}^{\prime}\right.$ in $\left.\mathrm{C}_{5}\right), 1{ }^{1} \mathrm{~B}_{1}, 1{ }^{1} \mathrm{~A}_{2}$ in $\mathrm{C}_{2 v},\left({ }^{1} \mathrm{~A}^{\prime \prime}\right.$ in $\left.\mathrm{C}_{5}\right)$, states and (b) NACT for states $1,2\left(\tau_{\varphi 12}\right.$ coupling between states $1^{1} \mathrm{~A}_{1}$ and $1^{1} \mathrm{~B}_{2}$ in $\mathrm{C}_{2} \mathrm{v} / 1^{1} \mathrm{~A}^{\prime}$ and $2^{1} \mathrm{~A}^{\prime}$ in C_{5}) and $3,4\left(\tau_{\varphi 34}\right.$ coupling between states $1^{1} \mathrm{~B}_{1}$ and $1^{1} \mathrm{~A}_{2}$ in $\mathrm{C}_{2} \mathrm{v} / 1^{1} \mathrm{~A}^{\prime \prime}$ and $2^{1} \mathrm{~A}^{\prime \prime}$ in C_{5}) are plotted along φ coordinate for the configuration shown of SO_{2} in Fig. 7 in the manuscript and $\mathrm{q}=0.30 \AA$

Fig. $\mathbf{S 2}$ (a) adiabatic potential energies for the $1^{1} A_{1}, 1^{1} B_{2}$ in $C_{2 v},\left({ }^{1} A^{\prime}\right.$ in $\left.C_{s}\right), 1{ }^{1} B_{1}, 1{ }^{1} A_{2}$ in $C_{2 v},\left({ }^{1} A^{\prime \prime}\right.$ in $\left.C_{s}\right)$, states and (b) NACT for states $1,2\left(\tau_{\varphi 12}\right.$ coupling between states $1^{1} \mathrm{~A}_{1}$ and $1^{1} \mathrm{~B}_{2}$ in $\mathrm{C}_{2} \mathrm{v} / 1^{1} \mathrm{~A}^{\prime}$ and $2^{1} \mathrm{~A}^{\prime}$ in C_{5}) and $3,4\left(\tau_{\varphi 34}\right.$ coupling between states $1^{1} \mathrm{~B}_{1}$ and $1^{1} \mathrm{~A}_{2}$ in $\mathrm{C}_{2} \mathrm{v} / 1^{1} \mathrm{~A}^{\prime \prime}$ and $2^{1} \mathrm{~A}^{\prime \prime}$ in $\left.\mathrm{C}_{5}\right)$ are plotted along φ coordinate for the configuration shown of SO_{2} in Fig. 11 in the manuscript and $\mathrm{q}=0.35 \AA$

S. 2 Subroutine for calculating diabatic potentials and couplings for any point of the nuclear configuration space of SO_{2} molecule

```
***,SO2 Diabatization and NACME calculation
gprint,orbitals,civector
memory,800,m
symmetry,x
orient,noorient !noorient should always be used for diabatization
geometry={s;
o1,s,r1;
o2,s,r2,o1,theta}
basis=aug-cc-pvqz !basis set
r1=2.7063 !Reference geometry
theta=[121.25]
```



```
reforb1=2140.2 !Orbital dumprecord at reference geometry
refci=6000.2 !MRCI record at reference geometry
savci=6100.2 !MRCI record at displaced geometries
text,compute wavefunction at reference geometry (C2v)
r2=r1
{hf;occ,14,4;wf,32,2,4;orbital,2100.2}
{multi;occ,14,4;closed,6,1;
wf,32,2;state,2;
natorb,reforb1
noextra}
{ci;occ,14,4;closed,6,1;
wf,32,2,0;state,2;
orbital,reforb1
save,refci}
Text,Displaced geometries
do i=1,#r !Loop over different r values
data,truncate,savci+1
!truncate dumpfile after reference
reforb=reforb1
do j=1,3 !Loop over small displacements for NACME
r2=r(i)+dr(j) !Set current r2
{multi;occ,14,4;closed,6,1;
wf,32,2,0;state,2;
!Wavefunction definition
start,reforb !Starting orbitals
orbital,3140.2+j; !Dumprecord for orbitals
diab,reforb !Generate diabatic orbitals relative to reference geometry
noextra}
reforb=3141.2 !Use orbitals for j=1 as reference for j=2,3
{ci;occ,14,4;closed,6,1;
wf,32,2,0;state,2;
orbital,diabatic !Use diabatic orbitals
save,savci+j}
eadia=energy
if(j.eq.1) then
e1(i)=energy(1) !Save adiabatic energies for table printing
e2(i)=energy(2)
end if
{ci;trans,savci+j,savci+j; !Compute transition densities at R2+DR(j)
```

dm, $7000.2+j\}$
\{ci;trans,savci+j,refci;
dm, $7100.2+j\}$
\{ci;trans,savci+j,savci+1;
dm, $7200.2+j\}$
\{ddr
density,7000.2+j,7100.2+j
orbital, 3140.2+j,2140.2
energy, eadia(1), eadia(2)
mixing,1.2,2.2\}
if(j.eq.1) then
mixci(i)=mixangci(1)
h11ci(i)=hdiaci(1)
h21ci(i)=hdiaci(2)
h22ci(i)=hdiaci (3)
mixtot(i)=mixang(1)
h11 (i)=hdia (1)
h21(i)=hdia(2)
h22(i)=hdia(3)
end if
$\operatorname{mix}(j)=m i x a n g(1)$
enddo
!Save transition densities on this record
!Compute transition densities between R2+DR(j) and R1
!Save transition densities on this record
! Compute transition densities between R and $R 2+D R(j)$
!Save transition densities on this record
!Densities for $\langle\mathrm{R} 2+\mathrm{DR}||\mathrm{R} 2+\mathrm{DR}\rangle$ and $\langle\mathrm{R} 2+\mathrm{DR}||\mathrm{R} 1\rangle$
! Orbitals for $\langle R 2+D R| \mid R 2+D R>$ and $\langle R 2+D R||R 1\rangle$
!Adiabatic energies
!Compute mixing angle and diabatic energies
!Store diabatic energies for R2 (DR(1)=0)
!Mixing angle obtained from ci vectors only
!Diabatic energies obtained from ci vectors only
!HDIA contains the lower triangle of the diabatic hamiltonian
!Mixing angle from total overlap (including first-order correction)
!Diabatic energies obtained from total overlap
!Store mixing angles for $R 2+D R(j)$
!End loop over j
dchi(i) $=(\operatorname{mix}(3)-\operatorname{mix}(2)) /(d r(2)-d r(3)) * p i / 180 \quad$!Finite difference derivative of mixing angle
\{ddr
density,7201.2,7202.2,7203.2 !Compute NACME using 3-point formula
orbital,3141.2,3142.2,3143.2
states,2.2,1.2\}
nacmeci(i)=nacme
\{table,r,mixci,mixtot,dchi, nacmeci
Title, Mixing angles and non-adiabatic coupling matrix elements for SO 2
format,'(f10.2,4f14.4)'
sort, 1
\}
\{table, r,e1,e2,h11ci,h22ci,h21ci
Title, Diabatic energies for SO2, obtained from CI-vectors
format,'(f10.2,5f16.8)'
sort,1\}
\{table, r,e1,e2,h11,h22,h21
title, Diabatic energies for SO2, obtained from CI-vectors and orbital correction
format,'(f10.2,5f16.8)'
sort, 1 \}
enddo

